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Important Parameters of EAs (1)

• dimension n of search space
• no parameter of EA, but given by the problem
• measures the size of the search space: {0, 1}n, R

n, Sn
• plays the same role as input length in classical runtime analysis
• other parameters are often chosen dependent on n

(e. g. mutation probability pm = 1/n)

• population size µ
• obviously µ = nO(1)

• often µ = Θ(n) or µ = Θ(
√
n)

• µ = O(1) or even µ = 1 are not unusual

• number of offspring λ
• obviously λ = nO(1)

• often λ = 1
• λ = µ or λ≫ µ not unusual
• selection method influences reasonable choice of λ
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Important Parameters of EAs (2)

• crossover probability pc
• in general pc ∈ [0; 1] arbitrary
• often pc ∈ [1/2; 4/5] constant

• probability of applying mutation
• don’t confuse with mutation probability!
• we will always use 1
• Remark
pm = 1/n⇒ Prob (no mutation) = (1− 1/n)

n ≈ 1/e
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Methods for parameter control
• static parameter control

parameter values constant during the whole run
• often used

+ simple
− maybe it’s better to vary the parameter value during the run?!

• dynamic parameter control
parameter values change during the run according to some
time-dependent scheme

+ more flexible than static approach
− cannot deal with non-time-dependent changes
• unusual for EAs

• adaptive parameter control
parameter values can change dependently on
every individual and any random experiment

+ very flexible
− hard to analyze
− computationally expensive
• often used for EAs 342
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Self-adaptation
Idea good parameter values evolve together with good
individuals

implementation code parameter values together with individual

formally S ×Q instead of S
unchanged f : S → R

e. g. for mutation probability

• every individual has its own mutation probability

• first vary the mutation probability

• then mutate with varied mutation probability

• afterwards normal selection

• important don’t swap steps
343
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Hierarchy of parameter control methods

static

parameter control

dynamic parameter control

adaptive parameter controlSe
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Lecture 11Evolutionary Algorithms: Historical Notes

Idea emerged independently several times: about late 1950s / early 1960s.
Three branches / “schools“

 
still active today.

●
 

Evolutionary Programming (EP): 
Pioneers: Lawrence Fogel, Alvin Owen, Michael Walsh (New York, USA).

Original goal: Generate intelligent behavior through simulated evolution.
 Approach: Evolution of finite state machines predicting symbols.

 Later (~1990s) specialized to optimization in Rn by David B. Fogel.

●
 

Genetic Algorithms (GA): 
Pioneer: John Holland (Ann Arbor, MI, USA).

Original goal: Analysis of adaptive behavior.
 Approach: Viewing evolution as adaptation. Simulated evolution of bit strings. 

Applied to optimization tasks by PhD students (Kenneth de Jong, 1975; et al.).

●
 

Evolution Strategies (ES): 
Pioneers: Ingo Rechenberg, Hans-Paul Schwefel, Peter Bienert (Berlin, Germany).

Original goal: Optimization of complex systems.
 Approach: Viewing variation/selection as improvement strategy. First in Zn, then Rn.



G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
2

Lecture 11Evolutionary Algorithms: Historical Notes

“Offspring“
 

from GA branch:

●
 

Genetic Programming (GP): 
Pioneers: Nichael Lynn Cramer 1985, then: John Koza (Stanford, USA).

Original goal: Evolve programs (parse trees) that must accomplish certain task.
 Approach: GA mechanism transfered to parse trees.

 Later: Programs as successive statements → Linear GP (e.g. Wolfgang Banzhaf)

Already beginning early 1990s:

Borders between EP, GA, ES, GP begin to blurr ...

⇒ common term Evolutionary Algorithm embracing all kind of approaches 
⇒ broadly accepted name for the field: Evolutionary Computation

scientific journals: Evolutionary Computation (MIT Press) since 1993,
 IEEE Transactions on Evolutionary Computation since 1997,

 several more specialized journals started since then.
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Design of EAs

Idea Methodology to apply standard EAs

Goal standard EAs do not have to be changed

Requirement problem is given as g : A→ B
g has to be maximized (or minimized)
A arbitrary set, B partially ordered

EA operates on search space S
‘maximizes’ fitness f : S → R
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Definition of mappings

A B

g

S R

h1 h2

Fitness f := h2 ◦ g ◦ h1

h1 is genotype-phenotype-mapping.
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Genotype-Phenotype-Mapping Bn → [L, R]  R

● Standard encoding for b  Bn

→ Problem: hamming cliffs

76543210

111110101100011010001000 L = 0, R = 7

n = 3

1 Bit 2 Bit 1 Bit 3 Bit 1 Bit 2 Bit 1 Bit

Hamming cliff
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Lecture 11Design of Evolutionary Algorithms

● Gray encoding for b  Bn

76543210

100101111110010011001000

Let a  Bn standard encoded.  Then bi = 
ai, if i = 1

ai-1 ai, if i > 1
 = XOR

genotype

phenotype

OK, no hamming cliffs any longer …

 small changes in phenotype „lead to“ small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

 small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change:  000→ 100  

Genotype-Phenotype-Mapping Bn → [L, R]  R
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Lecture 11Design of Evolutionary Algorithms

● e.g. standard encoding for b  Bn

76543210

100101001110000111101010 genotype

index

Genotype-Phenotype-Mapping Bn → Pn

individual:

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

24617053

111110101101100010001000 genotype

old index

(example only)

= permutation
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Requirements on h1 and h2

obvious requirements
• h1 and h2 can be computed efficiently
• h2 suits g, i. e. good points in B are mapped to good points

in R

• h1 maps on many (all) important points of A
• Optima of f correspond to optima of g

Caution requirements can be hard to achieve in practice

for non-obvious requirements a metric is important

Definition

Mapping d : M ×M → R
+
0 is a metric on the set M :⇔

1 ∀x, y ∈M : x 6= y ⇔ d(x, y) > 0 (positivity)

2 ∀x, y ∈M : d(x, y) = d(y, x) (symmetry)

3 ∀x, y, z ∈M : d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)
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Metric-based EAs

Assumption Metric dA on A known
(dA reflects application knowledge)

Requirement metric dS is known

if h1 injective, dS(x, x′) := dA(h1(x), h1(x′)) is metric

Requirement monotonicity

∀x, x′, x′′ ∈ S : dS(x, x′) ≤ dS(x, x′′)

⇒ dA(h1(x), h1(x′)) ≤ dA(h1(x), h1(x′′))
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Variation as randomized mapping
now Design-rules for variation operators

hence Formalize variation operators as randomized mappings

r : X → Y randomized mapping
⇔ r(x) ∈ Y depends on x ∈ X and random experiment

formally probability space (Ω, p)

r : X × Ω→ Y

Prob (r(x) = y) =
∑

ω∈Ω: r(x,ω)=y
p(ω)

Example 1-bit mutation
Ω := {1, 2, . . . , n}, ∀i ∈ Ω: p(i) = 1/n

1-bit mutation is randomized mapping m : {0, 1}n → {0, 1}n
where m(x, i) := x⊕ 0i−110n−i
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Design-rules for mutation

favor small changes

∀x, x′, x′′ ∈ S : dS(x, x′) < dS(x, x′′)

⇒ Prob
(

m(x) = x′
)

> Prob
(

m(x) = x′′
)

no bias

∀x, x′, x′′ ∈ S : dS(x, x′) = dS(x, x′′)

⇒ Prob
(

m(x) = x′
)

= Prob
(

m(x) = x′′
)

352



Introduction Evolutionary Algorithms Initialization and Selection Variation EA Parameters Typical EAs EA-Design

Design-rules for crossover
offspring similar to parents

∀x, x′, x′′ ∈ S : Prob
(

c(x, x′) = x′′
)

> 0

⇒ max
{

dS(x, x′′), dS(x′, x′′)
}

≤ dS(x, x′)

no bias

∀x, x′ ∈ S : ∀α ∈ R
+
0 :

Prob
(

dS(x, c(x, x′)) = α
)

= Prob
(

dS(x′, c(x, x′)) = α
)

Any EA that fulfills these four design-rules is called a metric-based
EA (MBEA).
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Lecture 11Design of Evolutionary Algorithms

Three tasks:

1. Choice of an appropriate problem representation.

2. Choice / design of variation operators acting in problem representation.

3. Choice of strategy parameters (includes initialization).

ad 1) different “schools“:

(a) operate on binary representation and define genotype/phenotype mapping
+ can use standard algorithm
– mapping may induce unintentional bias in search

(b) no doctrine: use “most natural” representation 
– must design variation operators for specific representation
+ if design done properly then no bias in search 
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ad 2) design guidelines for variation operators

a) reachability
every x ∈ X should be reachable from arbitrary x0 ∈ X
after finite number of repeated variations with positive probability bounded from 0

b) unbiasedness

unless having gathered knowledge about problem
variation operator should not favor particular subsets of solutions
⇒ formally: maximum entropy principle

c) control

variation operator should have parameters affecting shape of distributions;
known from theory: weaken variation strength when approaching optimum
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Lecture 11Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators in practice

binary search space X = Bn

variation by k-point or uniform crossover and subsequent mutation

a) reachability:
regardless of the output of crossover
we can move from x ∈ Bn to y ∈ Bn in 1 step with probability

where H(x,y) is Hamming distance between x and y.

Since min{ p(x,y): x,y ∈ Bn } =  > 0 we are done.
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Lecture 11Design of Evolutionary Algorithms

b) unbiasedness

Definition:

Let X be discrete random variable (r.v.) with pk = P{ X = xk } for some index set K.
The quantity

is called the entropy of the distribution of X. If X is a continuous r.v. with p.d.f. 
fX(·) then the entropy is given by

The distribution of a random variable X for which H(X) is maximal is termed a 
maximum entropy distribution. ■
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