
Computational Intelligence
Winter Term 2009/10

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
2

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
2

Plan for Today

● Evolutionary Algorithms

● Optimization Basics

● EA Basics

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
3

Lecture 10Optimization Basics

?
! !

!
! ?

!
? !

modelling

simulation

optimization

system outputinput

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
4

Lecture 10Optimization Basics

given:
objective function f: X → R

feasible region X (= nonempty set)

optimization problem:

find x* ∈ X such that f(x*) = min{ f(x) : x ∈ X }

note:

max{ f(x) : x ∈ X } = –min{ –f(x) : x ∈ X }

x* global solution

f(x*) global optimum

objective: find solution with minimal or maximal value!

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
5

Lecture 10Optimization Basics

local solution x* ∈ X :

∀x ∈ N(x*): f(x*) ≤ f(x)

neighborhood of x* =
bounded subset of X

example: X = Rn, N(x*) = { x ∈ X: || x – x*||2 ≤  

if x* local solution then

f(x*) local optimum / minimum

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general!

a bx*

example:
f: [a,b] → R, global solution at x*

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
6

Lecture 10Optimization Basics

What makes optimization difficult?

some causes:

• local optima (is it a global optimum or not?)

• constraints (ill-shaped feasible region)

• non-smoothness (weak causality)

• discontinuities (⇒ nondifferentiability, no gradients)

• lack of knowledge about problem (⇒ black / gray box optimization)

f(x) = a1 x1 + ... + an xn → max! with xi ∈ {0,1}, ai ∈ R

add constaint g(x) = b1 x1 + ... + bn xn ≤ b
⇒ xi* = 1 if ai > 0
⇒ NP-hard

add capacity constraint to TSP ⇒ CVRP ⇒ still harder

strong causality needed!

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
7

Lecture 10Optimization Basics

When using which optimization method?

mathematical algorithms

• problem explicitly specified

• problem-specific solver available

• problem well understood

• ressources for designing
algorithm affordable

• solution with proven quality
required

⇒ don‘t apply EAs

randomized search heuristics

• problem given by black / gray box

• no problem-specific solver available

• problem poorly understood

• insufficient ressources for designing
algorithm

• solution with satisfactory quality
sufficient

⇒ EAs worth a try

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
8

Lecture 10Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration

⇒ interpretation of biological evolution as iterative method of improvement

feasible solution x ∈ X = S1 x ... x Sn = chromosome of individual

multiset of feasible solutions = population: multiset of individuals

objective function f: X → R = fitness function

often: X = Rn, X = Bn = {0,1}n, X = Pn = {  :  is permutation of {1,2,...,n} }

also : combinations like X = Rn x Bp x Pq or non-cartesian sets

⇒ structure of feasible region / search space defines representation of individual

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
9

Lecture 10Evolutionary Algorithm Basics

initialize population

evaluation

parent selection

variation (yields offspring)

survival selection (yields new population)

evaluation (of offspring)

stop?

output: best individual found
Y

N

algorithmic
skeleton

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
10

Lecture 10Evolutionary Algorithm Basics

Specific example: (1+1)-EA in Bn for minimizing some f: Bn → R

population size = 1, number of offspring = 1, selects best from 1+1 individuals

parent offspring

1. initialize X(0) ∈ Bn uniformly at random, set t = 0

2. evaluate f(X(t))

3. select parent: Y = X(t)

4. variation: flip each bit of Y independently with probability pm = 1/n

5. evaluate f(Y)

6. selection: if f(Y) ≤ f(X(t)) then X(t+1) = Y else X(t+1) = X(t)

7. if not stopping then t = t+1, continue at (3)

no choice, here

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
11

Lecture 10Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring → selection for reproduction

(b) select individuals that proceed to next generation → selection for survival

necessary requirements:

- selection steps must not favor worse individuals

- one selection step may be neutral (e.g. select uniformly at random)

- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals‘ chromosomes x (→ maintain diversity)

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
12

Lecture 10Evolutionary Algorithm Basics

Selection methods

population P = (x1, x2, ..., x) with  individuals

• uniform / neutral selection
choose index i with probability 1/

• fitness-proportional selection
choose index i with probability si =

two approaches:

1. repeatedly select individuals from population with replacement

2. rank individuals somehow and choose those with best ranks (no replacement)

problems: f(x) > 0 for all x ∈ X required ⇒ g(x) = exp(f(x)) > 0

but already sensitive to additive shifts g(x) = f(x) + c

almost deterministic if large differences, almost uniform if small differences

don‘t use!

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
13

Lecture 10Evolutionary Algorithm Basics

Selection methods

population P = (x1, x2, ..., x) with  individuals

• rank-proportional selection
order individuals according to their fitness values
assign ranks
fitness-proportional selection based on ranks

⇒ avoids all problems of fitness-proportional selection
but: best individual has only small selection advantage (can be lost!)

outdated!

• k-ary tournament selection
draw k individuals uniformly at random (typically with replacement) from P
choose individual with best fitness (break ties at random)

⇒ has all advantages of rank-based selection and
probability that best individual does not survive:

G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
14

Lecture 10Evolutionary Algorithm Basics

Selection methods without replacement

population P = (x1, x2, ..., x) with  parents and

population Q = (y1, y2, ..., y) with  offspring

• (, )-selection or truncation selection on offspring or comma-selection
rank  offspring according to their fitness
select  offspring with best ranks

⇒ best individual may get lost,  ≥  required

• (+)-selection or truncation selection on parents + offspring or plus-selection
merge  offspring and  parents
rank them according to their fitness
select  individuals with best ranks

⇒ best individual survives for sure

