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Approximative Reasoning

So far:
ep:IFXisATHEN YisB

— R(x, y) = Imp( A(x), B(y) ) rule as relation; fuzzy implication

e rule: IF Xis ATHEN Y is B
fact: Xis A'
conclusion: Y is B

— B'(y) = sup, _« t( A(x), R(x, y) ) composition rule of inference

Thus:
 B'(y) = sup, x t( A'(x), Imp( A(x), B(y) ) )
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Approximative Reasoning

here: 1 forx=x,
A = 0 otherwise
Bly) =

sUp,x t(A'(x), Imp(A(x), B(y) ) )
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sup (0, Imp( Ax), By) )) = for x # x,
t(1, Imp(A(x,), B(Y) ) ) for x = x,
0 for x # X, since t(0,a)=0

Imp( ( A(Xo), B(y) ) for x = x, since t(a, 1)=a
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Approximative Reasoning

Lemma:

a) t(a, 1) =

b) t(a,b)<min{a,b}
c) t(0,a)=0

Proof: by a)
ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b < 1, that t(a, b) <t(a, 1) =a
Commutativity (axiom 3) and monotonicity lead in case ofa < 1 to
t(a, b) = t(b, a) < t(b, 1) = b. Thus, t(a, b) is less than or
equal to a as well as b, which in turn implies t(a, b) <min{a, b }.

ad c) From b) follows 0 < t(0, a) < min { 0, a } = 0 and therefore t(0, a) = 0. n
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Approximative Reasoning

Multiple rules:

IF Xis A, THEN Y is B,
IF X is Ay, THEN Y is B,
IF X is A, THEN Y is B,

IF X is A, THEN Y is B,

Xis A'

Yis B

Multiple rules for crisp input:
Imp;(A;(Xo), B4(y) )

(%), By(y))

By(y)=

B,(y) =

aggregate! = B'(y) =

Imp,(A,

nd
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aggr{B,'(y), ...

X, is given

= Ry(x, y) = Imp,( A((x), By(y) )
Ry(x, y) = Imp,( Ay(x), By(y) )
Ry(x, ¥) = Impy( Ag(x), By(y) )

- Rn(X, y) = Imp(Ay(x), B,(y) )

aggregation of rules or
local inferences necessary!

min

,B,(y)}, where aggr = { max
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Approximative Reasoning

FITA: “First inference, then aggregate!”

1. Each rule of the form IF X'is A, THEN Y is B, must be transformed by
an appropriate fuzzy implication Imp,(., -) to a relation R, :
Ri(x, y) = Imp,( Ay(x), By(y) ).

2. Determine B,'(y) = Ri(x, y) o A'(x) for allk = 1, ..., n (locale inference).

3. Aggregate to B'(y) = B(B,(y). ... B,) ).

EATI: “First aggregate, then inference!”

1. Each rule of the form IF X ist A, THEN Y ist B, must be transformed by
an appropriate fuzzy implication Imp,(-, -) to a relation R, :
Ri(x, y) = Imp( A(x), B,(y) ).

2. Aggregate R,, ..., R, to a superrelation with aggregating function a(-):
R(X, ¥) = o Ry(X, ¥), ..., Ry(%, ¥) ).

3. Determine B'(y) = R(x, y) o A‘(x) w.r.t. superrelation (inference).
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Approximative Reasoning

1. Which principle is better? FITA or FATI?

2. Equivalence of FITA and FATI ?

FITA:

FATI:

nd

B'(y) = B(By(y), ..,

B(y)
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B,(v))

BR(x, y) 0 A'(), ..., Ry(x, y) 0 A'(X) )

R(x, y) o A'(x)

o Ry(x, y), ...,

R.(x,y)) e A'(x)
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Approximative Reasoning

special case:

1 forx=x, —
Aoy -

0 otherwise

On the equivalence of FITA and FATI:

FITA: B(y) = B(By(y). --.. Bi(¥))
BCIMP,(A1(Xo), B4(Y) ), -, IMP(A(Xo), Br(y) ) )

FATI: B(y) = R(x, y) o A‘(x)

sup,.x t( A'(x), R(x, y) ) (from now: special case)

= R(xo, y)
= o Imp;(As(Xg), B4(Y) ), ., Imp,( An(Xo), BA(Y) ))

evidently: sup-t-composition with arbitrary t-norm and a(-) = B(-)
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Approximative Reasoning

e AND-connected premises
IFX,;=A;; AND X,=A,, AND ... AND X =A,, THEN Y = B,
IFX,=A,,ANDX,=A,AND ... AND X =A  THENY =B,
reduce to single premise for each rule k:

A(Xqseen X)) = min { A (Xq), Ap(Xo), -ovs Agn(X) or in general: t-norm

e OR-connected premises
IFX,=A;;ORX,=A;,0OR... ORX =A,, THENY =B,

IFX,=A,;ORX,=A,0R...ORX_ =A THENY =B,
reduce to single premise for each rule k:

A(Xq5eees X)) = Max { A (Xq), Aa(Xa), - oo Agn(Xm) } or in general: s-norm
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Approximative Reasoning

important:

o if rules of the form IF X is A THEN Y is B interpreted as logical implication
= R(x, y) = Imp( A(x), B(y) ) makes sense

e we obtain: B'(y) = sup,_yx t( A'(x), R(x, y))

= the worse the match of premise A'(x), the larger is the fuzzy set B'(y)

= follows immediately from axiom 1: a < b implies Imp(a, z) > Imp(b, z)

interpretation of output set B‘(y):

e B'(y) is the set of values that are still possible

e each rule leads to an additional restriction of the values that are still possible

= resulting fuzzy sets B',(y) obtained from single rules must be mutually intersected!

= aggregation via B‘(y) = min {B,(y), ..., B,'(y) }
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Approximative Reasoning

important:

o if rules of the form IF X is A THEN Y is B are not interpreted as logical
implications, then the function Fct(-) in

R(x, y) = Fct( A(x), B(y) )
can be chosen as required for desired interpretation.
o frequent choice (especially in fuzzy control):
- R(x, y) = min { A(x), B(x) } Mamdami — “implication*”
- R(x, y) = A(x) - B(x) Larsen — “implication®
= of course, they are no implications but special t-norms!

= thus, if relation R(x, y) is given,
then the composition rule of inference

[ Bi(y) = AX) o R(x, y) = sup, . min {A(x), R(x.y)} |

still can lead to a conclusion via fuzzy logic.
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Approximative Reasoning

example: [JM96, S. 244ff]

modelling
linguistic variable

linguistic terms

1

industrial drill machine — control of cooling supply

: rotation speed
:very low, low, medium, high, very high
ground set : X with 0 < x < 18000 [rpm]

h vh

1000 5000 9000
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13000 17000 rotation
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

modelling
linguistic variable : cooling quantity
linguistic terms :very small, small, normal, much, very much
ground set : Y with 0 <y < 18 [liter / time unit]

1

1 5 9 13 17 cooling
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

rule base

IF rotation speed IS very low THEN cooling quantity 1S very small

low
medium
high

very high

T

sets S, S, S, Sy, Sypy

vi?
“rotation speed”
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small
normal
much

very much

I

sets C,, C,, C,, C,, Cin
“cooling quantity”
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

1. input: crisp value x, = 10000 min-' (no fuzzy set!)

— fuzzyfication = determine membership for each fuzzy set over X

— yields S’ = (0,0, %, %, 0) via X - ( S,(Xo), Si(Xp): S(Xo): Sul%o): Synl%o) )

2. FITA: locale inference = since Imp(0,a) = 0 we only need to consider:

S C'oly) = Imp(%, C(y))
Shi C'm(y) =Imp( %4, Cm(Y) )

3. aggregation: 2
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

C'(y) = max {Imp( %, C(y) ), Imp( %, C.(y) ) }

in case of control task typically no logic-based interpretation:
— max-aggregation and

— relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b) ,Mamdani controller”

thus:
Ci(y) = max {min { %, C(y) }, min { %4, C.(y) } }

— graphical illustration
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Approximative Reasoning

example: (continued)
industrial drill machine — control of cooling supply

C'(y) = max {min {%, C (y) }, min { %4, C_(y) } }, X, = 10000 [rpm]

/

1000 5000 9000 13000 17000 1 5 9 13

rotation speed cooling quantity
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Fuzzy Control

open and closed loop control:

affect the dynamical behavior of a system
in a desired manner

e open loop control

control is aware of reference values and has a model of the system
= control values can be adjusted,
such that process value of system is equal to reference value

problem: noise! = deviation from reference value not detected

e closed loop control

now: detection of deviations from reference value possible
(by means of measurements / sensors)

and new control values can take into account the amount of deviation

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2009/10
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Fuzzy Control

open loop control

Q
te)
@)
(7 2
7
%

w u y
—_— _— Em—
reference process

value value
control system

process

assumption: undisturbed operation = process value = reference value
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Fuzzy Control

closed loop control

noise
Q
o)
),
G ”, d
%
%
w u y
- N -
reference process
value value

control system
process

control deviation = reference value — process value
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Fuzzy Control

required:

model of system / process
— as differential equations or difference equations (DEs)

— well developed theory available

so, why fuzzy control?

e there exists no process model in form of DEs etc.
(operator/human being has realized control by hand)

o process with high-dimensional nonlinearities — no classic methods available

e control goals are vaguely formulated (,soft* changing gears in cars)
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Fuzzy Control

fuzzy description of control behavior

IF X'is A;, THEN Y is B,
IF Xis A,, THEN Y is B,
IF Xiis A;, THEN Y is B,
similar to approximative reasoning
IF Xis A, THEN Y is B,

Xis A’

Y is B

but fact A" is not a fuzzy set but a crisp input

— actually, it is the current process value

fuzzy controller executes inference step

— yields fuzzy output set B‘(y)

but crisp control value required for the process / system

— defuzzification (= “condense” fuzzy set to crisp value)
4 technische universitat
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Fuzzy Control

defuzzification Def: rule k active < A, (x,) > 0
e maximum method
- only active rule with largest activation level is taken into account
— suitable for pattern recognition / classification
— decision for a single alternative among finitely many alternatives
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)

‘ i = argmax B'(y)

B'(y) B(y) B(y) g
05 05 05 —

i 7]
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Fuzzy Control

defuzzification Y*={y e Y: B{(y) = hgt(B*) }
e maximum mean value method

- all active rules with largest activation level are taken into account

— interpolations possible, but need not be useful

— obviously, only useful for neighboring rules with max. activation
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

Fuzzy Control

defuzzification Y*={y e Y: B{(y) = hgt(B") }
e center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account
— interpolations possible, but need not be useful
— obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

infY*4+supY*

1
~ *
b= V¥ “ Y
‘ yrey™ .
B(y) Y B'(y)
05 T 05+
i ‘ useful solution? — i
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Fuzzy Control
defuzzification
e Center of Gravity (COG)
- all active rules are taken into account
— but numerically expensive ... ...only valid for HW solution, today!

— borders cannot appear in output ( 3 work-around )
- if only single active rule: independent from activation level

- continuous curve for output values

__Jy - B'(y)dy
I B'(y) dy
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g =
2
Bi(y)
0,5
i "y
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Fuzzy Control
| __Jy-B'(ydy
Excursion: COG Yy = T oIl 1
I B'(y) dy
B () pendant in
probability theory:
1 expectation value
} }
1 3,77 v
triangle: trapezoid:
j= " +u2+us3 = w3 +u3 — v3 — v + vaua — v1v2
) 3 3(ya+uyz—yz2—w)
Y1 Y2 Y3 Yi¥a Y3 Vs
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Fuzzy Control

z=B'(y)

Ty B'(y)dy
;

I B'(y) dy

", A Ya Ya Ys Yo ¥, y
assumption: fuzzy membership functions piecewise linear
output set B'(y) represented by sequence of points (y,, 2,), (Y2, Z,), ---» (Yp Zp)
= area under B'(y) and weighted area can be determined additively piece by piece
= linear equation z=my + b = insert (y,, z) and (¥;,1,Z;14)

= yields m and b for each of the n-1 linear sections

) Yit1 m, o 2 .
= Fi= [ myth) dy = T2~ +b(ig ) X6
i o L)
7=
) Yit1 m b F:
=G = [ y (my+b)dy = 5(1;,-3+1—1;53)+5(y?+1—y?) E‘: :
<
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Fuzzy Control

Defuzzification
e Center of Area (COA)
+ developed as an approximation of COG

* let y, be the COGs of the output sets B’,(y):

¢

>k Ag(zo)

L \J dortmund

>k Ar(zo) - Uk
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