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A phylogeny is a tree representation of the evolutionary history of a set of
taxa (organisms, biological sequences, populations, or languages). Thus,
phylogeny construction is among the basic computational problems in biol-
ogy and linguistics. We will be concerned here with taxa described by the
states they exhibit on a set of characters. A sample data set and a phylogeny



a b c d e f
lamprey |0 O O O O 1
shark 11 0 1 0 O
salmon 11 1 1 0 O
lizard 11 1 0 10

lamprey shark salmon lizard

Figure 1: A data matrix and a phylogeny. The characters are: (a) paired
fins, (b) jaws, (c) large dermal bones, (d) fin rays, (e) lungs, (f) rasping
tongue.

for it (both adapted from [41]) are shown in Figure 1. The data is binary
and in matrix form, rows are indexed by taxa and columns by characters.
Entry (i,7)is “17 if taxon ¢ has character j and it is “0” if the character is
absent. The phylogeny shown is rooted and assumes that the taxa descend
from a common ancestor where all characters are absent. Points at which
characters emerge are indicated by labeled bars. !

The phylogeny of Figure 1 has the fewest state changes among all rooted
trees for the given set of taxa. In evolutionary biology, this is referred to as a
most parsimonious tree. While the validity of parsimony has been debated,
it can be justified on biological grounds (see, e.g, [48]) and is widely used
in practice, as attested by the popularity of software such as PAUP (which
stands for “Phylogenetic analysis using parsimony”) [54]. Finding a most
parsimonious tree for a set of taxa is a Steiner tree problem: The given
points are the taxa, which, if characters are binary, are represented by 0-1
vectors in a space of dimension equal to the number of characters. The
Steiner points are the labels of the internal nodes, which are themselves
0-1 vectors (see Figure 2). The distance between two labels is the number
of characters in which they differ; that is, it equals the Hamming distance
between them. Hence the sum of the distances between neighbors in the
tree is the total amount of evolutionary change implied by the tree.

In our sample phylogeny, fin rays emerge independently in two branches.

!The point of view reflected by this and much of the subsequent discussion — that is,
trees as models of evolutionary history — has to some extent been abandoned by modern-
day systematics (the field that studies the classification of taxa). Instead, trees of the sort
considered here are viewed as models of character distribution, with no implicit time axis,
and are often called cladograms, to distinguish them from evolutionary trees. For further
discussion of this issue, see [41].
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Figure 2: The phylogeny of Figure 1, with internal nodes labeled by the
taxa implied by the character-state transitions in that tree.

This is called homoplasy, and is generally inescapable in real data. In the
words of Page and Holmes [48], “homoplasy is a poor indicator of evolu-
tionary relationships, because similarity does not reflect shared ancestry.”
Sets of characters that admit phylogenies without homoplasy are said to
be compatible. The problem of determining whether a set of characters is
compatible has deserved the attention of systematicians since the mid-60’s.
A good survey of the development of the field, with references to the early
literature, has been written by Estabrook [20]. In the computer science
literature, where the problem seems to have first been introduced by Gus-
field [31, 32], phylogenies that avoid homoplasy are called perfect and the
character compatibility problem is called the perfect phylogeny problem.

Our goal here is to give an overview of the elegant mathematical and algo-
rithmic structure of the perfect phylogeny problem, identifying the common
threads, such as tree compatibility and the notion of intersection graphs,
that unify the field. Elegance comes at price: only in restricted cases does
data admit a perfect phylogeny (for a case where the model fits well, see
[47]). Coping with incompatibility is thus an important issue; we turn to
it at the end of this chapter. To our knowledge, the only prior survey of
scope similar to ours is Steel’s lucid 1992 paper [52], which remains essential
reading for anyone interested in the area. An update on the subject seems
appropriate, now that the field has attained matured.

Perfect phylogenies are not the only approach to evolutionary tree con-
struction. The reader interested in other methods, such as maximum likeli-
hood, can consult the excellent references that have appeared in recent years
[53, 41, 48]. In these same works, the reader can learn about other important
topics that fall outside of the scope of this paper, such as the philosophical
basis for parsimony, and the wider context within which phylogenetics and,



in particular, character-based methods are studied.

Organization. In the next section, we provide basic problem definitions.
Section 3 explains the relationship between perfect phylogenies and Steiner
trees, showing the precise sense in which the former are a special case of the
latter. Section 4 considers the polynomially-solvable special case of cladistic
characters, where ordering relationships between states are specified. The
discussion there centers on binary characters; multi-state characters are han-
dled by reduction to binary ones. Section 5 discusses tree compatibility,
focusing on the important polynomially-solvable special case of rooted trees
and its relationship with testing the compatibility of incomplete directed
characters. Section 6 describes the polynomial-time solution of the perfect
phylogeny problem when the number of character states is fixed, a case
that arises, for example, in molecular data (four or 20 states, depending on
whether DNA or proteins are considered). Section 7 describes the relation-
ship between restricted triangulations and perfect phylogenies and describes
how this connection can be exploited to obtain a polynomial-time algorithm
when the number of characters is fixed. Finally, Section 8 summarizes the
main themes of the paper and discusses polymorphism and the problem of
dealing with incompatibility.

2 Preliminaries

A tazon over a set of m characters C is a vector s € Z™ (where Z is the
set of integers); c(s) is the state of s on character ¢ or the state of ¢ for
s. The set of allowed states for c(s) is denoted by A.. We assume that
Ac ={0,...,7c_1}, for some integer r.. Let r = maxcec 7e. It is sometimes
convenient to introduce two extra states outside of A.: ?, which stands for
an unknown state, and *, the dummy state.

Let & be a set of n taxa. The set can be represented by an n X m
character-state matriz M = [m;;], where m,; is the state of taxon ¢ on
character j. Taxa in § may have unknown states, but no dummy states. C
is said to be incomplete if ¢(s) =7 for some s € §; otherwise, C is complete.
Force Cand o € AcU{?}, let S¢n = {s € S:c(s) = a}. Then {S¢, :
a € Ac U{7}} is a partition of §. Characters of this sort, which specify no
relationship between states, are sometimes called qualitative characters.

A phylogeny for § is a tree with exactly n leaves, each labeled by a
distinct element of §. An internally-labeled phylogeny for S, is a phylogeny
T for & where every node v is labeled by a taxon s,. Labels of internal
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Figure 3: A character-state matrix and an internally-labeled perfect phy-
logeny.

nodes represent hypothetical ancestors to the elements of .

Consider for the moment complete characters. Character ¢ is convez
in an internally-labeled phylogeny T if for every a € A, the set of nodes
{v € V(T) : ¢(s,) = a} induces a subtree of T. An internally-labeled
phylogeny T is perfect if every ¢ € C is convex in T. If § admits a perfect
phylogeny, C is said to be compatible. The perfect phylogeny problem (also
known as the character compatibility problem) is to determine if a given set
of taxa S on a set of characters C has a perfect phylogeny (see Figure 3).

For incomplete characters, we say that & admits a perfect phylogeny if
there is some way to replace each question-mark by an allowed state, such
that the resulting set of taxa has a perfect phylogeny.

We now give an alternative definition of convexity for phylogenies that
are only leaf-labeled. This definition obviates the need to distinguish be-
tween complete and incomplete characters and is more appropriate for cladis-
tic characters, to be introduced below. Given a phylogeny T', a character ¢
and a state a of ¢, let T, , denote the minimal subtree of T" that connects
the set S¢ . Then, ¢ is convex if for any two distinct states o, 5 € Ac, Tc o
and T¢ g are vertex-disjoint. Clearly, any leaf-labeled phylogeny that satis-
fies this definition of convexity for ¢ has an internal labeling that satisfies
the original definition.

A perfect phylogeny T for § is minimal if, for every edge e in T, the
tree that results from contracting e cannot be vertex-labeled to make it a
perfect phylogeny for §. Clearly, S has a perfect phylogeny if and only if it
has a minimal perfect phylogeny.

A cladistic character ¢ is a qualitative character together with a tree
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Figure 4: Two undirected cladistic characters with the same character-state
tree and a phylogeny consistent with both.

t. whose node set is Ac; t. is called a character-state tree (see Figure 4).
Character c is directed if t. is rooted; otherwise, it undirected [19]. Character
state trees specify an ordering among the states that must be respected by
a phylogeny. More precisely, phylogeny T is consistent with a cladistic
character ¢ if the following holds for each edge (u,v) of t.. Let t., be the
connected component of t. — (u,v) containing u (v) and let A, (A,) be the
set of all taxa s such that ¢(s) = a, where a is a node of ¢.,. Then there
exists an edge e in T such that the leaf label set of one component of T' — e
contains A,, while the corresponding set for the other component contains
A, (see Figure 4). Note that if 7" is consistent with ¢, then ¢’s underlying
qualitative character is convex in T according to our second definition of
convexity.

T is consistent with a set of characters C if it is consistent with every
c € C. A set C of cladistic characters is compatible if there is a phylogeny T
that is consistent with C. The problem of determining whether there exists
a phylogeny consistent with a set of cladistic characters is the compatibil-
ity problem for (directed or undirected) cladistic characters or the perfect
phylogeny problem for (directed or undirected) cladistic characters.



3 The Steiner Tree Problem in Phylogeny

Before embarking on the study of perfect phylogenies, let us examine their
relationship with minimum Steiner trees. We need some definitions. For
any two taxa s and t let dist(s,t) denote the Hamming distance between s
and t, that is the number of characters ¢ such that e(s) # ¢(t). The length
of an internally-labeled phylogeny T is

length(T) = Z dist(sy,S,).

(w,w)€E(T)

The Steiner tree problem in phylogeny is to find a minimum-length internally-
labeled phylogeny for a set of taxa §.

Observe that in any internally-labeled phylogeny T for S, for every char-
acter ¢ the number of edges (u,v) where c(s,) # c(s,) is at least ro — 1
(assuming each state of ¢ is exhibited by some taxon). Furthermore, if T’
is perfect, it must have an internal labeling with exactly r. — 1 edges where
c(sy) # c(sy). Thus, we can establish the following relationship between
Steiner trees and perfect phylogenies.

Theorem 3.1 S has a perfect phylogeny if and only if the minimum length
of an internally-labeled phylogeny for S is ) co(re — 1).

Any character-state transition in a phylogeny beyond the lower bound
of > cec(re — 1) requires homoplasy. In the phylogenetics literature, such
transitions are sometimes called additional transitions.

The Steiner tree problem in phylogeny is NP-hard even for binary charac-
ters [28]. In fact, it shares the non-approximability properties of its counter-
part in arbitrary metric spaces [26]. On the positive side, given a phylogeny
T for S, an internal labeling that minimizes length(1") can be found effi-
ciently [27, 33]. Furthermore, moderately large instances can be solved in a
reasonable amount of time by branch and bound (see, e.g., [24, 54]). Finally,
known approximation algorithms for the Steiner tree problem in networks
can be adapted to phylogenies [57, 35].

The above version of the Steiner tree problem in phylogeny corresponds
to Wagner parsimony [55], in which all state transitions are equally likely.
Two kinds of restrictions on the transitions are sometimes considered:

e In (binary) Dollo parsimony [16, 23], a character state can emerge
exactly once in the tree; however, it may be lost multiple times.



e In Camin-Sokal optimization [13], a character state may emerge mul-
tiple times, but is never lost.

Even with these restrictions, the Steiner tree problem in phylogeny re-
mains NP-hard [15]. However, in both cases, the optimal internal labeling
for a given tree can be found in polynomial time [53].

4 Complete Cladistic Characters

The simplest case of the perfect phylogeny problem is when characters are
complete and cladistic. Intuitively, this is because character-state trees and
the absence of unclassified taxa significantly limit the number of possibilities
to be considered.

To highlight the differences between complete and incomplete characters,
consider the following well-known result [22].

Lemma 4.1 A set C of complete cladistic characters is compatible if and
only its elements are pairwise compatible.

This lemma does does not hold for incomplete cladistic characters; that
is, a set of incomplete directed binary characters may be incompatible even
if its elements are pairwise compatible. For example, in the following matrix
(taken from [49]), whose rows correspond to taxa and whose columns cor-
respond to characters, every pair of characters is compatible, but the entire
set is not:

O Y = =
N = = O
_ =0 O

In the remainder of this section we first study the most basic compatibil-
ity problem of all, the perfect phylogeny problem for binary characters, and
show that it has a particularly elegant structure, which leads to a fast algo-
rithm. We then argue that non-binary cladistic characters can be factored
into binary omnes, yielding a polynomial-time algorithm for cladistic char-
acter compatibility, regardless of the number of states. Lemma 4.1 follows
implicitly from the results presented here.
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Figure 5: A compatible binary data set and the corresponding phylogeny.
Nodes in the tree are labeled by the characters that emerge at them.
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Figure 6: The n-tree representation of the phylogeny of Figure 5.

Binary characters. Assume, without loss of generality, that the root
state is zero. The I-state of character ¢, denoted 1., is the set of all taxa
s such that ¢(s) = 1. A compatible binary data set and the corresponding
perfect phylogeny T are shown in Figure 5. Since T is perfect, for each
character ¢, there is a node v such that the set of taxa labeling the leaves
of the subtree rooted at v is exactly 1. (see Figure 5). If we label nodes by
the 1-states of the corresponding characters we obtain what is known as the
“n-tree” representation of the phylogeny: a collection of nested sets where
children are subsets of their parents and sibling sets are disjoint [42] (see
Figure 6). It is clear that a perfect phylogeny exists if the 1-sets can be
arranged in an n-tree; moreover, this is the only case where it exists. We
thus have the following classical result.



BinaryCompatibility(S, C)
sort characters by non-increasing cardinality of their 1-states
build a tree T" with a single node v labeled §
for each s € § do
lowest(s) — v
for each ¢ € C do
choose any s € 1. and let v = lowest(s)
if there exists t € ¢ such that lowest(t) # v then
return nil
else
create a node u, labeled 1.
make u a child of v
for each t € 1. do
lowest(t) — u
return 7

Figure 7: Testing compatibility of directed binary characters

Theorem 4.2 (Estabrook et al. [21]) A set C of complete directed bi-
nary cladistic characters is compatible if and only if the 1-states of every
pair of characters are either disjoint or one contains the other.

Gusfield [32] used this result to obtain a O(nm) algorithm for binary
compatibility. Agarwala et al. [3] improved the running time to O(k), where
k is the number of ones in the data matrix; their algorithm is shown in
Figure 7. The goal is to produce an n-tree representation of the 1-sets, if
possible. We assume that all characters are distinct; duplicates can be han-
dled easily. For every taxon s the algorithm maintains a pointer lowest(s)
to the lowest node in the current tree T containing s. At the beginning
of each iteration of the main loop (the second for loop), T is an n-tree
representation of the 1-states of the characters examined so far. Since char-
acters are processed by non-increasing cardinality, when ¢ is considered in
the main loop, there are only two possibilities: If lowest(s) has the same
value v for all s € 1., then the label of v is the smallest 1-set in the tree
containing 1.; thus, we make 1. a child of ». If there exist s,t € 1. such
that lowest(s) # lowest(t), then there must be a pair of characters violating
the conditions of Theorem 4.2 and hence there is no perfect phylogeny. The
approach can be extended to allow insertion and deletion of characters and
taxa (see [3] for details).

10



Non-binary characters. Directed non-binary cladistic characters can be
factored into binary characters. Let ¢ be a directed cladistic character and
let v be a node of t.. The binary factor of ¢ associated with v is the directed
binary character d, whose 1-state consists of all taxa s such that ¢(s) = a,
where « is a node in the subtree of ¢, rooted at v. One can now prove

Lemma 4.3 A set C of complete directed cladistic characters is compatible
if and only if the set of all binary factors of the characters in C is compatible.

Since the number of factors for a character is at most one less than r, the
maximum number of states, this lemma, in combination with the algorithm
for directed binary characters, yields the following.

Theorem 4.4 The compatibility of complete directed characters can be tested
in O(nmr) time.

The result above gives an eflicient implementation of Meacham’s “tree-
popping” algorithm [46]. It also gives a compatibility algorithm for complete
undirected characters, thanks to the following fact.

Lemma 4.5 (McMorris [43]) LetC be a set of complete undirected binary
cladistic characters. Let C' be the set of complete directed binary characters
obtained from C by rooting each ¢ € C at whichever state has the most taza,
breaking ties arbitrarily. Then C is compatible if and only if C' is compatible.

Given a complete undirected cladistic character ¢, it is always possible
to choose a root for t. such that, for every binary factor of the resulting
directed character, the ancestral state has at least as many taxa as the
descendant state [22]. Such a root can be found in O(n) time per character.
After rooting the trees, we can test for compatibility of the resulting directed
characters. We thus have the following.

Theorem 4.6 The compatibility of complete undirected cladistic characters
can be tested in O(nmr) time.

5 Tree Compatibility and Incomplete Characters

We use the following notation. Let T be an unrooted phylogeny for & and let
A CS. Then, T|A denotes the tree obtained by suppressing all degree-two
vertices from the minimal subtree of T connecting the nodes labeled A.

11
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Figure 8: Top: A two-tree family 7. Bottom: A tree consistent with the
elements of 7.

Let T and T’ be phylogenies on S and &’ C S, respectively. Then T is
consistent with T' if T' can be obtained from T|S’ by edge contractions. A
set 7 of phylogenies on subsets of S is compatible if there exists a phylogeny
that is consistent with every tree in 7 (see Figure 8). The tree compatibility
problem is to determine if a collection 7 of phylogenies on subsets of § is
compatible. An important special case of tree compatibility arises when the
input is restricted to quartets, that is, binary phylogenies on four taxa (an
example of a quartet is the first tree in Figure 8).

The compatibility of complete or incomplete cladistic characters can be
formulated as a tree compatibility problem by representing each character as
a tree (see Iigure 9). Indeed, compatibility of cladistic or qualitative charac-
ters is polynomially reducible to quartet compatibility [52]. Unfortunately,
we have the following result.

Theorem 5.1 (Steel [52]) Tree compatibility is NP-complete even when
the input consists of quartets.

Since every quartet can be encoded as an incomplete binary character,
we have the following (also observed by Steel).

12
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Figure 9: Tree representations of the binary directed characters of Figure 5.
The phylogeny shown in that figure is consistent with all five trees shown
here.

Corollary 5.2 Testing the compatibility of incomplete undirected charac-
ters is NP-complete, even when the input characters are binary.

On the other hand, if all input trees have at least one common taxon,
the compatibility problem becomes polynomially-solvable, since the problem
becomes a special case of rooted compatibility, to be discussed next.

The rooted case. An important result of Aho et al. [4] is that the com-
patibility of rooted trees can be determined in polynomial time. To describe
this algorithm, we need some notation. Given a rooted phylogeny T for §
and A C S, T'|A has the same meaning as for unrooted trees, except that
the root of the minimal subtree connecting A is suppressed only if it has just
one child. Let 7 be a family of rooted phylogenies on subsets of §. Given
aset X C 8, 7|X denotes {T'|X : T € T}. H(7,S) denotes the graph with
vertex set S where (s,t) is an edge if and only if there is a tree 7" € 7 such
that s and t appear in the same connected component of T — {root(T')}.

The key insight is that if there exists a tree T that is consistent with ev-
ery tree in F, then each connected connected component of H(7,S) (viewed
as a set of taxa) is contained in a distinct subtree of the root of T*. This
gives us the first level of T™; to build the rest, we proceed recursively on the
components. This process is detailed in Figure 10.

We have the following, which is a restatement of results in [4], along the
lines of [52].

13



Rooted TreeCompatibility(7, S)
let T' be a tree with a single vertex v, labeled S
if H(7,S) has more than one connected component then
for each connected component X of H(7,S) do
let T'x = RootedTreeCompatibility(7|.X, X)
make Tx a subtree of v in T
return 7T

Figure 10: The rooted tree compatibility algorithm.

Theorem 5.3 Let T be a family of rooted phylogenies on the set of taxa S
and let T' be the tree returned by Rooted TreeCompatibility(7,S). Then T is
compatible if and only if for each s € § there is a node labeled {s} in T.

Assume that the trees in 7 are binary and have total size M. Aho et
al. gave a O(nM ) implementation of their algorithm. Henzinger et al. im-
proved the running time to O(min{Mn'/?, M + n*logn}), also giving a
O(mlog® n) randomized version [34]. The speedup is achieved by improving
the time needed to maintain the connected components of H(7,S) under a
sequence of deletions of edges in batches (which is how the graphs considered
in recursive calls are obtained from H).

Obviously, RootedTreeCompatibility can be used to test compatibility of
a set 7 of unrooted trees in exponential time by enumerating all possible
rootings of the trees in the set. There is one case where such enumeration is
unnecessary. Suppose all the unrooted trees in 7 share some taxon s. Then,
the problem can be reduced to rooted compatibility by rooting each tree T’
in 7 at the neighbor of s in 7' [11].

Incomplete directed binary characters. Algorithm RootedTreeCom-
patibility gives a method for testing the compatibility of incomplete directed
binary characters; however, the reduction to tree compatibility takes Q(n?m)
time. It is natural to ask whether the problem can be solved in time ap-
proaching the O(nm) bound for compatibility of complete binary characters.
This goal has nearly been attained by Pe’er, Shamir, and Sharan, who have
devised an algorithm that solves the problem in time O(nm+klog?(n+m)),
where £ is the total number of taxa in the 1-states [49]. Their method can
viewed as a clever adaptation of the procedure of Aho et al.

To explain the algorithm, we need some definitions. The character-tazon

graph is the bipartite graph CTG(S,C) = (S,C, F) with F = {(s,c):s €

14



IncompleteBinaryCompatibility(S, C)
let G = CTG(S,C), T ={S,0}U{{s}:s €S}
remove all §-semi-universal and all null characters from G
while E(G) # 0 do
for each connected component A of GG such that |F(A)| > 1 do
let S'=8nA
compute the set U of all §’-semi-universal characters
if U = () then
return nil
else
remove U from G and set T — T U {5’}
return 7

Figure 11: Testing compatibility of incomplete directed binary characters

S,c € C,e(s) = 1}. Let S’ be a non-empty subset of . A character is
S'-semi-universal if its 0-state does not intersect S’.

The procedure of Pe’er et al. is shown in Figure 11. CTG plays the role
of graph H in the Aho et al. algorithm. In particular, the non-existence of
a semi-universal character for a connected component of C'TG is equivalent
to the existence of a non-trivial unsplittable connected component in H.
Thus, if either condition is detected, it is correct to report that no perfect
phylogeny exists. As in the Aho et al. algorithm, the time is dominated
by the work needed to maintain connected components of C'TG under edge
deletions. Details of the analysis can be found in [49].

If the data is compatible, the value returned by the algorithm of Pe’er
et al. is a collection of sets that can be viewed as the 1-sets of complete
characters obtained by flipping the question-marks to 0’s or 1’s. These can
be assembled into a phylogeny using the algorithm BinaryCompatibility of
Figure 7.

General comments. From the preceding two algorithms emerges an im-
portant idea: that of decomposing § into equivalence classes according to
the states of the root. We briefly elaborate on this here.

The fact that the root state of all characters is zero implies a partition
of §, each of whose elements is an equivalence class of the transitive closure
of the relation R defined as follows: For s,t € S, (s,t) € R if and only if
there exists some ¢ € C such that ¢(s) = ¢(t) = 1. These equivalence classes

15



are precisely the connected components of the H graph of Aho et al. (and
are closely related to the components of the CTG graph of Pe’er et al.). Let
A be one of the equivalence classes. By construction, all taxa s € A have
c(s) = 1 for all characters ¢ in some C' C C. We can further partition A
into subsets, each of which is an equivalence class of the transitive closure
of R', defined as: (s,t) € R if and only if there exists some ¢ € C — C’ such
that ¢(s) = ¢(t) = 1. We can view this as the decomposition of A induced
by the root of the subtree containing A; this node v must have ¢(s,) = 1 for
all ¢ € " and c(s,) = 0 otherwise.

What makes testing compatibility of directed characters simpler than
for undirected characters is, of course, knowledge of the root. Thus, we can
build trees from the top down. Still, the idea of decomposing a set of taxa
according to a given vector is important for two of the algorithms discussed
in later sections, both of which use a bottom-up approach. In one case
(Section 6), the space of potential roots is limited by convexity constraints;
in the other (Section 7), it is limited by the fact that the number of characters
is small.

6 Bounding the Number of States

In this and the next section, we consider only complete qualitative char-
acters. As we saw in Section 4, the compatibility of qualitative binary
characters can be determined in O(nm) time by reducing the problem to di-
rected compatibility. However, the complexities of cladistic and qualitative
character compatibility diverge for characters with three or more states. If
no bound is placed on the number of states, determining the compatibility
of qualitative characters is NP-complete [8], whereas the same problem for
cladistic characters is polynomially-solvable (Theorem 4.6). Dress and Steel
gave a O(nm?) algorithm for testing the compatibility of ternary characters
[18]. Later, Kannan and Warnow gave a O(n*m) algorithm for quaternary
characters [37]. The problem was shown to be polynomially-solvable for all
fixed 7 by Agarwala and Fernidndez-Baca, who gave a O(2% (nm?® 4+ m*))
algorithm [1]. This bound that was improved to O(2?"nm?) by Kannan and
Warnow [39]. In this section we give an account of the last two algorithms.

Let us say that subsets A, B of & share state a on character ¢ if there
exist s € A, t € B such that ¢(s) = ¢(t) = a. A subset G of S is a cluster
if G and § — G share at most one state o on each character. A cluster is
proper if there exists some character ¢ on which no state is shared between

G and S — G.

16



For example, consider the set of taxa
§=4(1,2,1),(1,3,3),(2,1,1),(2,3,2),(2,4,1),(3,3,3),(4,4,1)}. (1)

Then H ={(2,1,1),(2,3,2)}is a cluster, but not a proper one, since state 2
is shared with & — H on the first character, state 3 on the second, and state
1 on the third. On the other hand, G = {(2,1,1),(2,3,2),(2,4,1),(4,4,1)}
is a proper cluster, since no states are shared between G and § — G on the
first character.

A simple but important observation is that there are at most 2"m proper
clusters, since at most 2" are defined by the states of any given character.
This bound is polynomial when r is fixed.

Removing any edge in a minimal perfect phylogeny partitions the taxa
into disjoint sets such that there is at least one character on which no state
is shared; otherwise, the edge could be contracted and the phylogeny would
not be minimal. Thus, we have the next lemma [1].

Lemma 6.1 Let T be a minimal perfect phylogeny for S, let e be an edge in
T, and let 8" be the subset of S labeling the leaves of a component of T —{e}.
Then S’ is a proper cluster.

Thus, minimal perfect phylogenies can be assembled from phylogenies for
proper clusters. This and the polynomial bound on the number of proper
clusters motivate the dynamic programming approach that we are about
to develop. The idea is to enumerate the proper clusters G by increasing
cardinality, testing whether each ' has a perfect phylogeny made up of
phylogenies for smaller proper clusters. Since our goal is to compose the
phylogenies by linking roots through edges, the permissible states for the
root of a phylogeny for a cluster G' are partially determined by convexity.
More precisely, the splitting vector of G, which is a partial specification of
this root, is the taxon Sv((') where, for each ¢ € C, ¢(Sv(G)) = a, if G and
S — G share state a on character ¢ and ¢(Sv(G)) = * otherwise.

Let G, G{ be clusters such that Gy C . G and Gy are compatible
if for every character ¢ such that ¢(Sv(G)),e(Sv(G1)) # *, ¢(Sv(G)) =
c(Sv(Gh)). Intuitively, if G and G4 are compatible, there conceivably exists
a phylogeny for G'U {Sv(G)} such that one of the subtrees of Sv(G) is a
phylogeny for Gy U{Sv(G1)}. In such a phylogeny, some of the *-states of
Sv(G') may have to take on specific values, since some states may be shared
between 7 and S — G4 that are not shared between G and S — . Define
the splitting vector for (G, G1) to be the taxon Sv(G, Gh) such that for each
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character ¢ on which a state a is shared between G and S — G or between
G and S — Gy, ¢(Sv(G,Gh)) = a; otherwise e(Sv(G,Gh)) = *.

To illustrate these definitions, consider the set of taxa (1). Sets
G=4{(2,1,1),(2,3,2),(2,4,1),(4,4,1)} and G; ={(2,4,1),(4,4,1)}

are proper clusters with Gy C G. Sv(G) = (*,3,1) and Sv(Gy) = (2,%,1);
thus, G and Gy are compatible and Sv(G,Gy) = (2,3,1).

The final ingredient in the algorithm is a way to handle the following
problem: Given a cluster G and a taxon x, determine how to split G into
subsets Hy,..., H; such that, for each 7, all taxa in H; must lie in the same
subtree of x in any phylogeny for G U {x}.

Definition 6.2 Given a taron x, let ~y be the equivalence relation on S
defined as the transitive closure of the following relation Ry: Fors,t € S,
(s,t) € Rx if there exists a character ¢ such that c(s) = c(t) # c(x) # *.
Denote by S/x the collection of equivalence classes of ~x.

Clearly, each of the sets in §/x must be in the same connected component
of T'— {x} for any perfect phylogeny of S U {x}. (Compare this with the
comments at the end of Section 5.)

For example, consider again the set of taxa in (1). Then §/(1,3,1) has
three classes:

Hy = {(1727 1)}7 Hy = {(17373)7(37373)}7
Hs={(2,3,2),(2,1,1),(2,4,1),(4,4,1)}.

A proper cluster G is good if G U{Sv(G)} has a perfect phylogeny. A
pair of proper clusters (G,G1) where Gy C G and (7 is compatible with
G is good if there exists a perfect phylogeny for G with an internal node v
labeled by Sv(G,Gq) such that the removal of v partitions ¢ into subsets
some of which union to GG;. We now have the following result [39] (see also

[1])-

Theorem 6.3 Suppose that G is a proper cluster and that Gy C G is a good
proper cluster. Let Gy = G — Gy. Then, (G,G1) is good if and only if (i)
Gy is a good proper cluster or (ii) each H € G3/Sv(G,Gh) is a good proper
cluster. In case (ii), every state of Sv(G,Gy) is defined.

This leads to the algorithm of Figure 12. The procedure iterates over all
O(2"m) proper clusters . For each of these, it considers O(2"m) choices
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PerfectPhylogeny(S)
identify all proper clusters and
sort them by nondecreasing cardinality
mark all 1-element clusters as “good”
for each proper cluster (1 with at least 2 elements do
for each proper cluster G; C G compatible with G do
let G2 =G - Gl
if G5 is a good cluster then
mark G as “good”
else
let x = Sv(G,Gh)
if every H € G3/x is good then
mark G as “good”
else

mark G as “bad”

Figure 12: Perfect phylogeny when the number of states is fixed.

of G;. Kannan and Warnow show how to find the equivalence classes of
G2/ Sv(G,Gy) in O(n) time at the expense of precomputing, in O(2"nm?)
time, the equivalence classes of §/Sv(G) for every proper cluster G (see
[39]). A O(2?"nm?) bound follows. Kannan and Warnow also describe how

to extend this algorithm to generate all minimal phylogenies [39].

7 Bounding the Number of Characters

We now describe two perfect phylogeny algorithms that run in polynomial
time when the number of characters is fixed, even if the number of states
is unbounded. The first relies on the connection between character com-
patibility and triangulations of colored graphs, while the second avoids tri-
angulations entirely, relying instead on the equivalence relation defined in
the previous section. Interestingly, the second scheme gives an alternative
solution to the triangulation problem.

Restricted triangulations and phylogenies. The intersection graph of
a collection of sets F, denoted IG(F), is the graph with vertex set F such
that there is an edge between A, B € F if and only if AN B # ( [30, 44].

A chord in a cycle is an edge between a pair of non-adjacent vertices. A
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Figure 13: A character state matrix and its character-state intersection
graph.

graph is triangulated (or chordal) if every cycle of length greater than three
has a chord. The following fundamental theorem was proved independently
by Gavril [29] and Buneman [12].

Theorem 7.1 A graph is chordal if and only if it is the intersection graph
of a family of subtrees of a tree.

A graph G is properly m-colored, if it has a mapping f : V(G) —
{1,...,m} such that there is no edge (u,v) with f(u) = f(v). A restricted
triangulation of an m-colored graph G is a properly m-colored triangulated
graph obtained by adding edges to G.

Assume that each ¢ € C is assigned a unique color g(c) € {1,...,m},
and define the character-state intersection graph of C, denoted CIG(C), to
be IG({S¢o : ¢ € C,a € Ac}), where vertices S¢, are assigned color g(c)
(see Figure 13). Clearly, CIG(C) is properly m-colored; furthermore, it is
a partition intersection graph, that is a graph whose edge-set is covered by
m-cliques.

The next result is due to Buneman [12].

Theorem 7.2 C is compatible if an only if its character-state intersection
graph has a restricted triangulation.

To see this, suppose that S has a perfect phylogeny T'. Let T¢ ., be the
minimal subtree of T' containing all taxa in S.,. Then, by Theorem 7.1,
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IG({Tcn :c€C,a € Ac}), where T¢ , is assigned color g(c), is chordal. In
fact, this intersection graph is a restricted triangulation of C'IG/(C), since,
by convexity, for each ¢ € C and every two distinct states a and 3 of ¢, T¢
and T¢ g are vertex disjoint.

We now sketch the other direction. If CIG has a restricted triangula-
tion, then, by Theorem 7.1, this triangulation is the intersection graph of
a family of subtrees of some tree T'. Fach such subtree corresponds to the
minimal tree connecting all taxa in S, for some ¢ € C,a € A; and thus T
corresponds to a phylogeny for S. For details, see [12].

A triangulation algorithm. We now outline the main ideas behind Mc-
Morris, Warnow and Wimer’s O(V"*t!) algorithm to determine if a V-node
m-colored partition intersection graph has a restricted triangulation [45].
This gives a O(r™ T 'm**1 + nm?)-time perfect phylogeny algorithm, since
the character state intersection graph for C has rm vertices and can be built
in O(nm?) time.

We need a definition and some notation. A separator in a graph G is a set
of vertices 5 such that the graph G — 5 is disconnected. Given a separator .5
for (G, and a connected component C' of G'— 5, write C'Ucl(.9) to denote the
graph obtained by adding enough edges to the subgraph induced by C'U S
so as to make § a clique. McMorris et al. show the following;:

Lemma 7.3 Let G be a properly m-colored graph. Then, G has a restricted
triangulation if and only if G has an (m — 1)-vertex separator S such that,
for every connected component C' of G — S, C U cl(S) has a restricted tri-
angulation.

Theorem 7.4 Let G be a properly m-colored graph with at least m + 1
vertices. Let S be an (m — 1)-vertex separator of G whose vertices have
distinct colors and let C' be a connected component of G— 5. Then C'Ucl(5)
has a restricted triangulation if and only if there exists some vertex v in C
and a family M of (m — 1)-vertex subsets of S'U {v} such that:

1. each M € M is a separator for both C'U cl(S) and G;

2. for each vertex u € S — {v}, there is a set M, € M and a component
Cy of G — M, and of C'Ucl(S)— M, such that C, has fewer vertices
than C and C,, U cl(M,) has a restricted triangulation; and

3. every edge of C' is in exactly one of the above C),’s.
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The preceding theorem implies that we can determine whether or not C'U
cl(9) has a restricted triangulation if we know the answer to the restricted
triangulation problem for every graph C' U ¢l(S") with fewer vertices than
C'Ucl(S), where 5" is an (m — 1)-vertex separator of ¢ whose vertices have
distinct colors, and C’ is a component of G — S’. This leads to the following
scheme for determining if graph GG has a restricted triangulation: Find all
O(V™= 1) (m — 1)-vertex separators S of G, compute all graphs C' U ¢l(9)
for the components C' of G — 5. Now process each such graph H in order
of nondecreasing size, using the answers for the smaller graphs to determine
whether H has a restricted triangulation. The process can be implemented
to run in O(V™*!) time [45].

The algorithm of McMorris et al. uses the close connection between re-
stricted triangulations and the problem of determining whether a graph has
tree-width at most k, for some fixed k (for a definition of tree-width, see
[50]). In fact, the algorithm is nearly identical to the procedure devised by
Arnborg et al. to determine whether a graph has tree-width & [5]. It turns
out, however, that for fixed k, the tree-width problem can be solved in lin-
ear time [7]. On the other hand, while the triangulation approach leads to
a linear-time algorithm for three-colored graphs [9, 38], a linear-time algo-
rithm for m-colored graphs, m fixed, seems unlikely, since this problem is
not finite state, in the sense described by Bodlaender et al. [8] (see also [6]).

An alternative approach. It is possible to solve the perfect phylogeny
problem with a bounded number of characters without resorting to triangula-
tions. Here we outline this approach, proposed by Agarwala and Fernandez-
Baca [2], which leads to a O((r — n/m)™rnm) algorithm.

The method attempts to find a perfect phylogeny in which the Hamming
distance between the labels of any two adjacent nodes is one; such a tree
exists whenever some perfect phylogeny exists. Let S* denote the set A¢, X
X Ag,, of all possible taxa. Define a directed search graph SG(S,C) whose
vertex set consists of all [, x] such that x € $* and G = Sor G € (§—x)/x,
where, as in the previous section (Definition 6.2), (S — x)/x is the set of
equivalence classes of the relation “~y.” Node [G, x] represents the question
of whether or not G U {x} has a perfect phylogeny.

The edge set of SG consists of all pairs of the form ([G, x],[S,x]), and all
pairs of the form ([G1,x1],[G2,%x2]) such that G; C (3 and the Hamming
distance between x; and xo is one. Let » be a node in SG. The set of
all edges (uy1,v),...,(u;,v) such that u; = [H;,y] and |J; H; = G is called a
bundle. If each [H;,y] has a “yes” answer, then there must exist a phylogeny
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for G U {x} with distinct subtrees for the H;’s. Note that there can be
multiple bundles into a node and that there might be one-edge bundles
([G,y],[G,x]). SG has O(r™n) nodes, since |S*| = O(r™), and any x € §*
defines at most n equivalence classes. There are O(r™!nm) edges, because
the out-degree of any node is O(rm). SG encodes all possible ways in
which clusters can be expressed in terms of smaller subfamiles; thus, if the
characters are compatible, a perfect phylogeny must be embedded within
SaG.

To determine if a perfect phylogeny exists, the algorithm propagates
truth values from node to node along the edges of SG. As soon as a node
gets a truth value, the value is placed on all outgoing edges. To initialize the
process, we assign a value of true to every vertex [(7,x] such that |G| = 1.
During the propagation, a node v becomes active when all its incoming edges
have been assigned a truth value. An active node is assigned the value true
if there is some bundle whose edges are all true; otherwise, the node gets
a false value. It can be shown that a perfect phylogeny exists if and only
if, at the end of the propagation process, there is some node [§,x] which is
true. The propagation time is linear in the size of the graph, which yields a
O(r™*t'nm) algorithm. Through a more careful analysis, this bound can be
improved to O((r — n/m)™rnm) — see [2].

Via Warnow’s polynomial-time reduction from restricted triangulation to
perfect phylogeny [56], the preceding algorithm yields a O((2E /m)™(E*m))
algorithm for restricted triangulation problem of graphs with £ edges [2].
In fact, further inspection of Theorem 7.4 reveals a close relationship with
the search graph approach. In particular, separators play the role of the
taxa x € 8 used to partition § in the search graph.

8 Discussion and Further Topics

Except for the algorithms for binary compatibility of Section 4, which are,
in a sense, optimal (see [32]), it is not clear whether any of the time bounds
presented here is the best possible. It would be especially interesting to
know whether the time bound of the algorithm for perfect phylogeny when
the number of states is fixed (Section 6) can be improved to O(2*" nm). This
would be appealing from a theoretical point of view, since it would bring the
result for » > 3 in line with the binary case, and would also have practical
significance, since for many data sets, m is much larger than n. A more
realistic, and still relevant, goal is to achieve O(2* n?m) running time. This
would match Kannan and Warnow’s bound for quaternary characters [37]
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and may be achievable by finding a better approach for selecting the “initial”
cluster 1 in the algorithm of Figure 12. Regarding the algorithms for the
case where the number of characters is fixed (Section 7), it is unclear what
sort of improvements one could expect, although perhaps a combination of
the two approaches we have presented might yield better results. Improve-
ments on the speed of rooted tree compatibility (Section 5) seem to rest
on faster algorithms for maintaining connected components of graphs under
edge deletion. For the unrooted case, it would be useful to identify other
polynomially-solvable special cases. That this might hinge on the degree of
overlap among the leaf sets of the input trees is suggested by Steel’s proof
of Theorem 5.1 [52], which requires minimal sharing of taxa.

In what is left of this section, we first discuss two important subjects
related to perfect phylogenies: polymorphism and dealing with incompati-
bility. We then give some final comments.

Polymorphism. A character is polymorphic if it can have more than one
state on a given taxon. Characters of this sort are commonly encountered
in molecular genetics and linguistics (see [10] for references). As before, let
Ac ={0,1,...,7c — 1} denote the set of allowed states for character c¢. For
a taxon s, c(s) is a subset of 24c _ (). Let T be a phylogeny for a set of
taxa & over a set of polymorphic characters C, where every internal node v
is labeled by a taxon s, over the same set of characters. T is perfect if for
each ¢ € C and every a € A, the set of all nodes v such that o € c(s,)
induces a subtree of 7.

A character ¢ has load [ in a phylogeny T if for every node v of T,
lc(sy)| < I. The load of T is the maximum load on any character. Obvi-
ously, the problem of finding a minimum-load perfect phylogeny is NP-hard,
since it provides an answer to the perfect phylogeny problem for ordinary
(monomorphic) characters.

Bonet et al. [10] have shown various positive and negative results about
the problem; we mention some of these. The compatibility of polymorphic
binary characters can be determined in polynomial time using the techniques
of Section 4. The minimum-load problem is NP-hard whether one fixes
the number of characters or the maximum number of states per character.
On the other hand, if one fixes both the number of characters and the
maximum load, determining if there exists a perfect phylogeny of load at
most [ is solvable in polynomial time by generalizing either the triangulation
approach or the search graph approach of Section 7.
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Dealing with incompatibility. It is an unavoidable fact that most data
sets are incompatible. This leaves us with at least three options: (i) find a
maximum-cardinality set of compatible characters, (ii) attempt to minimize
the amount of homoplasy, (iii) construct a phylogeny that matches as closely
as possible the partitions implied by the characters. We briefly comment on
each possibility.

Regarding (i), Lemma 4.1 states that, for complete cladistic characters,
it suffices to find a maximum-cardinality subset of pairwise compatible char-
acters. Unfortunately, this is equivalent to finding a maximum clique and
is thus NP-hard. On the positive side, the problem of determining whether
the removal of k characters yields a compatible data set is equivalent to
vertex cover. This problem is fized-parameter tractable [17], that is, on an
m-vertex graph (each vertex corresponding to one of the characters) it can
be solved in time O( f(k)m®), where a is independent of k. In fact, a bound
of O(km + 1.271%k%) can be achieved [14].

Regarding (ii), we first note that this is essentially the Steiner tree prob-
lem in phylogeny, discussed in Section 3. As an intermediate option between
perfect phylogenies and Steiner trees, we can formulate a parameterized ver-
sion of the problem, which is motivated by Theorem 3.1. Define the imperfec-
tion q of an internally labeled phylogeny T for S as length(T)—>_ cc(re—1).
It is shown in [25] that the problem of determining whether a set of taxa
admits a phylogeny with imperfection at most ¢ is solvable in polynomial
time if ¢ and the number of states are fixed. The algorithm builds on the
techniques described in Section 6.

Problem (iii) can be viewed as achieving consensus among conflicting
characters by smoothing over the incompatibility in the data. This addresses
a criticism leveled at character compatibility methods: that they unrealisti-
cally require strict compliance to the partitions implied by characters. The
method suggested for problem (i) of finding a maximum-cardinality set of
compatible characters is not quite satisfactory, since it may discard parti-
tions that, while imperfect, are still informative.

We now review two relatively recent developments. The first is due
to Semple and Steel [51] and arises in the context of supertrees, that is
phylogenies built by combining trees on overlapping sets of taxa. Thus,
the supertree problem is just the tree compatibility problem of Section 5.
By Theorem 5.1, the unrooted supertree problem is NP-complete. On the
other hand the Rooted TreeCompatibility algorithm of Aho et al. described in
Section 5 (Figure 10) solves the rooted case efficiently. However, this by itself
is unsatisfactory, since in practice few sets of rooted trees are compatible.
Recall that incompatibility is reflected in RootedTreeCompatibility in the
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presence at some level of the recursion of a connected ‘H graph with two
or more vertices. Semple and Steel give one method for breaking up this
graph by deleting certain edges so as to allow the computation to proceed.
Edges to remove are chosen using minimum cuts in a weighted graph closely
related to H; this graph is designed so as to preserve nestings of taxa that are
present in all input trees. The procedure can be implemented in polynomial
time and the tree produced has some desirable properties. A disadvantage,
however, is that the local optimality criterion used seems too strict, and
thus valuable information in the trees may be discarded.

An interesting approach has been suggested by Kearney et al. [40], who
define an optimization version of character compatibility that they call frac-
tional character compatibility. This work is related to earlier results on
quartet compatibility by three of the same authors [36]. Intuitively, the goal
is to find a phylogeny that matches the given characters as closely as possi-
ble. More formally, let ¢ be a complete undirected binary character and let
T be an unrooted phylogeny for §. Then ¢ defines a bipartition (0, 1.) of
S, where O (1) is the set of all taxa exhibiting state zero (one) on ¢. Any
edge e = (u,v)in T also defines a bipartition (S, S,) of S, where S, (S,) is
the set all taxa that lie in the connected component of 7' — (u, v) containing
u (v). The similarity between ¢ and e is

sim(e,e) = max{|0c N Sy| + |[Le N Sy], [0 N Syl + |1 NSyl }-

Notice that e defines the same partition as ¢ if and only if sim(c,e) = |S].
The similarity between a character ¢ and T is

sim(c,T) = max sim(c, e).
Given a set of complete undirected binary characters C, define the similarity
between C and T as

sim(C,T) = Z sim(c,T).

ceC

Given a set of complete undirected binary characters C on &, the frac-
tional character compatibility problem asks to find a tree T that maximizes
sim(T',C). This problem formulation is attractive because of the well-defined
and intuitively reasonable global optimality criterion on which it is based.
Note, for instance, that the value of the optimum solution is at most |C||S],
and that the value is precisely this number if and only if the instance has
a perfect phylogeny. Although Kerney et al. show that fractional character
compatibility is NP-complete, they also prove that it has a polynomial-time
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approximation scheme when |C| = O(|S|). This algorithm, while theoreti-
cally significant, is too slow to be of practical use; whether its time bound
can be improved is important open problem.

Final comments. It has been our goal to provide a unified view of the core
topics in perfect phylogenies. Certain recurring themes are evident, perhaps
none as important as intersection graphs and their relatives. While intersec-
tion graphs only appear explicitly in Section 7, variations are encountered
in the tree compatibility algorithm of Aho et al. and the incomplete directed
binary compatibility procedure of Pe’er et al. (Section 5). The idea is also
used implicitly in Section 4. Even the useful concept of the decomposition
of & induced by a taxon (Sections 5-7) carries at its heart the notion of
intersection.
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