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Abstract. We present a family of simple algorithms that construct
a representation of the suffix array of a text t by walking along the
Burrows-Wheeler transforms (BWTs) of increasingly longer suffixes of t.
One variant, called Walk-bothLR, builds the suffix array, its inverse,
the BWT, and the longest common prefix array in linear time in practice
(quadratic in the worst case), requiring only constant working space, and
only consecutive left-to-right read/write access to secondary storage.
Another variant, called Walk-minLR, is twice as fast as Walk-bothLR

on random texts, and has worst-case time complexity O(n log n) for a text
of length n. It needs one additional integer array as working space.
While asymptotically faster algorithms exist, and compressed suffix ar-
rays require even less memory, the algorithms presented here provide
a good compromise between running time and memory requirements.
They are especially well suited to build suffix arrays of large genomes,
especially for long repeats. The O(n log n) time bound for Walk-minLR

sheds a new light on the structure of BWTs. The algorithms are simple
and easy to implement; software is freely available at http://verjinxer.googlecode.com.

1 Introduction

A variety of ideas and techniques, recently surveyed in [1], has been developed
for suffix array construction. Starting with Manber and Myers’ O(n logn) direct
construction algorithm [2] for a length-n text in 1990, a theoretical breakthrough
came in 2003, when three linear-time algorithms were published whose journal
versions appeared as [3–5]. Carefully engineered algorithms without a linear time
guarantee (e.g. [6–8]) often perform better than theoretically optimal algorithms.

In biological sequence analysis, the alphabet Σ is small (DNA, RNA: |Σ| = 4,
protein sequences: |Σ| = 20), and we frequently need to index large numbers
of long sequences, so especially low working space requirements are desirable.
Manzini et al. [8] call algorithms that need only Kn additional bytes with a small
constant K ≪ 1, lightweight algorithms. Going a step further, we call algorithms
that need only O(1) bytes of working space in-place algorithms. Recent work in
this area includes sophisticated optimal algorithms for general and constant-size
alphabets [9, 10]; their implementation status is unknown.



An idea that has experienced much attention and development recently is
the use of compressed suffix arrays that can store a compressed version of the
text and a representation of its suffix array in less space than the text itself
(e.g. [11–13]. Asymptotically optimal algorithms exist [11], but practical access
to the suffix array suffers from high constant factors hidden in the O-notation.

Ideally, we desire algorithms that simultaneously run in linear time on typical
sequence data, maybe even in the worst case, require only a small amount of (or
no) working space, and rely on simple ideas, using no advanced data structures
to allow for a simple implementation and keep constant factors low. This paper
presents two simple algorithms for suffix array construction that come close
to the above ideals, but have different space-time trade-offs, and may shed a
new light on the interplay between the suffix array and the Burrows-Wheeler
transform. To our knowledge, the ideas behind compressed suffix arrays have not
yet been used to develop a simple direct (uncompressed) construction algorithm.

In the algorithms, a linked-list simulation of a suffix array of a string t = cu,
c ∈ Σ, u ∈ Σ∗, is constructed from that of its suffix u. The main step executed
by the algorithms is a walk along the Burrows-Wheeler Transform (BWT) of u
to insert suffix cu at the correct position in lexicographic order.

The algorithms assume that |Σ| = O(1), and the present implementation
assumes |Σ| < 256 and n < 231, so the text needs one byte per character, and
integer arrays need 4 bytes per character.

One algorithm (Walk-minLR) needs linear time on typical sequence data
(but also on Fibonacci strings and other strings with long repeats), but its worst-
case time complexity is O(n log n). It needs 4n bytes of additional working space,
which however can be efficiently used to construct the longest common prefix
array (without further working space; see Section 4).

The other algorithm (Walk-bothLR) only needs O(1) working space and
is thus a simple in-place suffix sorting algorithm, with linear running time in
practice, but quadratic running time in the worst case. Even better, by only
using 5n + O(1) bytes of memory (for the text and one integer array at a time),
we can construct all of the following arrays with only consecutive left-to-right
read/write accesses to secondary storage: the suffix array pos, its inverse rank,
the Burrows-Wheeler Transform, and the longest common prefix array lcp. These
arrays are formally defined in the next section.

After giving basic definitions in the next section, we describe and analyze the
algorithms in Section 3, followed by descriptions of typical downstream compu-
tations in Section 4. Empirical studies are then presented in Section 5, and we
conclude the article in Section 6.

2 Basic Definitions

The basic suffix array pos of a text t = t0 . . . tn−1 of length n over a finite ordered
alphabet Σ is a permutation of {0, . . . , n−1}, where pos[r] is the starting position
of the lexicographically r-th smallest suffix (r = 0, . . . , n−1) in t. By convention



the end of the string is lexicographically smaller than any character and often
represented by a special end-of-string marker $.

The inverse permutation rank, defined by rank[pos[r]] = r for all r ∈ {0, . . . , n−
1}, thus gives the lexicographic rank of the text suffix tp := tp . . . tn−1.

(While other notations for the suffix array and its inverse exist, we advocate
pos[r] and rank[p], as it appears to be the most mnemonic notation available.)

The (suffix-based) Burrows-Wheeler Transform (BWT) t̂ of t is defined by
t̂r := tpos[r]−1 for r 6= rank[0], and t̂rank[0] := tn−1 = $. As is evident from the
definition, the BWT can be easily constructed from the suffix array and the text.

The longest common prefix array lcp array is defined by lcp[0] := 0, and for
0 < r < n, lcp[r] is the length of the longest common prefix of the lexicograph-
ically adjacent suffixes tpos[r−1] and tpos[r]. Kasai et al. [14] describe a simple
linear-time algorithm to compute lcp from pos and rank. Together, pos and lcp

suffice to simulate bottom-up traversals of suffix trees [15].

For two strings u = u0u1 · · · ∈ Σ∗ and v = v0v1 · · · ∈ Σ∗, we write u ≺ v if
u is lexicographically smaller than v, that is,

u ≺ v :⇐⇒

{
|u| = 0, |v| > 0

or |u| > 0, |v| > 0 and
[
(u0 ≺ v0) or (u0 = v0 and u1 ≺ v1)

]
.

We write p ≺∗
t q if suffix tp is the immediate lexicographic predecessor of tq

among all suffixes of t; that is if tp ≺ tq and there exists no i ∈ {0, . . . , n− 1}
with tp ≺ ti ≺ tq.

The algorithms in this article do not compute pos directly, but a different
representation of the same information. For 0 ≤ p < n, we define lexnextpos[p] :=
pos[rank[p]+1], the starting position of the suffix that comes next in lexicographic
order after tp. If such a suffix does not exist (because rank[p] = n − 1), we let
lexnextpos[p] := ⊥ (nil). Similarly we define lexprevpos[p] := pos[rank[p]− 1].

Note that similar ideas are standard in the literature on succinct data struc-
tures for suffix arrays; yet a subtle and important difference is that they use the
function rightrank[r] := rank[pos[r] + 1] (called Ψ [r] in [11]), which can be more
efficiently stored, but them requires constant overhead for accessing.

For each c ∈ Σ, we further define lexfirstpos[c] and lexlastpos[c] as the starting
positions of the lexicographically first and last suffixes that begin with c.

3 Suffix Array Construction Algorithms

We construct the suffix array of t = t0 . . . tn−1 in n rounds, starting with round
n− 1, counting backwards, and finishing with round 0. After round p, we have
a representation of the suffix array of tp = tp . . . tn−1. Thus on a high level, the
algorithm behaves like Weiner’s original suffix tree construction algorithm [16].

Instead of pos or rank, the algorithms construct lexnextpos and lexprevpos,
from which pos, rank, t̂, and lcp arrays can be easily derived (see Section 4). With
lexnextpos and lexprevpos, we simulate a doubly linked list (without constructing
it explicitly) that keeps the suffix start positions in lexicographic order.



The auxiliary arrays lexfirstpos and lexlastpos facilitate inserting suffixes tp =
cu, where c ∈ Σ does not occur in u ∈ Σ∗. Initially (before round n − 1), we
have lexfirstpos[c] = lexlastpos[c] = ⊥ for all c ∈ Σ.

The central question is thus, how do we obtain the linked-list representation
of the suffix array of cu from the suffix array of u (c ∈ Σ, u ∈ Σ∗)? In round p,
we must solve the problem of inserting the suffix tp into the already sorted set
of suffixes {tp+1, tp+2, . . . , tn−1}.

3.1 Preparations: Algorithms Walk-L and Walk-R

The algorithms in this subsection serve as preparations to explain the algorithms
in the next subsection, which combine them in different ways to achieve different
space/time trade-offs. We now describe round p of the algorithm Walk-L that
performs the insertion of suffix tp into the suffix array of tp+1 by walking left
along the BWT of tp+1.

At the beginning of round p, the arrays lexfirstpos[p+1, . . . , n−1], lexlastpos[p+
1, . . . , n − 1], lexfirstpos[] and lexlastpos[] represent the suffix array of the text
tp+1. There are two possibilities, based on tp.

1. The character tp does not occur in tp+1 (lexfirstpos[tp] = lexlastpos[tp] =
⊥). We only need to find the largest character c− < tp for which p− :=
lexlastpos[c−] 6= ⊥ and the smallest character c+ > tp for which p+ :=
lexfirstpos[c+] 6= ⊥. Since presently p− ≺∗

tp+1 p+, we have lexnextpos[p−] =
p+ and lexprevpos[p+] = p−. To reflect the new situation p− ≺∗

tp p ≺∗
tp p+,

we update lexnextpos[p−] ← p, lexprevpos[p] ← p−, lexnextpos[p] ← p+,
lexprevpos[p+]← p, and set lexfirstpos[tp]← lexlastpos[tp]← p.

2. The character tp already occurs somewhere in tp+1 . The following lemma
contains the main idea.

Lemma 1. (1) If there exists q > p such that c := tp = tq and q ≺∗
tp p, then

tq+1 ≺ tp+1, and all i > p that satisfy tq+1 ≺ ti ≺ tp+1 also satisfy ti−1 6= c.
(2) Conversely, if there exists q > p with c := tp = tq, if tq+1 ≺ tp+1, and

there is no i > p with ti−1 = c that satisfies tq+1 ≺ ti ≺ tp+1, then q ≺∗
tp p.

Proof. (1) states that if tq directly precedes tp in the suffix array of tp, and both
start with the same letter c, then the suffix tp+1 must also (but not necessarily
directly) precede tq+1 . All the (potential) intermediate suffixes ti cannot have c
as preceding character; otherwise, by the definition of lexicographic order, the
corresponding ti−1 would have to be between tp and tq. (2) is similar. ⊓⊔

The lemma leads to an algorithm to find the said position q if it exists.
Starting at position p + 1 (the last suffix inserted), follow the lexprevpos links
to the left in the simulated linked list. Thus, let i ← lexprevpos[p + 1], and
then check whether ti−1 = c. If not, continue following the lexprevpos links
(i← lexprevpos[i]). If eventually ti−1 = c, insert p into the list after i−1 =: p−. In
other words, writing p+ := lexnextpos[p−], we update lexnextpos and lexprevpos to
reflect the update from p− ≺∗

tp+1 p+ to p− ≺∗
tp p ≺∗

tp p+, just as in case 1 above.



Additionally, if previously lexlastpos[c] = p−, we must update lexlastpos[c] ← p.
On the other hand, if we eventually fall off the list (i = ⊥), position tp must
be the lexicographically first suffix starting with c, and we update the arrays
accordingly.

A small technical complication arises when the sought q equals n − 1, in
which case tq+1 is not well defined in the lemma. To avoid this, we adopt the
customary convention that the text ends with a unique special character $ that
is smaller than any character in the alphabet.

This concludes the description of Walk-L. The algorithm Walk-R is per-
fectly symmetrical; now i follows the lexnextpos links starting at p + 1, and we
insert position p before the first position i− 1 for which ti−1 = c.

The algorithms Walk-L and Walk-R thus walk (to the left or right) along
the BWT of tp+1 to insert the suffix tp at the correct position; see Figure 1.

An elementary analysis shows that the worst-case complexity of these algo-
rithms in O(n2). One can show that for Walk-L and odd string length n, the
worst binary string is (01)⌊n/2⌋1 with n2/8 + 3n/2− 13/8 steps; for even n the
worst string is (01)n/2−110 with n2/8 + 3n/2 steps.

3.2 Algorithms Walk-minLR and Walk-bothLR

Walk-minLR. Instead of walking only left or right in the BWT of tp+1 to
insert p, we walk both ways in an alternating manner and stop as soon as we find
the target character in either direction. We call this algorithm Walk-minLR.
Surprisingly, this simple modification considerably improves the running time.

Theorem 1. Algorithm Walk-minLR needs O(n logn) time on texts of length n
over a binary alphabet.

Proof. (1) We define a BWT block as a consecutive run of the same character
in the BWT. In Figure 1 (left), after inserting t3 and noting that t3 will even-
tually be preceded by 1, the BWT consists of 6 blocks of lengths 2, 4, 1, 3, 1, 10,
respectively.

(2) We define a potential function Φ(r), where r = 1, . . . , n − 1 denotes the
step of inserting suffix tn−r. Let Φ(0) := 1 and Φ(r) := 2r log2 r + 3r + 1 − 2 ·∑r

i=1 φr(i), where φr(i) denotes the base-2 logarithm of the length of the BWT
block containing the predeceding character of suffix tn−i (i = 1, . . . , r) after
round r, i.e., after tn−r has been correctly placed (and the character tn−r−1

determined). In Figure 1 (left), r = 21, and Φ(r) = 42 log 21 + 64− 2 · (2 log 2 +
4 log 4 + 0 + 3 log 3 + 0 + 10 log 10); all logs are base-2.

(3) We show that the difference Φ(r)−Φ(r−1) is at least the number of steps
required to insert suffix tn−r−1 in round r + 1. Since Φ(0) = 1, by induction,
Φ(n−1) bounds the number of steps to process the whole text. It is evident that
3n + 1 ≤ Φ(n) ≤ 2n log2 n + 3n + 1, establishing the O(n logn) bound.

We consider two cases, according to what happens in round r when a char-
acter is inserted into the BWT. (a) The length of a single existing BWT block
grows by 1. In this case, it can be seen that Φ(r) − Φ(r − 1) ≥ 3. Also, in



11111111112222

Position p 012345678901234567890123

Text t = (tp) 10100000100010000000001$

p = lexnextpos[p′] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

p′ = lexprevpos[p] ? ? ? 17 18 9 10 11 12 19 20 21 22 23 13 14 15 16 3 4 5 6 7 ⊥

23: [1] $

13: [1] 0000000001$

14: [0] 000000001$

15: [0] 00000001$

16: [0] 0000001$

17: [0] 000001$

3: [ ] 00000100010000000001$

18: [0] 00001$

4: [0] 0000100010000000001$

19: [0] 0001$

9: [1] 00010000000001$

5: [0] 000100010000000001$

20: [0] 001$

10: [0] 0010000000001$

6: [0] 00100010000000001$

21: [0] 01$

11: [0] 010000000001$

7: [0] 0100010000000001$

22: [0] 1$

12: [0] 10000000001$

8: [0] 100010000000001$

23: [1] $

13: [1] 0000000001$

14: [0] 000000001$

15: [0] 00000001$

16: [0] 0000001$

17: [0] 000001$

3: [1] 00000100010000000001$

18: [0] 00001$

4: [0] 0000100010000000001$

19: [0] 0001$

9: [1] 00010000000001$

5: [0] 000100010000000001$

20: [0] 001$

10: [0] 0010000000001$

6: [0] 00100010000000001$

21: [0] 01$

11: [0] 010000000001$

7: [0] 0100010000000001$

22: [0] 1$

12: [0] 10000000001$

2: [ ] 100000100010000000001$

8: [0] 100010000000001$

Fig. 1. Illustration of Walk-L and Walk-R. Top: Text with positions. Middle :
lexprevpos array after inserting t3. Left : Visualization of the suffix array after insert-
ing t3. Numbers in square brackets denote the preceding character; read from top to
bottom, this spells the BWT of t3, except for the empty square bracket, which will
contain t2 = 1 that has not yet been looked at. Now, to insert position 2 into the array,
Walk-L walks left (up) from the current position (3:), following the lexprevpos-links
3 → 17 → 16 → 15 → 14 → 13, looking at the characters preceding the suffixes at
positions 17, 16, 15, 14, and 13 (00001). Since the 1 is found preceding position 13,
position 2 must be inserted after 12. Alternatively, Walk-R walks right (down), look-
ing at the characters preceding the suffixes at position 18, 4, 19, 9 (0001), and decides
that 2 must be inserted before 8. Right : Result after inserting t2 between 12 and 8.

round r + 1, Walk-minLR takes at most 3 steps (look left, look right, insert),
since the looked-for character will immediately found in at least one direction.
As an example, consider Figure 1 (right), where the long 0-block at the end
of the BWT is lengthened from 10 to 11 after inserting 2 and realizing that
t1 = 0. In the next step, t1 is immediately inserted between 11 and 7. (b) A
block of length x is split into three blocks of lengths x1, 1, x2, respectively, where
x1 + x2 = x. W.l.o.g., let x1 ≤ x2, so x1 ≤ x/2. In round r + 1, the algorithm
will need at most 2x1 +3 steps to locate the searched-for character. In this case,



Φ(r)−Φ(r−1) = 2(r log r−(r−1) log(r−1))+3−2(x1 logx1+x2 log x2−x logx) ≥
3+2(x logx−x1 log x1−x2 log x2) ≥ 3+2(x logx−x1 log x/2−x2 log x) ≥ 3+2x1.
As an example, in Figure 1 (left), a 0-block of length 7 is split into a 0-block
of length 4, a singleton 1, and another 0-block of length 3, respectively. The
number of steps taken in round r + 1 has been accounted for in the potential
function in both cases, and the bound is established. ⊓⊔

To generalize the theorem to larger alphabets, we may encode these texts
as bit sequences over a binary alphabet. This lengthens the text by a constant
factor of log |Σ|. From the resulting suffix array, we only keep those positions
that correspond to beginnings of actual characters in the original text.

Walk-bothLR. The final option is to walk left and right in the BWT until
the target character is found on both sides. The required time is the sum of the
running times of Walk-L and Walk-R and hence quadratic. At first sight, this
variant seems useless.

However, we can now use an old folklore trick to store both lexnextpos and
lexprevpos in a single array lexxorpos[p] := lexprevpos[p] xor lexnextpos[p], reduc-
ing the total amount of working space from 4n + O(1) bytes to O(1). Knowing
one of the two values lexprevpos[p], lexnextpos[p], the other one can be derived
by xor-ing the known value with lexxorpos[p]. In particular, we can still follow
the links from position p + 1 to the left and to the right, since we just inserted
p + 1 into the list in the previous step.

A difficulty arises when the cursor i reaches the point where ti−1 = tp.
Assume we moved only to the left, and now we want to insert p after p− := i−1,
as described above. This is impossible, because we neither know lexnextpos[p−]
nor lexprevpos[p−]. This is why we also move right: we obtain the index i′ such
that p− ≺∗

tp p ≺∗
tp p+ := i′ − 1; so we know that lexnextpos[p−] = p+ and

lexprevpos[p+] = p− and can update the p−, p, and p+ values of the xor-ed
array to reflect the insertion of p:

1: lexxorpos[p−]← lexxorpos[p−] xor p+ xor p
2: lexxorpos[p]← p− xor p+

3: lexxorpos[p+]← lexxorpos[p+] xor p− xor p

Also, as we show in Section 5, the running time of both Walk-minLR and
Walk-bothLR is linear for many practcial cases, including (and especially for)
strings with long repeats. The running time of the in-place Walk-bothLR is
often only slightly more than twice that of Walk-minLR.

4 Downstream Computations

Using either the faster Walk-minLR that needs 9n + O(1) bytes of memory
(4n + O(1) bytes of working space) or the slower in-place Walk-bothLR that
needs 5n + O(1) bytes of memory (only a constant amount of working space),
we have constructed a linked-list representation of the suffix array and need to
transform it into the usual arrays defined in Section 2. Here we describe how to



do it without using additional memory resources. We may use secondary storage,
but only consecutive left-to-right read/write access.

Two in-memory integer arrays. Let us start with the Walk-minLR case
where we can work with two integer arrays; initially these contain lexprevpos and
lexnextpos. The array lexprevpos can be overwritten with longest common prefix
information. The following code fragment is based on Kasai et al.’s linear-time
lcp algorithm [14]. Note that instead of requiring both arrays pos and rank and
creating lcp (which would need 13n bytes of memory, including the text), we
only need lexprevpos and overwrite lexprevpos[p] with lcp at pos[p] := lcp[rank[p]]
for all p. To obtain the correctly sorted lcp array in rank-order, we need to sort
these values differently (see below).

Prepare-lcp:

1: ℓ← 0
2: for (p← 0; p < n; p← p + 1) do

3: p− ← lexprevpos[p] [⊲ Kasai et al.: p− ← pos[rank[p]− 1]]

4: ℓ← ℓ + prefix-match-length(tp
−+ℓ, tp+ℓ)

5: lcp at pos[p]← ℓ [⊲ Kasai et al.: lcp[rank[p]]← ℓ]
6: ℓ← max{ℓ− 1, 0}

The function prefix-match-length(u, v) does a character-by-character comparison
of the prefixes of u and v and returns the length of their longest common prefix.
(If in the above algorithm, p− = ⊥ or the positions p− + ℓ or p + ℓ fall outside
the text, it returns 0.) Note that in line 5, lcp at pos[p] is assumed to point to
the same memory location as lexprevpos[p], so the array is overwritten in-place.

The comments in the algorithm show the version of [14]. Our variation is a
pos-based counterpart of the space-saving trick proposed by Manzini in [17] that
uses an auxiliary array that for a given lexicographic rank r computes the rank
of the suffix at position pos[r] + 1. Since we have lexprevpos directly available,
we do not need to build any additional auxiliary arrays.

In the next step, we walk through the positions in lexicographic order using
the lexnextpos links and directly write pos, lcp and the BWT t̂ to secondary
storage. We also overwrite lexnextpos with rank in memory during the process
(and write the final rank array to secondary storage as well at the end). We begin
at p0 := lexfirstpos[c], where c is the smallest character in Σ.

WriteArrays:

1: r← 0; p← p0

2: while p 6= ⊥ do

3: p+ ← lexnextpos[p]
4: rank[p]← r [⊲ rank and lexnextpos share the same memory locations]
5: write p to file pos

6: write lcp at pos[p] to file lcp

7: write tp−1 to file bwt [⊲ Here t−1 := tn−1]
8: r ← r + 1; p← p+

9: write the complete array rank[] to file rank



In line 6, we assume that lcp at pos[p], has been created using Prepare-lcp.
Since we traverse the positions p in lexicographic order, it is evident that we
store the values in the files pos, lcp, bwt in the correct order.

One in-memory integer array. We now produce the same arrays as above
with only one (random-access) integer array in main memory; this appears to
be the first description of a practical method that uses only 5n + O(1) bytes of
main memory (and only consecutive access to secondary storage) to construct all
above-mentioned arrays. We assume that lexxorpos and the text are in memory.

First, note that we can run WriteArrays without line 6 with no difficulty;
thus creating the rank file; it remains to construct the lcp array.
WriteArrays+:

1: write array lexxorpos to file lexxorpos

2: execute WriteArrays without line 6 (this creates the rank file)
3: load file lexxorpos to restore lexxorpos into memory
4: traverse lexxorpos in reverse lexicographic to overwrite it with lexprevpos

5: write array lexprevpos to file lexprevpos, overwriting file lexxorpos

6: Note: the in-memory array will now be used to build lcp

7: ℓ← 0; rewind files lexprevpos and rank

8: for (p← 0; p < n; p← p + 1) do

9: p− ← next integer from file lexprevpos

10: r ← next integer from file rank

11: ℓ← ℓ + prefix-match-length(tp
−+ℓ, tp+ℓ)

12: lcp[r]← ℓ
13: ℓ← max{ℓ− 1, 0}
14: write array lcp to file lcp, overwriting file lexprevpos

5 Empirical Results

Implementation and source code. The VerJInxer software is a Versatile
Java-based Indexer and can be obtained under the Artistic License / GPLv2 at
verjinxer.googlecode.com. It includes Java5 implementations of the presented
algorithms. The design of the (enhanced) suffix array as a collection of ar-
rays stored in different files in VerJInxer is similar to Stefan Kurtz’ vmatch

(http:///www.vmatch.de). Like vmatch, VerJInxer also supports alphabet trans-
formations, and by using special characters (that are compared by position in-
stead of by value), it allows to build an index of several strings at once. Unlike
vmatch, VerJInxer is open source.

Expected practical behavior. While the worst case complexity of Walk-

minLR is O(n logn) and that of Walk-bothLR is O(n2), we expect both al-
gorithms to need only linear time in practice. Consider a random text where
each letter has the same independent occurrence probability 1/|Σ| at each po-

sition. If all strings in the sequence of BWTs (t̂n−1, . . . , t̂1, t̂0) also behave like



random strings, we expect to need on average |Σ| array lookups and character
comparisons to find the target character in each round. This leads to an expected
running time of n|Σ| steps (twice as much for walk-bothLR), suggesting ex-
cellent behavior for small alphabets, such as genomic sequences. The argument
also holds for random texts with skewed character distributions: less frequent
characters take longer to find, but are looked for less frequently.

Measured practical behavior. We have instrumented the code to count the
number of array lookups and character comparisons. The algorithms are executed
on a single processor of a new two-processor Intel Core2 Duo PC at 2.66 GHz
with 3 GB of RAM, and for comparison, on a single 900 MHz processor of a Sun-
Fire V1280 UltraSparc-III processor with 96 GB of RAM. The same machine was
used in [7] for large-scale genome experiments. A detailed comparison of many
algorithms was recently published in [7], and we compare the new algorithms to
the best ones mentioned there, mainly bpr, and DeepShallow [8].

Random strings and π. Testing on large amounts of random strings (with both
uniform and non-uniform character probabilities) for all alphabet sizes |Σ| ∈
{2, . . . , 255} reveals no surprise: For Walk-L, Walk-R, and Walk-minLR, the
number of lookups is almost identical to |Σ|n (for Walk-bothLR, to 2|Σ|n),
with negligible standard deviation, as predicted. This confirms that BWTs of
random strings behave again like random strings. The same statements apply
to the first million decimal digits of π with |Σ| = 10. As real-time performance
is concerned, it is evident that the present algorithms can only compete for
very small alphabets. For random binary texts of 100 MB, Walk-minLR and
Walk-bothLR need 18.0 and 33.4 sec on the PC, respectively, while bpr and
DeepShallow, which performed equally well on random strings in [7], need
25 sec. We note that the new algorithms are implemented in Java, whereas the
others are implemented in C/C++.

Fibonacci strings. We define the k-th Fibonacci string Sk over Σ = {a, b} by
S0 := b, S1 := a, and Sk := Sk−1Sk−2 for k ≥ 2. The length of Sk is Fk, the
k-th Fibonacci number. For example, S36 has length 24 157 817 (24 MB text).

For odd k, both Walk-L and Walk-R need ≈ 1.38 Fk steps; Walk-bothLR

thus needs 2.76 Fk steps; but Walk-minLR needs only 1.00 Fk steps.
For even k, Walk-L needs 1.00 Fk steps; Walk-R about 2.09 Fk steps;

Walk-bothLR 3.09 Fk steps; and walk-minLR again only 1.00 Fk steps.
On the PC, the computation for S36 takes 0.6 seconds. These times scale

linearly for longer Fibonacci strings. Walk-minLR is thus the fastest method
for Fibonacci strings. In [7], it is reported that Bpr and Divide&Conquer

are the fastest algorithms for Fibonacci strings so far; they both need over 10
seconds on our PC. Of course, our algorithms are, in a sense, engineered for
Fibonacci strings, and especially benefit from the small alphabet size.

English text. The text of the bible forms an n = 4 MB file over an alphabet of
size 93. The large alphabet size becomes problematic (this could be remedied by



binary encoding): 75.7 n steps for Walk-L, 67.8 n for Walk-R, and 25.73 n for
Walk-minLR; the latter takes approximately 5.4 seconds on the PC, clearly not
competitive with the performance of other algoithms reported in [7], the best of
which (DeepShallow) is lightweight and needs less than 1 second.

DNA and repetitive DNA. The results so far suggest that the algorithms should
perform well on DNA sequences. Table 1 (left) shows statistics for indexing
collections of different strains of bacteria; the strains of the same species are
quite similar but not identical, so long repeated regions occur. In [7], the best
algorithms on DNA were BPR and DeepShallow [8], with comparable per-
formance, while DeepShallow is lightweight, requiring slightly more than 5n
bytes of memory. The Walk-algorithms are competitive, considering that they
are implemented in Java (vs. C/C++ for the others). Table 1 (right) shows
statistics for the human genome. Not many implementations construct the suf-
fix array of a 500 Mbp sequence on a 3 GB PC due to their memory requirements.
As sequence length or repetitiveness increase, Bpr and DeepShallow require
more time per input character, while for the Walk-algorithms, time grows ap-
proximately linearly. This allows us to estimate the time required for the whole
human genome by extrapolation (a factor of 12.5 from chromosome 1, or 20.7
from chromosome 8, which we double to account for long integers in this case),
resulting in the proposed estimates, which compare favorably to the reported
running time of the 64-bit version of Bpr on the same server in [7].

6 Concluding Discussion

We have presented two variations walk-minLR and walk-bothLR with differ-
ent space-time trade-offs for constructing the (enhanced) suffix array pos, rank,
lcp and BWT t̂ of a text t. Most notably, we have proved that walking in both
directions alternatingly improves the worst-case time from O(n2) to O(n logn).

Table 1. Left : Statistics for indexing collections of genomes from different strains of
bacteria (3 E. coli strains, 4 Chlamydophila strains, 6 Streptococci strains) Times are
measured on the PC. Right : Human genome data; times are measured on the server.
—: unable to measure because we only had the 32-bit version available. *: estimated
by extrapolation. The 429 minutes are from [7]. Abbreviation: Mbp = 106 base pairs.

Data set [7] 3Ec 4Ch 6St

length n [Mbp] 14.78 4.86 11.64

Steps / n

Walk-minLR 2.61 3.46 3.55
Walk-bothLR 7.01 9.31 8.66

Time [sec]; PC
Walk-minLR 3.4 1.2 3.9
Walk-bothLR 8.3 3.1 8.2
Bpr 3.1 0.8 2.1
DeepShallow 6.0 1.3 2.6

Human chr8 chr1 (chr1)2 genome

length n [Mbp] 149 247 494 3080

Steps / n

Walk-minLR 3.76 3.58 2.57 —
Walk-bothLR 7.90 7.71 7.04 —

Time [sec]; Server
Walk-minLR 242 386 508 *160 min
Walk-bothLR 451 731 1354 *300 min
Bpr 160 — — 429 min
DeepShallow 192 359 — —



While the relations between lexnextpos, the BWT, compressed and uncom-
pressed suffix arrays are well known, we are not aware that a direct simple
(in-place) suffix array construction algorithm based on these principles has been
previously described or implemented. Our main result (which we do not believe
has been stated as clearly before) is thus: Given N bytes of available main mem-
ory, we can construct tables pos, rank, lcp, and bwt of the enhanced suffix array
of a text of length n = N/5 in O(|Σ|n) expected time.

The main practical drawback of the proposed algorithms is their abysmal
cache performance. Each walk through lexprevpos or lexnextpos constitutes of
random memory accesses and will cause cache faults in long texts.

The strength of the algorithms is on long (and potentially repetitive) DNA
sequences: extrapolations indicate that the presented algorithm could be the
method of choice for the whole human genome. To prove this, however, it will
be necessary to re-implement the method in C, where arrays with more than 2G
elements are available and we expect another speedup of a factor of at least 2,
compared to the times in Table 1.
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