Probabilistic Arithmetic Automata and their Application to Pattern Matching Statistics

Tobias Marschall and Sven Rahmann

Bioinformatics for High-Throughput Technologies
Chair of Algorithm Engineering
TU Dortmund, Germany

June 18th, 2008

Motivation

Given

- an alphabet Σ
- a pattern, for example a finite set of strings over Σ
- a text model (for now: an i.i.d. model)

Sought

- distribution of random variable X_{n} (=number of matches in random string of length n)
- p-value for a given k, i.e. $\mathbb{P}\left(X_{n} \geq k\right)$

Example

- Pattern: ACACAC
- Textlength: 10,000
- Uniform distribution over $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$

Example

- Pattern: ACACAC
- Textlength: 10,000
- Uniform distribution over $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$

Related Work

- Régnier, 2000
- Reinert, Schbath, and Waterman, 2000

■ Nicodème, Salvy, and Flajolet, 2002

Overview

${ }_{1}$ Definition of probabilistic arithmetic automata (PAA) and generic algorithms on PAAs
${ }_{2}$ Using PAAs for pattern matching statistics
з Applicability in Computational Biology

Definition: Probabilistic Arithmetic Automaton

A PAA is a tuple $\left(Q, T, q_{0}, E,\left(\pi_{q}\right)_{q \in Q}, N, n_{0},\left(\theta_{q}\right)_{q \in Q}\right)$:

Definition: Probabilistic Arithmetic Automaton

A PAA is a tuple $\left(Q, T, q_{0}, E,\left(\pi_{q}\right)_{q \in Q}, N, n_{0},\left(\theta_{q}\right)_{q \in Q}\right)$:

- Q : finite set of states
- $T: Q \times Q \rightarrow[0,1]:$ stochastic transition function, i.e. $T\left(q, q^{\prime}\right)$ is the probability of going from q to q^{\prime}
- $q_{0} \in Q$: start state
technische universität
dortmund

Definition: Probabilistic Arithmetic Automaton

Definition: Probabilistic Arithmetic Automaton

A PAA is a tuple $\left(Q, T, q_{0}, E,\left(\pi_{q}\right)_{q \in Q}, N, n_{0},\left(\theta_{q}\right)_{q \in Q}\right)$:

- Q : finite set of states
- $T: Q \times Q \rightarrow[0,1]:$ stochastic transition function, i.e. $T\left(q, q^{\prime}\right)$ is the probability of going from q to q^{\prime}
- $q_{0} \in Q$: start state
- E : finite set called emission set
- $\pi_{q}: E \rightarrow[0,1]:$ a emission distribution associated with state q

Definition: Probabilistic Arithmetic Automaton

Definition: Probabilistic Arithmetic Automaton

A PAA is a tuple $\left(Q, T, q_{0}, E,\left(\pi_{q}\right)_{q \in Q}, N, n_{0},\left(\theta_{q}\right)_{q \in Q}\right)$:

- Q : finite set of states
- $T: Q \times Q \rightarrow[0,1]:$ stochastic transition function, i.e. $T\left(q, q^{\prime}\right)$ is the probability of going from q to q^{\prime}
- $q_{0} \in Q$: start state
- E : finite set called emission set
- $\pi_{q}: E \rightarrow[0,1]:$ a emission distribution associated with state q
- N : finite set called value set
- $n_{0} \in N$: start value
- $\theta_{q}: N \times E \rightarrow N:$ an operation associated with state q

Definition: Probabilistic Arithmetic Automaton

Computing the Joint State-Value Distribution

Basic recurrence

$$
p_{k+1}(q, v)=\sum_{q^{\prime} \in Q} \sum_{\left(v^{\prime}, e\right) \in \theta_{q}^{-1}(v)} p_{k}\left(q^{\prime}, v^{\prime}\right) \cdot T\left(q^{\prime}, q\right) \cdot \pi_{q}(e)
$$

$p_{k}(q, v)$: probability of being in state q and having computed a value of v after k steps
θ_{q} : operation associated with state q
T : transition function
π_{q} : emission distribution associated with state q
Q: set of all states

Runtime of Basic Algorithm

Basic recurrence

$$
p_{k+1}(q, v)=\sum_{q^{\prime} \in Q} \sum_{\left(v^{\prime}, e\right) \in \theta_{q}^{-1}(v)} p_{k}\left(q^{\prime}, v^{\prime}\right) \cdot T\left(q^{\prime}, q\right) \cdot \pi_{q}(e)
$$

Time
$\mathcal{O}\left(m \cdot|Q|^{2} \cdot|N|^{2} \cdot|E|\right)$

Space

$\mathcal{O}(|Q| \cdot|N|)$
m : number of steps
Q: set of states
N : value set
E : emission set

Runtime of Basic Algorithm

Basic recurrence

$$
p_{k+1}(q, v)=\sum_{q^{\prime} \in Q} \sum_{\left(v^{\prime}, e\right) \in \theta_{q}^{-1}(v)} p_{k}\left(q^{\prime}, v^{\prime}\right) \cdot T\left(q^{\prime}, q\right) \cdot \pi_{q}(e)
$$

Time
$\mathcal{O}\left(m \cdot|Q|^{2} \cdot|N| \cdot|E|\right)$

Space

$\mathcal{O}(|Q| \cdot|N|)$
m : number of steps
Q: set of states
N : value set
E : emission set

Doubling Algorithm

Consider

$U^{(k)}\left(q_{1}, q_{2}, v_{1}, v_{2}\right)$: probability of being in state q_{2} with value v_{2} after k steps, given to have started in state q_{1} with value v_{1}

Recurrence

$$
\begin{aligned}
U^{(1)}\left(q_{1}, q_{2}, v_{1}, v_{2}\right) & =T\left(q_{1}, q_{2}\right) \cdot \sum_{\substack{e \in E_{:} \\
\theta_{q_{2}}\left(v_{1}, e\right)=v_{2}}} \pi_{q_{2}}(e) \\
U^{\left(k_{1}+k_{2}\right)}\left(q_{1}, q_{2}, v_{1}, v_{2}\right) & =\sum_{\substack{q^{\prime} \in Q \\
v^{\prime} \in N}} U^{\left(k_{1}\right)}\left(q_{1}, q^{\prime}, v_{1}, v^{\prime}\right) U^{\left(k_{2}\right)}\left(q^{\prime}, q_{2}, v^{\prime}, v_{2}\right)
\end{aligned}
$$

Runtime of Doubling Algorithm

Recurrence

$$
U^{\left(k_{1}+k_{2}\right)}\left(q_{1}, q_{2}, v_{1}, v_{2}\right)=\sum_{\substack{q^{\prime} \in Q \\ v^{\prime} \in N}} U^{\left(k_{1}\right)}\left(q_{1}, q^{\prime}, v_{1}, v^{\prime}\right) U^{\left(k_{2}\right)}\left(q^{\prime}, q_{2}, v^{\prime}, v_{2}\right)
$$

Time
$\mathcal{O}\left(\log m \cdot|Q|^{3} \cdot|N|^{3}\right)$

Space

$\mathcal{O}\left(|Q|^{2} \cdot|N|^{2}\right)$
m : number of steps
Q : set of states
N : value set

Pattern Matching Statistics

\{AC, ACG, TACT, TTAC $\}$

DFA construction

Step 1: Build Aho-Corasick automaton Step 2: Transform into DFA

Pattern Matching Statistics

\{AC, ACG, TACT, TTAC $\}$

DFA construction

Step 1: Build Aho-Corasick automaton Step 2: Transform into DFA
Step 3: Annotate each state with number of matches to be counted when entering this state

Pattern Matching Statistics

$\{A C, A C G, T A C T, T T A C\}$

Pattern Matching Statistics

\{AC, ACG, TACT, TTAC\}

Pattern Matching Statistics

\{AC, ACG, TACT, TTAC\}

Runtimes for Pattern Matching Statistics

Algorithms

Generic

Basic
$\mathcal{O}\left(m \cdot|Q|^{2} \cdot|N| \cdot|E|\right)$
$\mathcal{O}\left(\log m \cdot|Q|^{3} \cdot|N|^{3}\right)$

Pattern Matching Statistics
$\mathcal{O}(m \cdot|\Sigma| \cdot|Q| \cdot|N|)$
$\mathcal{O}\left(\log m \cdot|Q|^{3} \cdot|N|^{2}\right)$
m : number of steps
Q : set of states
N : value set
E : emission set
Σ : alphabet

Application: Amino Acid Motifs

PROSITE

Database with 1303 biologically meaningful patterns, examples: [LIV]-[STAG]-V-[DEQV]-[FLI]-D-[ST]
C-x $(4,5)-C-C-S-x(2)-G-x-C-G-x(3,4)-[F Y W]-C$

Experiment

For each pattern from PROSITE: Pattern \rightarrow NFA \rightarrow DFA \rightarrow PAA

Result

Despite exponential increase in the number of states in theory, automata fit into main memory for 1261 of 1303 patterns (96.8\%). Average runtime: 2 seconds

PROSITE: Automata (PAA) Sizes

PROSITE: Automata (PAA) Sizes

Runtime: textlength: 1000 , matches: 50 , states: $500 \Rightarrow 1 \mathrm{~s}$

Probabilistic String Sets

String set

string	probability
CAA	0.9
CAT	0.5
CAC	0.3

Text model

character	probability
A	0.1
C	0.2
G	0.3
T	0.4

Applications of Stochastic Emissions

Transcription factor binding site statistics
JASPAR: Database containing position weight matrices
Step 1: Enumerate the n best-scoring strings
Step 2: Based on a biophysical model (Roider et al., 2007), calculate the probability that TF binds each string
Step 3: Use resulting probabilistic string set to build PAA

Statistics of fragment masses in cleavage reactions

- States emit masses of amino acids (Kaltenbach et al., 2006)
- Emission distribution may take isotopic distribution into account

Other things possible with PAAs

- Markovian text models
- Inhomogeneous text models
- Different counting schemes

Advantages of PAAs

- Built on DFAs, allows reuse of algorithms
- Easy to implement
- Permit exact statistics for practical problems
- Flexible

Other things possible with PAAs

- Markovian text models
- Inhomogeneous text models
- Different counting schemes

Advantages of PAAs

- Built on DFAs, allows reuse of algorithms
- Easy to implement
- Permit exact statistics for practical problems
- Flexible

Thank you for your attention!

