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Preface

This report summarizes the lecture “Computational *omics”, given for the first time at TU
Dortmund in the winter term 2011/12.

The main idea of this course is to have not the classical lecture plus exercises organization,
but to have several small team-projects where real is analyzed using methods from the lecture
and open-source software.

The course is a specialization at the Master level for 6 ECTS credit points, with time
requirements of 2V+2P.

Essen and Dortmund, February 8, 2012 Sven Rahmann
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CHAPTER 1

The Polymerase Chain Reaction (PCR)

1.1 Overview of the PCR Cycle

Instead of repeating everything that can (and should) be read on the web1, we restrict
ourselves to the key points of the PCR process.

PCR was developed 1983 by Kary Mullis (Nobel prize 1993); probably 2013 will celebrate
“30 years of PCR”.

Today, PCR is the main workhorse of molecular biology. It is able to answer two types of
questions: Given a particular DNA sequence s of moderate length (up to 10 kbp) with (at
least) known ends x and y (such that s = xty, where t can be unknown) and a biological
DNA sample,

1. is a fragment with sequence s contained in the sample?

2. which fraction of the sample consists of s?

Classical PCR answers the first question, whereas later extensions also allow to answer the
second question.

The key points to know are the following ones.

• PCR exponentially amplifies (i.e., copies) a double-stranded DNA molecule (of maxi-
mum size 10 to 40 kbp) called the template in n cycles into up to 2n copies, using natural
(but engineered) DNA polymerase enzymes, DNA primers, and free nucleotides. Each
cycle (approximately) doubles the existing number of molecules; it is common to do
20–40 cycles. Thus PCR is very sensitive (unfortunately, also for contaminating DNA),
so even very small amounts of DNA can be reliably detected.

1e.g., http://en.wikipedia.org/wiki/Polymerase_chain_reaction
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1 The Polymerase Chain Reaction (PCR)

• DNA polymerase (often: heat-resistant Taq polymerase, molecule of the year 1989,
isolated from Thermus aquaticus, a thermophilic bacterium that survives in hot springs
at 50–80 ◦C) is an enzyme that synthesizes a complementary DNA strand to a given
template, consuming free nucleotides.

• Primers are short DNA oligonucleotides (20–30 nt) that bind to both 3’ ends of the
double-stranded template; they are necessary to initiate a cycle.

• A PCR cycle (30 seconds to 2 minutes) consists of:

1. denaturation at 94–98 ◦Cfor 20–30 sec: double-stranded template melts into two
single strands

2. annealing of primers at 50–65 ◦Cfor 30–40 sec: complementary primers bind at the
3’ end of each template, and the DNA polymerase binds to the template/primer
hybrids. The primers form the 5’ ends of new DNA molecules that are to be
synthesized.

3. synthesis of complementary strands at 72 ◦C: the primers are elongated in 5’ to
3’ direction at a speed of approximately 1000 nt/min, consuming free nucleotides
(dNTPs – desoxy nucleotide triphosphates).

• PCR Finalization: after the last cycle, the mixture is held at 70–74 ◦Cfor 5–15 min
to allow for final elongation of incomplete strands. The mixture may be stored at
4–15 ◦Cfor a short amount of time.

• While the initial template may be longer, exponential amplification occurs only be-
tween the primers (inclusive). A sketch (Figure 1.1) will show this.

• Phases: When primers, polymerase and free nucleotides are in abundance, the number
of molecules (approximately) doubles in each cycle (“exponential amplification”). After
several cycles, these resources become scarcer and constitute the bottleneck, the process
“levels off”, and then reaches a “plateau” (no more new products).

• Checking for success: with agarose gel electrophoresis. The PCR products are stained
and applied onto an agarose gel and subjected to an electric current. The polar DNA
molecules move through the gel; the distance covered depends inversely on the molec-
ular mass (and hence length). Thus, short DNA molecules move farther than long
molecules. By comparing the position of the PCR products in the gel to a set of
reference molecules of known lengths (so-called “DNA ladder”), their approximete
length can be determined. If the observed length corresponds to the expected length
|S| = |xty|, we can assume that the intended fragment was amplified. However, we
really only know that some fragment of that length that ends with x and y was ampli-
fied. If we do not observe the fragment at the expected length or several fragments of
different length or none at all, we must assume that either the reaction did not perform
well, or that the expected molecule was not present in the sample, but others were.

1.2 Applications of PCR

The manifold applications of PCR include the following ones.
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1.2 Applications of PCR

Figure 1.1: Overview of PCR from http://en.wikipedia.org/wiki/File:PCR.svg. Blue:
original DNA template. Red arrows: primers Green: PCR products, then used
as templates.
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1 The Polymerase Chain Reaction (PCR)

• Early identification of infections (viruses, bacteria): A blood sample is examined for
characteristic genomic sequences of viruses or bacteria. Since PCR is very sensitive,
an infection can be found even before symptoms materialize.

• Identification of individuals by DNA profiling (aka DNA testing, DNA typing, genetic
fingerprinting): Individuals (except monozygotic twins) vary in repeat regions of the
genome called VNTRs (Variable Number Tandem Repeats), especially STRs (Short
Tandem Repeats). Such a genomic region looks as follows: A specific sequence x is fol-
lowed by a short (often 3–5 nt) sequence s, repeated n times, which is again followed by
y, thus the sequence is xsny. An example is the TH01 locus on chromosome 11p15.5,
which repeats s = AATG between 3 and 14 times. PCR is used to specifically amplify the
region between and including x and y, and the product is length-analyzed (e.g., with
agarose gel elctrophoresis), from which the number n of repeats can be determined.
As each human has two parents, the result is a (multi)set {{n, n′ }} of numbers. Such
a test is performed for several (say, k) independent loci (the SGM plus test by Applied
Biosystems uses 10 loci2 plus a gender test; the result is a k-tuple of unordered pairs of
numbers, which is called a fingerprint f = ({{n1, n

′
1 }}, . . . , {{nk, n′k }}). DNA finger-

prints, just like normal fingerprints, are stored in national databases (eg, for convicted
criminals), which is subject to privacy concerns. The probability that two individuals
share the same fingerprint is generally assumed to be very small, but sometimes subject
to debate in court.

• Paternity testing: Fingerprinting is also employed for paternity testing. If two persons
with fingerprints fP = ({{ p1, p

′
1 }}, . . . {{ pk, p′k }}) and fM = ({{m1,m

′
1 }}, . . . , {{mk,m

′
k }})

have a child with fingerprint fO = (({{ o1, o
′
1 }}, {{ ok, o′k }}), then we must have that

oi ∈ {{ pi, p′i }} and o′i ∈ {{mi,m
′
i }}, or vice versa. Thus a non-compatible fingerprint

can rule out fathership, while a compatible one provides more or less strong evidence
for it. The strength of such evidence (p-value) is often a subject of debate in court.

• Specific selection of DNA loci for sequencing: Sometimes it is not sufficient to determine
the number of repeat units, but we would like to known the whole sequence of a gene
(or part of a gene).

• Gene expression analysis (determination of a gene’s transcription level):

1.3 Mathematical PCR Model

Let Nt be the number of molecules produced after t PCR rounds. We specify N0 := n0 ∈ N,
an arbitrary initial number. For simplification, we presently assume n0 = 1 and start with
a single molecule.

In a typical PCR reaction, not every single molecule is amplified. Instead, there is a certain
probability 0 < p < 1 of copying a particular molecule, typically around p ≈ 0.8 under good
conditions. This parameter is called the PCR efficiency (parameter).

Therefore, assuming efficiency pt in round t, we have

Nt = Nt−1 +B(Nt−1, pt), (1.1)

2http://en.wikipedia.org/wiki/SGM+
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1.4 Branching Processes

where B(n, p) is a random variable with a binomial distribution with parameters n, p, that
is

P[B(n, p) = k] =

(
n

k

)
pk (1− p)n−k.

Carefully note that the parameter Nt−1 in (1.1) is a random variable (not a constant), namely
the result from the previous PCR round.

The fate of a single initial molecule can be envisioned as a branching process and visualized
as a tree. In each round, a molecule has one or two children. The first child always exists and
represents the original molecule. The second child exists with probability p an represents
the copy. This process continues recursively for the given number T of levels.

The distribution of Nt. We compute expectation, variance, and the probability distribution
function (pdf) of Nt. Clearly E[N0] = n0 and

E[Nt] = E[Nt−1] + E[B(Nt−1, pt)].

Assuming that the efficiency pt ≡ p is constant over time, using E[B(n, p)] = np and rules
for computing expected values from conditional expected values, this becomes

µt := E[Nt] = E[Nt−1] + p · E[Nt−1] = (1 + p) · E[Nt−1] = n0 · (1 + p)t. (1.2)

Assuming that we already know the distribution of Nt−1, we compute the distribution of Nt.
Note that by assumption, the distribution of N0 is Dirac in n0, that is P[N0 = k] = [[k = n0]],
which is 1 if k = n0, and 0 otherwise. Now, what must happen to obtain exactly k copies
after round t? There must have been between j ∈ { k/2, . . . , k } molecules after round t− 1,
and then for a given choice of j, exactly k − j of them must have been amplified (and the
remaining j − (k − j) = 2j − k must not). Thus, summing over all possibilities for j, we
obtain the recurrence

P[Nt = k] =
∑
j

(
j

k − j

)
pk−j (1− p)2j−k · P[Nt−1 = j]. (1.3)

The summation range for j starts at j = dk/2e and ends at j = min { k, n02t−1 }. If pt is not
constantly p, we simply use pt instead of p in (1.3).

From the distribution, we can also derive the variance

Var[Nt] = n0 · (1 + p)t · [(1 + p)t − 1] · 1− p
1 + p

. (1.4)

1.4 Branching Processes

Let us look deeper into the process that generates (Nt). As described earlier, it can be
looked at as a branching process on a binary tree, where in each node the left child exists
with probability 1 and the right child exists with probability p. Nt describes the number of
nodes at level t.
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1 The Polymerase Chain Reaction (PCR)

Here, we look at such processes in general, where the general model is as follows. We
consider the development of a population (number of individuals Zt) over several generations,
assuming Z0 = 1. Individuals live for a single generation and then die. Before dying, each
individual i produces a random number ξi of offspring. The distribution of ξi is given by a
probability vector (p0, p1, p2, . . . ) such that P[ξi = j] = pj for all j and each i, and all ξi are
independent.

Thus the dynamics are described by

Zt+1 =

Zt∑
i=1

ξi.

Note that the upper summation limit is the random value from the previous generation.

For the PCR process, we use the probability vector (0, 1− p, p, 0, 0, . . . ), i.e., there is prob-
ability 1 − p for one child, probability p for two children, and probability zero for all other
numbers of children.

Let us compute mean and variance of the process (Zt). Therefore, let Mt := E[Zt] and
Vt := Var[Zt] with M0 = 1 and V0=0.

1.1 Lemma (Mean and Variance for Branching Processes). Let µ := E[ξ] and σ2 := Var[ξ].
Then

Mt = µt and Vt =

{
σ2t if µ = 1,

σ2µt−1(1− µt)/(1− µ) if µ 6= 1.

Proof. The result for Mt is proved by conditioning on Zt−1 = k. Thus

Mt = E[Zt]

=
∑
k

P[Zt−1 = k] · E[Zt | Zt−1 = k]

=
∑
k

P[Zt−1 = k]
k∑
i=1

E[ξi]

=
∑
k

P[Zt−1 = k] kµ

= E[Zt−1]µ

= Mt−1 µ .

From M0 = 1, it follows inductively that Mt = µt.

For Vt, we use the definition Vt = E[(Zt−µt)2] and again condition the event that Zt−1 = k.
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1.4 Branching Processes

Thus,

Vt = E[(Zt − µt)2]

=
∑
k

P[Zt−1 = k] · E[(Zt − µt)2 | Zt−1 = k]

=
∑
k

P[Zt−1 = k] · E[(

k∑
i=1

ξi − kµ+ kµ− µt)2]

=
∑
k

P[Zt−1 = k] ·
[
E[(

k∑
i=1

ξi − kµ)2] + 2E[(

k∑
i=1

ξi − kµ)(kµ− µt)] + (kµ− µt)2
]

=
∑
k

P[Zt−1 = k] ·
[
kσ2 + 0 + (kµ− µt)2

]
=
∑
k

P[Zt−1 = k] ·
[
kσ2 + µ2(k − µt−1)2

]
= σ2Mt−1 + µ2Vt−1

= σ2µt−1 + µ2Vt−1.

Since V0 = 0, we have V1 = σ2. If µ = 1, the recursion is easy to solve as claimed. If µ 6= 1,
the recursion is solved by induction.

In the next step, we derive an easy-to-remember expression for computing the distribution
of Zt. First, we introduce the concept of a probability generating function (pgf). If we have
a random variable ξ distributed according to a probability vector (p0, p1, . . . ), such that
P(ξ = j) = pj , we can represent this distribution by a formal power series f (or polynomial
if the vector is finite) called the pgf by defining

f(z) :=
∑
j≥0

pj z
j . (1.5)

We can imagine z to be any real or complex variable, and at the moment we do not care
about the convergence of f .

For the PCR process with efficiency p, we have p1 = 1−p and p2 = p, while all other pj = 0;
thus

fPCR = (1− p)z + pz2. (1.6)

How can we work with generating functions? We study how certain operations on random
variables translate into operations between their generating functions.

The following lemma tells us that the pgs of the sum X + Y of two independent random
variables X and Y with pgfs g and h, respectively, is given by the product g ∗ h of the pgfs.

1.2 Lemma. Let X and Y be independent r.v.s on the natural numbers with pgfs g(z) :=∑
j gjz

j and h(z) :=
∑

j hjz
j, respectively, i.e., P[X = j] = gj and P[Y = j] = hj. Let

Z := X + Y , fj := P[Z = j] and let f(z) :=
∑

j fjz
j be the pgf of Z. Then

f(z) = g(z) · h(z).

7



1 The Polymerase Chain Reaction (PCR)

Proof. We have Z = j if and only if X = k and Y = j−k for some k. Since events for X and
Y are independent, the respective probabilities are multiplied. Thus fj = sumk g(k)h(j−k);
we also say that the vector (fj) is the convolution of the vectors (gj) and (hj). In the product
of the power series f(z) = g(z)h(z), the coefficient of zj arises in the same way.

A typical application of the lemma is as follows. Consider the sum S =
∑k

i=1 Xi, where the
Xi are independent and identically distributed (i.i.d) r.v.s. Let f be the pgf of each Xi. The
probability P[S = j] is then given as the coefficient of zj of the k-th power fk(z). We write
this as [zj ]fk(z); this is also called coefficient extraction notation.

The following lemma shows how to compute the pgf of a sum of r.v.s when the number of
terms is also random. This is a key lemma for branching processes.

1.3 Lemma. Let Xi (i = 1, 2, . . . ) be independent r.v.s with common distribution given
by pgf f(z). Let Y be an integer-valued r.v. with pgf g(z) independent of the Xi, and let
Z :=

∑Y
i=1 Xi. Then the pgf h(z) of Z is

h(z) = g(f(z)).

It follows that, if g(z) is the pgf of the number of individuals after t − 1 generations in a
branching process, and f(z) is the pgf of the offspring variables ξi, then the pgf of the number
of individuals after t generations is h(z) = g(f(z)).

Proof. Again, the trick is to condition on Y = k: We have

hj = P(Z = j)

=
∑
k

P(Z = j, Y = k)

=
∑
k

P(Y = k) · P(Z = j | Y = k)

=
∑
k

gk[z
j ]fk(z),

since the number of summands in Z is now fixed at k in each term. Thus

h(z) =
∑
j

hjz
j

=
∑
j

∑
k

gk[z
j ]fk(z)zj

=
∑
k

gkf
k(z)

= g(f(z)),

as claimed.

1.4 Theorem. The pgf of the number of individuals after t generations is f [t](z), where
f [t](z) denotes the t-fold iteration of f , i.e., f(f(· · · (t) · · · )).

8



1.5 Estimation

Proof. Since Z0 = 1, f [0](z) = z and f [1] = f(z). Now the theorem follows by induction
from Lemma 1.3.

Let us finally consider the convergence properties of Zt for µ > 1 as in the PCR case with
PCR efficiency p > 0, where µ = 1 + p > 1. Of course, Zt grows without bounds in this
case. Therefore, we normalize the quantity and consider Z∗t := Zt/µ

t, which has constant
expectation 1, and its variance converges to σ2/(µ(µ − 1)), which is finite. Moreover, Z∗t
forms a martingale, which means that E[Z∗t | Z∗t−1] = Z∗t−1. Therefore we can apply Doob’s
martingale convergence theorem and obtain the following result.

1.5 Theorem (Convergence of branching processes). Let Zt be a branching process with
offspring variables (ξi) in each generation. Let µ := E[ξ] > 1 and σ2 := Var[ξ]. Then the
normalized process Z∗t := Zt/µ

t converges in distribution as t→∞.

1.5 Estimation

1.6 Projects

1.6.1 Simulation

Simulate the PCR reaction for a given number n0 of initial molecules, a given maximum num-
ber T of rounds with a given constant efficiency p (or a given efficiency vector (p1, . . . , pT )).
To do this, you will need to simulate a B(n, p) variable. This can be done easily and robustly
(even though perhaps slowly) by drawing n random numbers uniformly in the interval [0, 1]
and counting those which are < p.

Repeat the simulation (e.g., for n0 = 1, T = 20, p = 0.8) many times and record the resulting
numbers for NT . Empirically compute their expectation, variance, and draw a histogram.
Compare with the theoretical values given above.

For all plotting, especially in the next subproject, consider using logarithmic scales on one
or both axes. How does the graph change when you do that? Which type of axis is more
informative?

1.6.2 Computation

Compute the exact distribution of Nt for given parameters. To do this, implement the
formula (1.3).

Plot the resulting distributions for all combinations of n0 ∈ {1, 5}, T ∈ {15, 20, 25}, p ∈
{0.7, 0.8, 0.9} and describe your observations.

For this task, you need the binomial coefficients
(
n
k

)
. If your standard library provides them,

that’s fine. However, note that you must be careful to compute them not naively. The best
way for both small and large numbers of n and k is to compute their logarithm

log

(
n

k

)
= log(n!)− log(k!)− log((n− k)!)
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1 The Polymerase Chain Reaction (PCR)

by using the Gamma function, for which Γ(x) = (x−1)! for integer x, and use an implemen-
tation of the logarithm of the Gamma function (often called lgamma or lngamma; for example
in Python3.2 available as math.lgamma). A Java implementation of these routines is avail-
able at http://code.google.com/p/jprobdist/source/browse/trunk/src/edu/udo/cs/
bioinfo/jprobdist/MathFunctions.java

Note that it is always advisable to compute the logarithms of the desired quantities (instead
of the quantities directly) when working with very small or large numbers (small probabilities,
binomial coefficients). We call this “working in log-space”. Advantage: All multiplications
(such as those in one term of (1.3)) become additions in log-space. Disadvantage: Addition
becomes slightly more complicated. Assume you want to compute c = a + b in log-space,
i.e., you only have a′ = log a and b′ = log b and desire c′ = log c. In principle, this is
c′ = log(exp(a′) + exp(b′)), but the exponentiation may take you out of the supported value
range. Instead, assume a ≥ b > 0. Then c = a+b = a(1+b/a) and hence c′ = a′+log(1+b/a).
The ratio b/a is conveniently written as r = exp(b′ − a′), so only the difference between b′

and a′ (which can be small even if a and b are large) needs to be exponentiated. To compute
log(1 + r) accurately for small r, you should not proceed by explicitly adding 1 and taking
the logarithm because of loss of precision. Instead, use an available library function log1p(r)
that does the right thing for both small and large r. (Test this for r = 10−20 by trying
both ways.) Thus c′ = a′ + log1p(exp(b′ − a′)) is the robust addition operation in log-space.
Implement it, you will need it often. To add more than two values, proceed similarly by
determining their maximum first.

Friendly warning: Don’t start too late with implementing; both simulation and computation
will take some time.

1.6.3 Mathematics

1. Make sure you understand the proof of the variance formula for Vt. Under the assump-
tion that µ 6= 1, complete the proof by induction.

2. Compute the pgf of the PCR process after 3 generations, starting with Z0 = 1 molecule.
What happens if you start with n molecules?

1.6.4 PCR process

Visualize the convergence of the normalized PCR process as t → ∞ for different efficiency
parameters p. Use moderately large values of t and plot the resulting approximate densities
over each other.
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CHAPTER 2

Next Generation Sequencing

2.1 Overview

Review 10.02.2011, Vol 470. Nature.

TC Glenn. Field Guide to NGS. Mol Ecol Res.

DNA sequencing means determining the nucleotide base sequence of a piece of DNA. Current
technologies can only determine the sequence of short DNA molecules (up to 1000 bp), not of
entire chromosomes. NGS (“next generation sequencing”) collectively refers to technologies
invented from 2004, starting with the 454 technology (in other words, everything after Sanger
sequencing). Another name is HTS (“high-throughput sequencing”).

Existing NGS technologies:

• Roche: 454

• Illumina: Illumina

• Applied Biosystems: SOLiD

• Life Technologies: Ion Torrent

• Pacific Biosciences: SMRT

• Helicos HeliScope

The characteristics below are only meant to give a rough overview. The information was
collected in fall 2011. For up-tp-date characteristics, please refer to the companies’ official
homepages.
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2 Next Generation Sequencing

Figure 2.1: Flowgram

2.1.1 Roche 454

Long reads, but few. Throughput < 1 Gbp / day.

GS FLX with Titanium reagents:

• 1 M reads

• 400 bp read length

• run needs 10 h

• 16 regions, 16 barcodes: 256 samples

GS FLX+ with Titanitum XL+ reagents:

• 1 M reads

• 700 bp read length, up to 1 000

• run needs 20 h (?)

The 454 sequencerf outputs flowgrams, not sequences per se. repeatedly attempt T,A,C,G,. . . ;
measure light intensity. One base ≈ intensity 100, proportional for homopolymers Output
for sequence TCAG. . . could be (105,3,99,7,0,112,9,103,. . . ).

12



2.2 Projects

2.2 Projects

2.2.1 Simulating Flowgrams

We analyze the reason why DNA sequence reads are often limited to a length of several 100
basepairs, taking the 454 and IonTorrent systems as examples. Recall that these use a fixed
flow order (T,A,C,G)n to interrogate the sequences and record the flow intensity (or H+ ion
concentration) such that 100 corresponds to approximately one nucleotide.

• Generate many random DNA sequences of length 2000 (longer than we will be able to
sequence)

• For each sequence, compute the perfect theoretical flowgram (or ionogram)

• Add saturation and noise: Cut off each intensity at 999 (for example), then add Gaus-
sian noise with mean 0 and standard deviation 30 + i/10 to each intensity, where i is
the intensity. (You can also play with smaller noise levels.)

Now you already have a very cheap (and unrealistic) simulator for flowgrams. You could
add other things now, such as sequence-specific errors, but we want to explore the de-
synchronisation of DNA reads.

Assume that for computational purposes, we have 1 million copies of the same DNA sequence.
There is always a small fraction of DNA molecules that do not incorporate a nucleotide when
they are supposed to (say, 0.1% in each stesp, but you should experiment with different error
rates). Also, washing away the unbound nucleotides between each flow is never perfect, so
a small amount of nucleotides of the wrong type remains. You could assume that in each
step, you get 99.9% of the desired (new) nucleotide but 0.01% of the previous composition.

• Keep track of the nucleotide composition in each step. For example, after one step it
is just T, after two steps it is 99.9% T and 0.01% A, and so on.

• Keep track of the state of each molecule, allowing for the possibility that nucleotide
incorporation fails and for the possibility that the additional nucleotides lead to further
reactions

• Generate the flowgrams accordingly, then add the same noise as above.

• Report the noisy flowgrams.

• Reconstruct the sequence from the flowgrams; note the error rate for each position by
comparing the reconstructed sequence to the true sequence

2.2.2 Bias in Transcriptome Data?

Take a look at the file solid-5108-demo.csfasta.gz (see the website, about 600 MB). It
is essentially a fasta file, but the sequences are in color space, except the initial T.

• Translate the sequences to DNA, assuming no errors. You can throw away the header
lines starting with > in the process and the initial T of each sequence.

13



2 Next Generation Sequencing

• Look at the 6-mer composition at each position in the sequence (note that all sequences
have the same length). Compare the composition at each position to the overall com-
position. Do some positions exhibit a strong bias? To compute the “distance”, you
can use a chi-square statistic for example.

Note that you can do the translation and counting of 6-mers on-the-fly by piping the output
of zcat into your own tool, so you don’t need to create another big file!

14



CHAPTER 3

DNA Microarrays

3.1 Overview

In contrast to sequencing, DNA microarrays measure transcription levels (of either single
exons, whole transcripts or genes) not by identifying the molecules by their sequence, but by
short complementary DNA probes (oligonucleotides, often of length 25). In the following, we
will be discussing high density oligonucleotide microarrays, with the Affymetrix GeneChip
being a typical example.

Figure 3.1 shows that a typical transcript is covered by several probes (their location being
biased towards the 3’ end of the transcript). The probes for all transcripts are synthesized
on a chip (the DNA microarray). There can be several million different spots, where each
spot contains several thousand copies of the same probe sequence. The size of such a chip is
typically around 1.28 cm × 1.28 cm.

The main idea is that mRNA (or other RNA) from a sample is first reverse transcribed into
fluorescently labelled cDNA and then brought in contact with the microarray probes. The
cDNA that is complementary to a specific probe will bind in a stable way at that location
and give rise to a fluorescent signal whose strength is (approximately) proportional to the
original amount of RNA (expression level).

The array’s signals are captured with a CCD camera, giving rise to a large image file (ex-
tension .dat). On this image, the different spots are recognized and summarized as three
values:

1. the overall (average) intensity of the spot,

2. the standard deviation of the computed average,

3. the number of pixels assigned to the spot.
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3 DNA Microarrays

???

Figure 3.1: mRNA with probe locations (biased towards the 3’ end), reference sequence,
example of a perfect match (PM) and a mismatch (MM) probe.

These values are stored in a file, which we consider to be the “raw” data (although it is already
a processed image file). For the Affymetrix GeneChip arrays, it has the extension .cel. We
are mostly interested in the intensity values only, but it is noteworthy that the other values
(standard deviation and number of pixels) provide good hints about the reliability of the
intensity values.

Usually, a gene is represented by 10–20 different probes (or rather PM/MM probe pairs, see
below), and an exon is represented by a few such pairs1. The intensity values of the different
probes of a gene must be combined (in a reasonable way) to yield an estimation of the gene
expression value. The probes of a gene are spatially “randomly” distributed across the chip,
so that local defects of the chip are unlikely to affect all probes of any gene. While one would
expect that also the location of the probes within a gene is uniformly distributed, this is not
the case. Instead, the probes are generally found close to the 3’ end of the gene. This has
two reasons: First, mature mRNA ends with a poly-A sequences, so all mRNA molecules
can be captured with the same poly-T primer sequence. Since mRNA is not a very stable
molecule, it is improbable that the whole mRNA molecule is captured; it is more likely that
some fragment of the 3’ end is captured instead. Second and relatedly, all mRNA molecules
in the cell are continuously degraded; this process starts from the 5’ end.

Note the disadvantages of microarrays in comparison to direct sequencing (RNA-seq):

• The gene sequence must be known beforehand in order to design the probes

• The probes must be designed in a way such that they are specific (i.e., the 25-mer
sequence chosen for the probes must be unique within the transcriptome, even consid-
ering a small error threshold).

• There is a high level of background noise (e.g., due to non-specific binding, NSB).

• Binding strength at a given temperature depends on the probe sequence (especially its
GC content) and is not the same for all probes.

Genes, Transcripts, Exons, etc. Carefully note that the signal of a single probe provides
only very “local” information: A strong signal at a spot means that there is some transcript
that contains a 25-mer (almost) perfectly complementary to the probe sequence. Therefore,
the 25-mer should be ideally unique within the whole genome in order to uniquely identify
the origin of the signal and quantify the expression level of every single gene. However, even
this could be problematic if one wants look look deeper than the gene level and quantify
the expression of every distinct transcript (e.g., all alternative splice forms of a gene; they
usually have many exons, and hence 25-mers, in common. A good compromise is to look at
each exon separately and quantify exon expression values separately. These can be, under
certain assumptions, deconvoluted into the different transcript expression values using linear
algebra, if the many-to-many mapping between exons and transcripts is known (e.g., as a

1In the following, we will use “gene”, but the same statements apply to other transcripts, exons, etc.
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3.1 Overview

bipartite graph). In practice this is very difficult due to the inherent noise in the data, and
sequencing approaches will generally be much more accurate.

Data Analysis. There is a long way from these raw values to an interpretable result of
the experiment, consisting of several steps, which we divide into low-level analysis steps and
high-level analysis steps. In short,

the low-level analysis pipeline starts with the raw image file and has the goal to produce
an m × n expression matrix X with expression values of m genes in n experiments,
whereas

the high-level analysis pipeline then runs clustering and classification algorithms on this
matrix in order to identify differentially expressed genes between two classes (e.g.,
cancer vs. normal tissue, or survivors vs. non-survivors in a long-term clinical trial),
or to cluster genes according to their behavior across all experiments, etc. A small
feature set of a good classifier between two clinically or biolgically distinct groups is
also called a gene signature or a set of biomarkers.

Let us summarize the low-level analysis steps:

1. image analysis: spot recognition, summarizing per-pixel intensity values into three
per-spot values (intensity, standard deviation, number of contributing pixels);

2. probe-level (i.e, per-spot) bias correction and background correction of the intensity
values; this often involves also a transformation of the values (e.g., to log scale);

3. probe-level normalization between several arrays to correct for systematic differences
between several experiments and make expression values comparable;

4. aggregation of probe-level values into gene-level values;

5. optionally, gene-level normalization between several arrays

Sometimes, either only probe-level or gene-level normalization is done; or the aggregation is
combined with one kind or both kinds of normalization.

The high-level analysis steps are usually some of the following ones, where we assume that
we have a set of (labelled) training experiments, where the class labels (e.g., “cancer” and
“control”) are known, and perhaps another set of test experiments where the labels are not
known:

1. identification of differentially expressed genes between the two classes. This can be
done by statistical tests (e.g., the t-test) or simple univariate classifiers to find out
if there are some genes that perfectly separate the classes; this can also be done by
clustering.

2. clustering of genes: it is usually observed that several genes behave similarly across
all experiments. Of course, we want to know which groups of genes do this (and later
why). Interpreting the rows of the expression matrix as vectors in n-dimensional space
and running clustering algorithms on them provides an answer to this question.
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3 DNA Microarrays

(TODO: figure with a pixelated spot image)

Figure 3.2: Microarray image analysis.

3. clustering of experiments: If there is no class annotation, one can nevertheless ask if the
experiments cluster into two (or more) distinct groups that are internally homogeneous.
Interpreting the columns of the expression matrix as vectors in m-dimensional space
and running clustering algorithms on them provides an answer to this question.

4. bi-clustering: If a subset of genes behaves similarly in a subset of experiments (but
incoherently in others), it may be of interest to cluster both genes and experiments
simultaneously. This is called bi-clustering. The problem formally consists of finding
a submatrix (a selection of rows and columns) such that all rows of the submatrix
look alike and all columns of the submatrix look alike as well. Of course, the number
of both rows and columns must be large enough for this to make sense, and there is
always a trade-off between the size of the bi-cluster and its homogeneity.

5. identification of “gene signatures” that separate the classes; the difference to the pre-
vious task is that there, we look at each gene separately, and here we allow larger sets
and complex rules to separate the classes. In terms of machine learning, we wish to
select features and train a classifier on those features.

6. prediction: when we obtain data from a new experiment (and it has been properly
normalized to be comparable with the data we trained the classifier on), we can predict
its class label and evaluate the precision of the classifier

3.2 Low-Level Analysis

3.2.1 Microarray Image Analysis

This step is automatically performed by the microarray imaging device. While the algorithm
could be replaced by another one, few researchers have found a reason to do so, and we will
not touch this issue in detail either in this course.

From now on, we assume that the image has been analyzed and the per-pixel intensity values
have been converted into probe-level values that are stored in a .cel file (see Projects).
For each spot, this contains a triple of values: (average intensity, standard deviation of
intensities, number of considered pixels). The file also contains a (usually empty) list of
(manually) masked spots and a list of spots considered as outliers by the image analysis
software. Usually, one should discard the value of each spot contained in any of those two
lists.

3.2.2 Noise and Bias Correction

As far as sources of variation are concerned, we distinguish between
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3.2 Low-Level Analysis

noise (stochastic effects that are too random to model systematically) like DNA quality in
the sample, unspecific hybridization, random defects on the chip, probe density on a
particular spot, etc., and

bias (systematic effects that are similar on several measurements or probes and can hence be
estimated from the data) like probe binding affinity, DNA concentration in the sample,
photodetection, etc.

At least on older Affymetrix chip designs, spots come in pairs of a so-called PM (perfect
match) and MM (mismatch) spot. The PM spot contains the actual probes (oligonucleotides
of length 25) of interest. The MM spot contains (almost) copies of those probes, with the
exception that the 13th (middle) nucleotide has been replaced by its complement. The idea
behind having PM and MM spots was that the MM spot should not measure the signal
(since the binding of the target molecule to the MM probes should be unstable because of
the mismatch), but the non-specific binding properties should be the same as the PM probe.
Therefore, the MM probe should measure the “background” that can be subtracted from
the PM probe intensity to get the actual signal. Thus, the signal Si of the i-th probe (pair)
should in fact be Si = Pi−Mi, where Pi denotes the intensity of the i-th PM probe and Mi

denotes the intensity of the i-th MM probe.

Unfortunately, when the paired design was introduced, nobody checked this assumption.
Experiments later showed that in up to 30% of all probe pairs, the MM signal was actually
higher than the PM signal, which would lead to nonsensical negative Si values.

One possible explanation is that in fact, there exist (highly-expressed) transcripts (genes)
that have a region that is almost perfectly complementary to the MM probe, thus the MM
probe in fact acts as a PM probe for an entirely different gene; it just is not annotated as
such. Therefore, several researchers have proposed to simply ignore the MM values and focus
on the PM values alone.

In principle, if all transcripts that hybridize to each PM and each MM probe are known along
with the hybridization strength, the whole transcript expression quantification problem can
be solved (theoretically) at the probe level. We now discuss the corresponding model, but
then will not pursue it further, because it is not used in practice.

For a given probe (spot) p, let Tp be the set of targets (transcripts) that hybridize significantly
to p. Note that the PM/MM idea assumes that |Tp| = 1 for all PM probes and |Tp| = 0 for all
MM probes. Here we do not make this assumption. Let (yp) be the intensity measurement
at probe p. Let (xt) be the true relative expression level of transcript t; the scale (units)
is arbitrary, so we may assume a that

∑
t xt = 1 or a similar condition. We also assume

(unrealistically) that we know the binding affinity ap,t between p and t and collect them in
a matrix A = (ap,t). Now obviously in vector-matrix form,

y ≈ A · x,

up to noise and bias. We see that this can only be solved if the number of probes is at least
as large as the number of transcripts and if the matrix A has full rank.

What are the characteristics of the noise for probe p? We assume that there is both additive
and multiplicative noise for each probe. Thus

yp = (Ax)p · eηp + νp,
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3 DNA Microarrays

where ηp and νp are independent normal random variables for each probe, with variances
that do not depend on the probe, i.e., ηp ∼ N (0, σ2

mult) and νp ∼ N (σ2
add) for all p.

To account for several experiments (see normalization below), we may introduce different
offsets αj and scale factors βj for different experiments j, i.e.,

ypj = (Axj)p · eηpj + νpj

We assume that there is some base signal level (background, offset) α for the whole chip
(independently of the probe), and an additive noise term ν with mean zero, independently
of the probe. Furthermore, there is additional noise that depends on the magnitude of the
probe signal. Thus,

...

where we assume that ν ∼ N (0, σ2) and

(TODO: Transformation)

3.2.3 Normalization

The purpose of normalization is to make measured values from different experiments com-
parable, so they can be analyzed together. Normalization is not usually necessary if only a
single experiment is considered and never compared to another experiment. However, one
should note that the absolute expression values from a single experiment are meaningless
then. Only their magnitude relative to each other is meaningful.

3.1 Example (Normalization). Consider the following intensities from four genes (1,2,3,4)
and two experiments (A,B).

A B

1 11 22
2 9 18
3 55 110
4 2 4

Essentially, the experiments show the same result; however, in experiment B, all values are
twice as high as in experiment A. This is more likely explained by systematic external differ-
ences (twice the amount of sample DNA, or twice the concentration of the fluorescent dye, or
a gain factor of 2 in the imaging device) rather than by the fact that every gene in the cells
in experiment B is twice as active as in experiment A. Therefore, there are no (biologically
interesting) differences between A and B. A naive analysis without normalization, however,
would highlight every gene as differentially expressed by a factor of 2. ♥

The basic assumption for any normalization method is that the global properties of the
distribution of intensity values does not change. Normalization methods differ in the exact
assumption about the invariant properties and in the method that is employed to ensure
that the invariants hold after normalization.

All normalization that we discuss below can be applied either on the probe level (before
summarizing individual probe intensities into gene expression values) or on the gene level
(after the aggregation step), or even at both times.
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3.3 High-Level Analysis

• Simple scaling according to mean or median

• Quantile normalization

• lowess regression

• Variance stabilization

3.2.4 Aggregation

Each gene (or other object of interest, like exons) is represented by more than one probe
on the chip. Therefore, to estimate gene (or exon) expression values, the intensities of the
different probes belonging to the gene (or exon) must be aggregated or summarized into a
single consensus value representing the best possible estimate.

We assume that at this step, probe biases (such as different binding affinities) have been cor-
rected. Therefore, all probe intensities belonging to the same gene should be approximately
equal. In reality of course, this is never the case, and some method of aggregation remains
necessary.

• average

• robust average: median

• robust average: trimmed mean

3.3 High-Level Analysis

As mentioned previously, high-level analysis refers to the identification of “interesting” fea-
tures (genes) that separate the different experiments into diffeerent classes.

3.3.1 Identification of Differentially Expressed Genes

3.3.2 Clustering

We may either cluster experiments or genes. The methods remain the same; in both cases
the features are real-valued vectors from some high-dimensional space Rd.
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3 DNA Microarrays

3.3.3 Bi-Clustering

3.3.4 Classification and Prediction

3.4 Projects

3.4.1 Reading .cel files

Read and understand the binary .cel file format, for example at (version 4 only!). Write a
module or library that reads a .cel file into a data structure, such that you can easily access
the intensity value at each spot given by its coordinates (i, j), where i is the row number
(called y-coordinate in the file description) and j is the column number (called x-coordinate
in the file description). The following is some example Python 3 code showing how your
module should be used.

cel = CELFile(’patient123.cel’)

cel.read() # reads the whole file

M = cel.intensities # numpy matrix of intensities

print(M[3,2]) # value in row 3, column 2 (i.e., x=2, y=3)

Test your module with the files 161.cel, 162.cel, 163.cel from the website. This is data
from human exon arrays with approximately 4 million spots each; each file has a size of
approximately 60 MB.

Optional extensions:

• Plot an 2560 x 2560 image from the matrix M and visualize the intensities.

• Extend the read method such that spots marked as “masked” or “outlier” have their
intensity values set to NaN, e.g. by cel.read(nanmasked=True, nanoutliers=True).

3.4.2 Normalization

Consider the three datasets 161.cel, 162.cel, 163.cel from the website.

• Plot histograms or box plots or violin plots (histograms as a sort-of-boxplot) of their
intensity distribution. Use both a linear scale and a log scale.

• Now assume that 161 is a reference dataset. Use quantile normalization to adjust 162
and 163 to match the intensity distribution of 161. Do the plots again and observe
that they are now all identical.

• Now use the original datasets again, and generate MA-plots of 162 vs 161 and 163 vs
161, using a log-scale.

• Do a lo(w)ess (locally weighted scatterplot smoothing) normalization of 162 vs 161 and
163 vs 161, on the log-transformed data, using linear polynomials locally. You may
want to exclude low-intensity values for reasons discussed in the lecture. Show the
lowess curve in the scatterplot. Re-plot the intensity histograms of 162 and 163 after
normalization.
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CHAPTER 4

Metabolomics

4.1 Overview

Metabolism contains the transport, interaction and processing of chemical compounds in a
biological organism and is the main function in living cells. Intermediates and products of
metabolism are called metabolites. Metabolomics is the research of methods for identification
and quantification of metabolites. Several methods of analyzing are already used to identify
metabolites in tissues, liquids or gases:

• Gas chromatography – mass spectrometry (GC/MS)

• Liquid chromatography – mass spectrometry (LC/MS)

• Nuclear magnetic resonance (NMR) spectroscopy

• High performance liquid chromatography (HPLC)

• Ion mobility spectrometry (IMS)

In this chapter we will focus on the IMS technology with respect to the MCC/IMS device
developed by the Leibniz-Institute ISAS1 and the methods of analyzing MCC/IMS measure-
ments.

1Institute for Analytical Sciences, www.isas.de
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4 Metabolomics

4.2 MCC/IMS

Ion mobility spectrometry (IMS) is a technology to analyze the presence and concentration
of compounds in the air. It is already used to detect drugs, explosives or other dangerous
chemicals in sensitive places like airports. In the last ten years IMS technology became
more and more important by its property to measure compounds with ambient pressure.
By coupling an IMS with a multi-capillary column (MCC) we obtain a much higher level
of precisely data. This fact makes IMS more attractive for scientific and economical fields
like exhalation analysis in medicine. It is possible to measure the conentration of metabolits
in the breath which denunciate specific diseases. Several diseases like chronic obstructive
pulmonary disease (COPD), sarcoidosis or lung cancer as well as a rejection reaction of an
engrafted lung can be diagnosted early. By coupling the IMS with MCC the precision of the
measurement increases significant and thus the complexity of analysis.

4.2.1 Measurement

For the measurements an IMS device with a 63NI β-ionization source will be used. The
device itself is devided into two parts, the ionization chamber and the drift tube. In the
first phase the gas reaches the ionization chamber. In this step the neutral molecules will be
formed by reaction ions into product ion in chemical reactions. These product ions will be
used to identify the specific molecules. In the second phase the ion shutter, which sepatates
the ionization chamber from the drift tube, opens. Driftrings, which are placed in a uniform
distance along the tube, generate an electric field E in the tube. The product ions will be
pulled by the electric field through the tube. The ion velocity v is related to the electric
field. Hence the ion mobility is inverse proportional to the drift time d. Molecule properties
like weight, structure, temperature and polazibility lead to a characteristic drift time for
every single compound. At the end of the drift tube the electric charge of the impacting
ions are transfered on a Faraday plate. We obtain a time / signal measurement. The whole
process takes approximate 50 milliseconds. Unfortunatly it is impossible to distinguish

Figure 4.1: Lateral cut throuth an IMS device
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4.2 MCC/IMS

different compounds with identical mean drift time. For this reason the IMS device is
coupled with a MCC device which separates the compounds before they will pushed into the
IMS device. By the occuring delay only a little part of the compounds in the breath gas will
be measured. After a specific retention time r a compound reaches the IMS device. Thus
an IMS measurement will be executed several times, approximate two times a second. We
obtain a two dimensional spectrum S with r, d as the two-dimensions and the electric charge
as the measured signal Sr,d. Measurements can be visualized as a two-dimensional heatmap,
shown in Figure 4.2. A whole MCC/IMS measurement depending on the adjusted resolution
consists of 3 - 75 million datapoints. Regions with a high signal intensity are called peaks.
This peaks consists of several hundret datapoints.

Figure 4.2: Heatmap of an MCC/IMS measurement. X-axis: drift-time d im ms; Y-axis:
retention-time r in seconds; intensity increase: white - blue - purple - red -
yellow

A feature that appears in all MCC/IMS measurements is the reaction-ion peak (RIP), visible
as a continious run at drift time d = 17.5ms in Figure 4.2. The nitrogen that is pushed
through the drift tube against the electric field to clean the tube is also ionized. Because the
cleaning process happens permanently the RIP appears in every single IMS spectrum and
thus as a solid line in the whole MCC/IMS measurement.

4.2.2 Data file

The measurement files generated by the MCC/IMS device are IUPAC standard conform.
It is an plain text file and structered as a comma separated values (CSV) file. The file is
divided into two parts. The first 130 lines contain meta informations like MCC temparature,
carrier/drift gas, carrier/drift flow etc. In the remaining lines the data is stored with the
following structure:
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4 Metabolomics

• Line 131: lists the retention time tR in seconds as the timepoints when a 1D IMS
spectrum measurement began

• Line 132: lists the spectra no. 0− . . . )

• Line 133 - . . . :

– 1. column: inverse mobility 1/K0 in s/cm2

– 2. column: corrected drift time tD,corr/ms with respect to the grid opening time

– 3. column: 1st IMS spectrum

– 4. column: 2nd IMS spectrum

– ...

More detailed informations and a complete specification are written by Vautz et al.2.

4.3 Preprocessing

As we can see in the visualization the data are strong noised and at this point unuseable,
because of the RIP we still got in the measurement. Before we analyze the data we first
have to invest computation to preparate the data for better results in further anaylsis.

4.3.1 Baseline correction

The main aim is to punish columns in retention time with a high mean/median value. Normal
columns like at d = 35ms in Figure 4.2 have just a few high signal values but many low
values. On the other hand RIP has a high mean/median value. The idea is to substract the
median from all signal values in a column. Let md = median(S1,d, . . . , S|R|,d) the median
over all signal values at drift time d. The Baseline corretion is defined as follow

∀d ∈ D : ∀r ∈ R : Sr,d =

{
Sr,d −md for Sr,d −md > 0,

0 else
(4.1)

2Vautz W, Bödeker B, Bader S, Baumbach JI: Recommendation of a standard format for data sets from
GC/IMS with sensor-controlled sampling. Springer Berlin / Heidelberg: 71-76
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4.4 Modeling peaks

4.4 Modeling peaks

The challenge is to detect the peaks to draw conclusions from the position and volume of the
peak about the compound. A good approach for detecting is to define a uniform structure of
the peaks and try to find it in the measurement. For this issue mathematical functions are
suited well for a peak description. Statistical distribution functions like normal distribution
often are used to model/approximate real data. Thus the data (the peaks) consisting of
several hundret datapoints, can be described with just a few parameters depending on the
choice of distributions.

Exactly like in the measurement the model can be described as the function f : R×R→ R,
with retention time r and drift time d as input and a concentration as output. To choose
adequate functions for the model we have to look at the horizontal and vertical cross section
of a peak:

(a) horizontal cuts (b) vertical cuts

Figure 4.3: Horizontal and vertical cross section of a few peaks; x-axis in {ms, s}, y-axis in
signal unit

Although the curves of the horizontal sections seem to be symmetric they possess a little
skewness. At the curves of the vertical sections the skewness is clearly visible. In drift time
the light skewness can be explained by the construction of the IMS device. While the ionized
molecules are pulled through the drift tube the drift gas is pushed in opposite direction
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through the tube to blow the deionized molecules of the tube. The resulting interactions
lead to characteristic curves for every metabolite.
The two dimensional model must have a skewness in retention time as well as in drift time.
Hence the inverse gaussian distribution IG was chosen. While the original distribution
just has two parameters with fixed origin the modified distribution additional has a slide
parameter which enables to set the origin and is defined as follows:

IGµ,λ,o(x) =

(
λ

2π(x− o)3

) 1
2

· exp

(
−λ((x− o)− µ)2

2µ2(x− o)

)
(4.2)

The 2D peak model function is a product of IG in retention time r, IG in drift time d and
is defined as follows:

Pµr,λr,or,µd,λd,od(r, d) =

{
IGµr,λr,or (r) · IGµd,λd,od(d) for r > or ∧ d > od,

0 else
(4.3)

It is an advantage that the model is still normalized. To describe a weight/volume we
multiply the model with the weight/volume parameter v, so Mµr,λr,or,µd,λd,od,v(r, d) = v ·
Pµr,λr,or,µd,λd,od(r, d). Hence a measurement can be modeled as a mixture of weighted mod-
els. The easy model makes the use of the EM algorithm attractive for further computation.

A problem that occures in the measurement is the so called “ion theft”. Because in one IMS
measurement the amount of reaction ions is restricted not every molecule in the ionization
chamber will be ionized. When compounds with a high concentration are measured the
probability that two ions bond together to a new artificial molecule called dimer increases.
This dimer will also be measured but has has lower mobility, thus it appears later in drift
time. We can see this effect in Figure 4.2 at retention time r = 93s. The monomer at
d = 24ms seems to be narrowed because of its high concentration a dimer at d = 34ms has
formed. When we add the dimer values with the values of the narrowed monomer we obtain
the original monomer.

4.5 EM algorithm

The EM algorithm is a statistical method to estimate parameters in mixture models. Its an
iterative process with two alternating phases: In the expectation “E” phase hidden values
are estimated. This values discribe the weight of every datapoint to all models. The sum of
all weights for one datapoint equals 1. The weight is estimated by the probability density
function of the specific model. In the maximization “M” phase all parameters for all models
will be optimized with maximum-likelihood-estimators (MLE).

4.5.1 Set up a maximum-likelihood-function

To use the EM algorithm we have to set up a maximum-likelihood-function first. Let’s have
following initial situation: Let R be set of all retention times and D the set of all drift times,
a measurement with n = |R| · |D| datapoints with xi ∈ R × D in range 1 ≤ i ≤ n and c
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4.5 EM algorithm

models/peaks in range 1 ≤ j ≤ c. Every model is weighted in the measurement with weight

ωj . The sum of all weights of the models equals 1, so
c∑
j=1

ωj = 1.

The hidden values describe the membership Wi,j of a datapoint xi to a model j, when xi

definitly belongs to the model j. Let
c∑
j=1

Wi,j = 1 and PΘ,ω (Wi,j = 1) = ωj .

Furthermore every model has a specific distribution function PΘj (xi), with Θj as the pa-
rameter vertor. The distribution function in this case is equation 4.3. The probability to
describe a datapoint xi with a single model j is

PΘ,ω(xi,Wi,j = 1) = ωj · PΘj (xi). (4.4)

To describe the mixture ratio we set up the probability function for one datapoint with a
c-dimensional vector Wi

PΘ,ω(xi,Wi) =

c∏
j=1

[
ωj · PΘj (xi)

]Wi,j . (4.5)

For all datapoints we obtain following likelihood function

Lx,W (Θ, ω) =

n∏
i=1

c∏
j=1

[
ωj · PΘj (xi)

]Wi,j . (4.6)

Because the logarithm of the likelihood has its maximum at the same position as the normal
function, thus we work with the so called log-likelihood to obtain an easier equation.

Lx,W (Θ, ω) =
n∑
i=1

c∑
j=1

Wi,j ·
[
logωj + logPΘj (xi)

]
. (4.7)

4.5.2 Expectation step

To estimate the hidden values we have to set up a target function with respect to the
estimated parameters Θ0 and the weights of the models ω0 from the last iteration. It
optimizes the parameters Θ∗ and ω∗ with respect to the new estimated hidden values. The
target function is the expected value of the log-likelihood Lx,W (Θ, ω) over Wi,j . Wi,j is the
conditional probability under the condition that Θ0 and ω0 are known.

fΘ0,ω0,x(Θ, ω) = E(W |(x;Θ0,ω0))Lx,W (Θ, ω)

= E(W |(x;Θ0,ω0))

[
n∑
i=1

c∑
j=1

Wi,j ·
[
logωj + logPΘj (xi)

]]
=

n∑
i=1

c∑
j=1

EΘ0,ω0 [Wi,j |xi] ·
[
logωj + logPΘj (xi)

]
=

n∑
i=1

c∑
j=1

W 0
i,j ·

[
logωj + logPΘj (xi)

]
.

(4.8)
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4.5.3 Estimate the hidden values

To estimate W 0
i,j for the target function we consider the estimated parameters Θ0 and ω0

from the last iteration

W 0
i,j = EΘ0,ω0 (Wi,j |xi) . (4.9)

The expactation value is the probablility thatWi,j = 1 under the condition that xi is provided
and the parameters Θ0 and ω0 are set up

W 0
i,j = PΘ0,ω0 (Wi,j = 1|xi) . (4.10)

With the Bayes’ theorem for conditional probability we can build an equation with well
known probability functions

W 0
i,j =

PΘ0,ω0 (xi|Wi,j = 1) · PΘ0,ω0 (Wi,j = 1)

PΘ0,ω0 (xi)
=

PΘ0,ω0 (xi,Wi,j = 1)

PΘ0,ω0 (xi)
. (4.11)

The probability for PΘ0,ω0 (xi,Wi,j = 1) we already definied in equation (4.4). PΘ0,ω0 (xi) is
the probability for the datapoint xi which is the sum of all weighted models at this point
c∑

k=1

ω0
k · PΘ0

k
(xi). Now W 0

i,j is defined as follows

W 0
i,j =

ω0
j · PΘ0

j
(xi)

c∑
k=1

ω0
k · PΘ0

k
(xi)

. (4.12)

Equation (4.12) also ensures the condition
c∑
j=1

Wi,j = 1.

4.5.4 Maximization step

Now we use the the hidden values to optimize Θ∗ und ω∗ which maximize the target function
fΘ0,ω0,x(Θ, ω). Because ω∗ is independent to the model we can set up a generic formula.
The computation of the maximizer in Θ∗ we describe further in section 4.5.5.

First we have to ensure that the constraint
c∑
j=1

ωj = 1 after the m step is still valid which

can be solved with the help of the Lagrange multiplicator. Let

L(ω) = β

−1 +

c∑
j=1

ω

+
n∑
i=1

c∑
j=1

W 0
i,j ·

[
logωj + logPΘj (xi)

]
. (4.13)

be the new target function with Lagrange multiplicator β. Computing the first derivate

∂L(ω)

∂ω
= β +

n∑
i=1

1

ωj
W 0
i,j , (4.14)
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setting to 0 and solving for ωj we obtain

ωj =

n∑
i=1

W 0
i,j

−β
. (4.15)

To solve β we use the constraint
c∑
j=1

ωj = 1 by extending the equation (4.15) with
c∑
j=1

, let

1 =

n∑
i=1

c∑
j=1

W 0
i,j

−β
. (4.16)

c∑
j=1

W 0
i,j = 1 is already defined in the last section, thus β = −n. After inserting β in (4.15)

we obtain the following maximizing formula

ω∗j =
1

n

n∑
i=1

W 0
i,j , (4.17)

which can be interpretated as the mean weight of all coherent hidden values to a model j.
Indeed the specification of the parameters in Θ∗ depend on the model but we can set up a
generic approach for all parameters l in Θj , let

∂fΘ0,ω0,x(Θ, ω)

∂Θj,l
=

n∑
i=1

W 0
i,j ·

∂
(
logPΘj (xi)

)
∂Θj,l

= 0. (4.18)

4.5.5 Maximum-Likelihood-Estimators (MLE)

To compute a function that maximizes the target function we have to derivate the generic
approach (4.18) with respect to the parameter Θl and solve it for the parameter. Let

logPΘj
(r, d) =

1

2
log

(
λd

2π(d− od)3

)
+

(
−
λd((d− od)− µd)2

2µ2
d(d− od)

)
+

1

2
log

(
λr

2π(r − or)3

)
+

(
−
λr((r − or)− µr)2

2µ2
r(r − or)

)
.

(4.19)

be the logarithm of the model distribution. As the last issue before computing we have to
consider the signal values si. At this point the derivate function (4.18) would treat every
datapoint as they would have the concentration 1. Hence si will be inserted into the function

∂fΘ0,ω0,x(Θ, ω)

∂Θj,l
=

n∑
i=1

W 0
i,j · si ·

∂
(
logPΘj (xi)

)
∂Θj,l

= 0. (4.20)

Derivating µ∗r
We compute the first parameter by derivating (4.20) with respect to µr and solve for µr.
Because this derivation doesn’t depend on the model index j, it will not be notated here,
execpt W 0

i,j . The maximizer for µd will be analogious computed.
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∂fΘ0,ω0,x(Θ, ω)

∂µr
=

n∑
i=1

W 0
i,j · si ·

(
− λr

2(r − or)
· −2 ((ri − or)− µr)µ2

r − 2µr ((ri − or)− µr)2

µ4
r

)

µ∗r =

n∑
i=1

W 0
i,j · si · ri

n∑
i=1

W 0
i,j · si

− or (4.21)

The problem occures that for copmuting µ∗r the parameter o∗r has to be already knwon. We
solve this problem by copmuting µ∗r by using o0

r first, solve o0
r using µ∗r and finally µ∗r by

using o0
r .

Derivating λ∗r
For an easier notation µ∗r will be replaced by µr. The maximizer for λd will be analogious
computed.

∂fΘ0,ω0,x(Θ, ω)

∂λr
=

n∑
i=1

W 0
i,j · si ·

(
1

2λr
− ((ri − or)− µr)2

2µ2
r(ri − or)

)

λ∗r =

n∑
i=1

W 0
i,j · si

n∑
i=1

W 0
i,j · si ·

(
1

ri−or −
1
µr

) (4.22)

Derivating o∗r

∂fΘ0,ω0,x(Θ, ω)

∂or
=

n∑
i=1

W 0
i,j · si ·

(
3

2(ri − or)
− −4µ2

rλr(ri − or − or)(ri − or) + 2µ2
rλr(ri − or − µr)2

4µ2
r(ri − or)

)

0 =

n∑
i=1

W 0
i,j · si ·

(
3

λr(ri − or)
+

1

µ2
r

− 1

(ri − or)2

)
(4.23)

At this point its not possible to solve (4.23) for or. Thus the Newton method will be
used, to compute or. Its an approximization method to find roots of given functions. Let

xnew = xold − f(xold)
f ′(xold)

be the generic approximization function and α the iteration step, thus

we obtain the following function

oα+1
r = oαr −

n∑
i=1

W 0
i,j · si ·

(
3

λr(ri−oαr ) + 1
µ2
r
− 1

(ri−oαr )2

)
n∑
i=1

W 0
i,j · si ·

(
3

λr(ri−oαr )2 − 1
(ri−oαr )3

) . (4.24)

The maximizer for od will be analogious computed, too.

Derivating v
Because the volume under the distribution density equals 1 we inserted v into the model.
Since v does not appear in the likelihood function we can’t derivate a maximizer like we did
in the recent derivations. The volume of the peak is related to the weight ω of the model in
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the measurement. To cumpute the volume we just have to multiply the sum of all signals in
the measurement with the weight of the model

v =
n∑
i=1

si ∗ ωj . (4.25)

4.5.6 Algorithm

In the first step the datapoints have to be captured/measured or loaded. It is necessary that
the amount of peaks and their approximate positions are already known. For all values in W
and in Θ we use two matrices. Additionally we insert into the matrix Θ the background model
with the probability function P (xi) = 1

n . Since the data is biased through the IMS device
it is important to preprocess the data with several filter like low-pass, ion reconstruction or
baseline correction to restore the data.

As a default value we assign every hidden parameter Wi,j with the uniform distributed
probability 1

c . In Θ we assign all ω = 1
c , too. The origin parameter should have a value

before the 1% quantile of the distribution. This is important, because every retention time
r ≤ or will be assigned to 0. The other parameters can be initialized with any little positive
value. Of course the parameters can be estimated better with a heuristic in the preprocessing
phase.

After the preprocessing and initialization we store the actual model parameters for the
further convergence test. In the E step the hidden values are estimated. We have to watch
out that the probability for background model shall not be computed with the IG probability
density function. The probability function for the background model doesn’t change.

Finally in the M step all model parameters are estimated by their specific maximizing func-
tion shown in 4.5.5. The only exception is the background model which has no model pa-
rameters. Only the weight ω must be computed for the BGM. After every EM step we have
to check the convergence of the parameters. There are two possibilities: We can compute
the log-likelihood (4.7) and control the difference between the actual and the last likelihood
value. The other way is to control every model parameter which is a better option since
the situaltion could be possible that after an iteration the log-likelihood would not change
significantly but the model values. Let ε be a threshold. For a successful convergence check
following equation must be valid

c∑
j=1

L∑
l=1

(
Θ0
jl

Θ∗jl
− 1

)2

≤ ε. (4.26)

When the condition is satisfied the EM phase interrupts. The lower the threshold the better
the models are fitted the more EM iterations are executed. Tests have shown that ε = 10−4

yields the best solutions. The last step is to calculate the volumes of the models except the
BGM. Figure 4.4 illustrates the whole process pipeline.
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load data preprocessing
initialize hidden,
model parameters

save model
parameters

E-step:
estimate hidden

values (4.12)

M-step:
estimate model

parameters
(4.17), (4.22),

(4.24)

convergence

check

compute volumes (4.25)

fail

pass

Figure 4.4: Workflow of EM-algorithm

Uniform Parameters

Depending on the start parameters several independent EM executions provide different
values in fact of the same parameters. The reason for this feature is, because we inserted
the offset o parameter in IG distribution. This parameter allows to form similar curves with
totally different parameters. Let

• P1 : µ = 10.93, λ = 106.42, o = 9.63

• P2 : µ = 20.41, λ = 786.08, o = 0

be two different parameterized IG models. Although the parameters are complete different,
the curves are very similar, visible in Figure 4.5. For further computation like peak align-
ment/comparisn we need uniform parameters. Because the curves are similar, their modes
are close together. Let

xmode = µ

[(
1 +

9µ2

4λ2

) 1
2

− 3µ

2λ

]
+ o (4.27)

be the formula for the computation of mode in IG distributions. This example shows that
the difference between P1 and P2 in µ is about 9.48, in λ about 679.66 and in o about 9.63.
The two curves also have the same mean and variance/standard deviation. The uncorrected
mean is e = µr + λr and the standard deviation is σ =

√
µ2/λ.
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Figure 4.5: Different parameters but similar curves

Example for Uniform Parameter
All in all three parameter als suitable as uniform parameter, namely (xMod, e, σ). As an
example Figure 4.6 shows a section of a measurement. We can see three models labeled with
M1,M2,M3 from bottom up. The results are shown in the Table 4.1. We also can see that
the model parameters differ significant. On the right hand side of the table the uniform
parameter are notated which derivation is very low.

Figure 4.6: Section of IMS measurement with three peaks, enumerated from down to up

The uniform parameters have the advantage that the original model parameters can be
back-calculated. The formulas are follows

p =
((xMod · (−2 · e− xMod) + 3 · (e2 − σ2)))

(2 · (xMod − e))

q = −(xMod · (−3 · σ2 − e · xMod) + e3)

(2 · (xMod − e))

o = −p
2
−

√((p
2

)2
− q
)

(4.28)

µ = e− o (4.29)

λ =
µ3

σ2
. (4.30)
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Model parameter Uniform parameter

µr λr or rMod e σ

M1

4.67 56.25 26.53 30.65 31.20 1.34
7.48 259.84 23.68 30.85 31.16 1.26
16.74 3501.24 14.38 31.00 31.12 1.16
6.36 161.72 24.81 30.82 31.18 1.26

M2

7.08 120.53 35.77 42.26 42.85 1.71
11.71 588.70 31.11 42.27 42.82 1.65
6.36 93.77 36.43 42.19 42.81 1.65
4.69 28.81 38.17 41.85 42.86 1.89

M3

8.97 150.50 45.54 53.75 54.51 2.18
7.23 75.08 47.28 53.54 54.51 2.24
8.46 162.14 45.90 53.72 54.36 1.93
5.62 32.19 48.91 53.25 54.54 2.34

Table 4.1: Comparisn between model parameters and uniform parameters in multiple mea-
surements with different start parameters

4.6 Recourse-constrained detection

The main aim in near future is to produce a mobile MCC/IMS device in size of a cell phone.
Because in such devices the resources like storage or battery power are constrained it is
necessary to build software that handles gentle with the hardware.
In this case there is no question to save the whole measurement. Unfortunatly the described
method is not applicable any more, because it needs the whole spectrum. The idea is to
store just a few IMS spectra while the measurement and operate only in this window and
finally discard the raw data after processing.

4.7 Projects

4.7.1 Gaussian Bell

Estimate the parameters of gaussian bells in a multi model measurement using the points
written in the file gaussdata.txt. Assume there are four models in the measurement. Plot
the data using gnuplot or any other plotting tool. Let GBµx,µy ,σ(x, y) = Gµx,σ(x) ·Gµy ,σ(y)

with Gµ,σ(x) = 1
σ
√

2π
· exp

(
−1

2

(x−µ
σ

)2)
be the model of a single variate gaussian bell with

the parameters {µx, µy, σ}. First derivate the maximum likelihood estimators for µ and σ.
Use the EM algorithm to estimate the parameters of the models. You can use random values
as start parameter or think about how you could compute good start parameters. The better
the start parameters are chosen the better and faster the EM algorithm works.
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4.7.2 IMS Measurement

Estimate the parameters of an IMS measurement stored in the file imsmeasurement.csv.
Do the following steps:

• Write a parser that handles IMS measurements in CSV files as described in the previous
section. You can ignore the meta informations in the first 130 lines.

• Use the baseline correction and Savitzky-Golay filter to clean the data. Optional you
can try to implement a DFT and cut all frequencies after a value of 150. Assume that
the “ion theft” effect does not appear in this measurement.

• Plot the data using gnuplot or any other plotting tool. For gnuplot:

– Write the values as a simple matrix into a text file.

– open gnuplot

– set an palette color, type: set palette defined (0 1 1 1, 1 0 0 1, 2 1 0

1, 4 1 0 0, 12 1 1 0, 20 1 1 0)

– set the intensity range, type: set cbrange [0:100]

– plot the matrix, type: plot "matrix.txt" matrix w image

• You can cheat by setting all start parameters of all models by your own. Assume there
are six important peaks with modes at:

– r = 121.5s, d = 23.91ms (K−1
0 = 0.6773 V s

cm2 )

– r = 18.2s, d = 24.41ms (K−1
0 = 0.6914 V s

cm2 )

– r = 34.4s, d = 20.31ms (K−1
0 = 0.5753 V s

cm2 )

– r = 9.1s, d = 19.55ms (K−1
0 = 0.5538 V s

cm2 )

– r = 6.0s, d = 15.89ms (K−1
0 = 0.4501 V s

cm2 )

– r = 4.0s, d = 17.81ms (K−1
0 = 0.5045 V s

cm2 )

• Estimate the model parameters with the EM algorithm and compute the uniform
parameters.
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CHAPTER 5

Proteomics

In this chapter, we discuss mass-spectrometry based proteomics. First, what is proteomics?

5.1 Definition (Proteomics).

Next, we discuss mass spectrometry as a technology.
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CHAPTER 6

Interactomics

Interactomics is concerned with the interactions between biomolecules and how they coop-
erate to achieve the necessary functions to sustain life.

Here, we shall primiarily discuss protein-protein interactions, but of course, proteins also
interact with DNA (for example, the binding of transcription factors to certain DNA motifs)
and metabolites or other small molecules.

6.1 Protein-Protein Interaction Networks

Proteins are fundamental building blocks of cells, the smallest unit of life. Most of the cellular
functions are executed by proteins: among many other functions, they form channels in the
cell membrane to allow the passage of small molecules, act as enzymes to promote chemical
reactions and create or carry signals between adjacent cells or different parts of a single cell.

A protein consists of at least one chain of amino acids linked by covalent bonds. In general
a protein is restricted to certain three-dimensional conformations by non-covalent bonds
between parts of its chain (hydrogen bonds, electrostatic attractions and van der Waals
attractions) and hydrophobicity of parts of certain amino acids (the property to be repelled
by water molecules).

The source of proteins’ power is their ability to bind other molecules. This happens by
non-covalent bonds between the surfaces. Since non-covalent bonds are much weaker than
covalent ones, several of them are needed to provide a stable binding. Hence binding is only
possible in an area of the protein surface the three dimensional conformation of which fits
closely to a part of the binding molecule (Figure 6.1). Such an area is called binding domain
or binding site. This kind of binding allows for a very high specificity so that only a few or
even only one type of molecule may be able to bind to a certain domain. Most interactions
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Figure 6.1: Binding of a protein to another molecule. A cavity in the proteins surface allows
the molecule to fit tightly so that a large number of non-covalent bonds can be
formed, providing a stable binding.

Figure 6.2: An example allosteric effect. The binding of one protein (blue) changes the
conformation of a second protein (green) so that the binding of an additional
protein (red) is possible.

between two proteins are generated by this kind of binding. Since the surface contour is
essential for this, the binding between two proteins can be influenced by their conformation.
A change in conformation can induce a specific surface contour – that may either allow
or prevent binding. Furthermore the binding by itself may induce conformational changes
that have effects on other parts of the protein. These effects are called allosteric. E.g. an
interaction between two proteins A and B may be dependent on an interaction between B and
C that changes the conformation of B such that the interaction between A and B is possible.
Apart from allosteric effects, two proteins may compete on the same domain of a third, thus
mutually inhibiting their binding (Figure 6.3). Lastly, the binding of small molecules may
affect protein conformation and thus induce or inhibit other bindings. A prominent example
is phosphorylation and dephosphorylation which is conducted by kinases and phosphatases.
All these mechanisms allow the cell to rapidly react on changing environmental conditions
via massively parallel state changes of its proteins.

By interacting in the described way, proteins form large networks with emergent system-
level functions the execution of which is closely related to the propagation of conformational
changes along different pathways. Due to the large complexity, abstraction is needed in
order to capture the behaviour of such a network in a model. In contrast to quantitative
approaches, which are based on protein concentrations and try to model individual chemical
reactions based on the law of mass action, graph based abstractions are popular now.
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6.2 Protein Network Graphs

This qualitative approach does not need detailed information about the chemical reactions
and protein concentrations, which is mostly not available at the moment. Rather it ar-
gues about possible existences of proteins and interactions. On this level, occuring protein
interactions can be measured by high-throughput technologies like mass spectometry.

6.1 Definition (Protein Network Graph). An undirected graph (P, I) with a vertex p ∈ P
for each protein and an undirected edge {p, p′} ∈ I with p, p′ ∈ P for each possible interaction
is a protein network graph.

Protein network graphs can be generated for many organisms by obtaining interaction data
from online databases. However, there exists a tradeoff between comprehensiveness of the
database and the accuracy of information. The Biogrid database1 for example provides a
comprehensive list of interactions gained by diverse types of experiments. However, since
most experimental methods for determining protein interactions fail to distiguish direct phys-
ical interactions from small complexes containing intermediate interactions, Biogrid contains
a considerable amount of false positives. In contrast, the DIP2 (Database of Interacting Pro-
teins) provides a core set of manually curated protein interactions that have been verified
to be direct by careful literature mining. The downside of this high accuracy is that only a
subset of the real proteins and interactions in an organism are captured.

6.3 Protein Complex Prediction

Protein networks can be divided into modules that execute distinct cellular functionalities
by the cooperation of many interacting proteins. It has been verified that such modules
correspond to clusters in protein network graphs (Spirin and Mirny, 2003). The state of the
interactions in protein network modules in general can vary across time and space in the
cell. A special class of modules are protein complexes. These are small molecular machines
containing often less than 20 proteins that are densely interconnected and stable across
time. Protein complexes execute major functions like DNA translation or the synthesis

1http://www.biogrid.org
2http://http://dip.doe-mbi.ucla.edu

Figure 6.3: Competition of two proteins (blue, red) on the same binding domain of another
protein (green).
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of new proteins (the ribosomes). Using clustering approaches, protein complexes can be
predicted from protein network graphs.

6.2 Definition (Connectivity). Let (V,E) be a graph. (V,E) is called connected if there
exists a path (v, . . . , v′) for all nodes v, v′ ∈ V . (V,E) is a clique if for all nodes v, v′ ∈ V
there exist edges (v, v′), (v′, v) ∈ E.

A dense region in a protein network graph (P, I) is a connected (Definition 6.2) subgraph
induced by a subset of proteins P ′ ⊆ P with a significantly higher connectivity than its
environment. A measurement for the connectivity of a subgraph is the density or clustering
coefficient :

6.3 Definition (Density). Let (V,E) be an undirected, loop-free graph. The density or
clustering coefficient of this graph is defined as

|E|
|V |(|V | − 1)/2

=
2|E|

|V |(|V | − 1)
.

The denominator |V |(|V | − 1)/2 describes the maximum number of edges in the graph.
Accordingly a fully connected graph (i.e. a clique) will have a density of 1, whereas a graph
without any edge will have a density of 0.

For any graph (V,E) we call (V ′, E′) with V ′ ⊆ V and E′ ⊆ E a subgraph. Since such a
subgraph is a graph itself all properties discussed above can be similarly applied to subgraphs.

6.3.1 Local Clique Merging Algorithm

LCMA (Local Clique Merging Algorithm, (Li et al., 2005)) follows a bottom-up strategy to
find dense regions in a loop-free undirected graph G = (V,E). First, it detects local cliques
by investigating the neighbourhood of each protein. In a second step, the algorithm merges
local cliques with a significant overlap as long as the average density of all detected dense
regions is high enough.

We describe the algorithm in Python3 and assume reasonable implementations for the given
graph G and all undefined functions.

1 def lcma(G, w = 0.4):

2 C = local_cliques(G)

3 D = merge_dense_regions(G, C, w) if C else C

4 return D

Detecting local cliques

In order to find a local clique, for each node, the density of its neighbourhood is investigated.
As long as it raises the density, the neighbour with the lowest degree is removed from the
neighbourhood.

3http://www.python.org
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1 def local_cliques(G):

2 C = set()

3 for u in vertices(G):

4 S = subgraph(G, neighborhood(G, u) | {u})

5 d = density(S)

6

7 while True:

8 # remove vertices from neighborhood until density is 1

9 V = vertices(S)

10 v = min(V, key=lambda v: degree(S, v))

11 S_ = subgraph(S, V - {v})

12 d_ = density(S_)

13 if d_ <= d:

14 # stop if density was not increased

15 break

16 S, d = S_ , d_

17

18 if len(V) > 2:

19 # consider only non -trivial cliques

20 C.add(V)

21 return C

For each node v ∈ V at first the subgraph induced by its neighbourhood including itself is
generated. The density of the subgraph and the node with minimal degree are recorded. In
a loop, the node with minimal degree is removed from the neighbourhood if that raises the
subgraph’s density. As the maximum value of density is 1, this loop stops once the subgraph
is fully interconnected, in other words if it is a clique. Of course this can also be the case due
to the subgraph being a trivial clique, containing only one or two nodes. Only non-trivial
cliques are considered to be a valid result.

6.3.2 Merging dense regions

The second step merges the detected local cliques to bigger but still dense regions: they are
iteratively merged until the average density is below 95% of the previous mean density.

1 def merge_dense_regions(G, C, w):

2 D, d = C, 1

3 while True:

4 D_ = set()

5 for V in D:

6 V_ = set(V)

7 for U in D:

8 if U != V and overlap(U, V) > w:

9 # merge two regions if they overlap more than w

10 V_.update(U)

11 D_.add(frozenset(V_))

12 d_ = sum(density(subgraph(G, V_)) for V_ in D_) / len(D_)

13

14 if d_ <= 0.95 * d or D == D_:

15 # stop when mean density falls below 95%

16 return D_
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17 else:

18 D, d = D_ , d_

The algorithm starts with the detected local cliques (given as sets of vertices) as dense regions
D. First the mean density d is set to 1, since the algorithm starts with the local cliques
as dense regions. In an iterative process the next set of dense regions is computed. Each
region V ∈ D is merged together with all dense regions U ∈ D, for which the overlapping

score |U∩V |
2

|U |·|V | is higher than a given threshold w. The parameter w can be used to ensure
that a merge is occuring only for significantly overlapping regions. The combination with
the termination criterion shall ensure that the results after merging can still be considered
dense. If the termination criterion is not met, another iteration is performed.

6.4 Protein Hypernetworks

While protein network graphs provide a high scalability toward very large protein networks,
they do not take interaction dependencies into account and thus predictions that are made
with these models suffer from inacuracies. In contrast, quantitative approaches based on the
law of mass action are only feasible for very small subnetworks in two ways. First, they are
based on solving differential equations and thus computationally expensive. Second, they
need extensive experimental work to determine the parameters of the chemical reactions in
the focused context.

As an intermediate approach, we want to discuss protein hypernetworks. They allow to
increase the detail of protein network graphs by including interaction dependencies while
maintaining their scalability. We first develop an approach for incorporating interaction
dependencies using propositional logic formulas. The propositional logic Prop(Q) is the set
of all propositional logic formulas over the propositions Q (the atomic units of the logic).
This is the smallest set of formulas such that q itself is a formula for all q ∈ Q and that is
closed under the following operations: For φ, φ′ ∈ Prop(Q), all of ¬φ, φ ∧ φ′, φ ∨ φ′, and
φ ⇒ φ′ are in Prop(Q) as well. The operators ¬,∧,∨,⇒ have the usual semantics “not”,
“and”, “or”, and “implies”, respectively. Note that the implication φ ⇒ φ′ is equivalent to
(¬φ ∨ φ′). As propositions Q, we use both proteins P and interactions I, so Q := P ∪ I. A
constraint is a formula with a particular structure over these propositions.

6.4 Definition (Constraint). A constraint is a propositional logic formula of the form q ⇒ ψ
with q ∈ P ∪ I and ψ ∈ Prop(P ∪ I). With C(P ∪ I) ⊆ Prop(P ∪ I) we denote the set of all
constraints.

A constraint q ⇒ ψ restricts the satisfiability of q by the satisfiability of ψ. In other words:
if q is satisfied, then the same has to hold for ψ. A constraint q ⇒ ψ is equivalent to the
disjunction ¬q∨ψ. We call the disjunct ¬q the default or inactive case for the obvious reason
that if q is not true, then ψ does not need to be satisfied. For example (see Figure 1a), the
dependency of an interaction i on an allosteric effect due to a scaffold interaction j can be
formulated by the constraint i⇒ j. Mutual exclusiveness of two interactions i, j ∈ I can be
modeled by the two constraints i⇒ ¬j and j ⇒ ¬i. The usage of propositional logic allows
also to define constraints of higher order: An interaction i could be either dependent on two
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scaffold interactions j1 and j2 or compete with an interaction j3, modeled by the constraint
i⇒ ((j1 ∧ j2) ∨ ¬j3).

Now, we can define protein hypernetworks as a set of proteins (nodes) connected by inter-
actions (edges) extended by a set of constraints (dependencies between nodes or edges):

6.5 Definition (Protein Hypernetwork). Let P and I be sets of proteins and interactions.
Let C ⊆ C(P ∪ I) be a set of constraints that contains the default constraints i⇒ p ∧ p′ for
each interaction i = {p, p′} ∈ I. Then the triple (P, I, C) is called a protein hypernetwork.

Figure 1a shows an example protein hypernetwork.

6.4.1 Minimal Network States

Following the incorporation of constraints in a protein hypernetwork, we now explain how to
sum and propagate their effects in the system. The key idea is that it is sufficient to examine
the implications for each protein or interaction q ∈ P ∪ I separately first, and then combine
the information in a systematic way. We formalize this idea by defining sets of minimal
network states. Intuitively, a minimal network state of q tells us which other proteins or
interactions are necessary or impossible to occur simultaneously with q. It is minimal in the
sense that it lists only these and no more entities.

For each q ∈ P ∪I, we define a minimal network state formula, for which we then find certain
satisfying models, which in turn define minimal network states.

6.6 Definition (Minimal network state formula). Let (P, I, C) be a protein hypernetwork.
For q ∈ P ∪ I, the minimal network state formula of q is

MNS(P,I,C)(q) := MNS(q) := q ∧
∧
c∈C

c .

A solution for a propositional logic formula is captured by a satisfying model or interpretation
given by a map α : P ∪ I → {0, 1} that assigns a truth value to each proposition. A formula
is satisfiable if any satisfying model exists. For a propositional logic formula φ, we denote
α  φ if α satisfies φ. Further, for any model α, we denote with αq 7→x the model with
αq 7→x(q) = x and αq 7→x(q′) = α(q′) for all q′ 6= q and x ∈ {0, 1}.

We assume that MNS(q) is satisfiable for all q ∈ P ∪ I, i.e., each single protein or interaction
by itself is compatible with all constraints.

For example, consider propositions Q = {q1, q2} and a formula φ = ¬q1 ∧ (q1 ∨ q2). The only
satisfying model is α : q1 7→ 0, q2 7→ 1. In the protein hypernetworks framework, we interpret
a model α as follows: A protein or interaction q is said to be possible in α iff α(q) = 1. All
possible proteins and interactions may (but need not) exist simultaneously (spatially and
temporally) in the cell.

There can be many satisfying models for MNS(q). Among these, we wish to enumerate all
minimal satisfying models (MSMs). An MSM is minimal in the sense that no constraint is
artificially activated. In other words, no proposition is satisfied unless claimed by an active
constraint.
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6.7 Definition (Minimal satisfying model). Let (P, I, C) be a protein hypernetwork and
MNS(q) be a minimal network state formula. A satisfying model α is minimal iff for each
q′ ∈ P ∪ I with q′ 6= q and α(q′) = 1, there exists a constraint (q′′ → ψ) ∈ C with α(q′′) = 1
and αq′ 7→0 1 ψ.

A suitable method for finding MSMs is the tableau calculus for propositional logic (Smullyan,
1995). In a nutshell, the tableau algorithm decomposes a formula into its parts. It accumu-
lates conjuncts, branches on disjuncts, and backtracks when a contradiction is encountered.

The general problem of finding a satisfying model for any given propositional logic formula φ
is NP-complete. However, MNS(q) has a special structure: it is a conjunction of a proposition
and of (many) constraints. If all constraints are of a particularly simple structure, we can
prove linear running time for the tableau calculus.

Each MSM α defines a minimal network state, consisting of both necessary and impossible
entities. The intuition is that the necessary entities k are simply the “true” ones (α(k) = 1),
and that the impossible entities are those that are explicitly forbidden by an active constraint.

6.8 Definition (Minimal Network State). Let (P, I, C) be a protein hypernetwork and
q ∈ P ∪ I. Let α be a MSM of MNS(q). We define sets of necessary and impossible proteins
or interactions, respectively, as

Necα := {q′ ∈ P ∪ I | α(q′) = 1},
Impα := {q′ ∈ P ∪ I | ∃ constraint (q′′ ⇒ ψ) ∈ C

with α(q′′) = 1 and αq′ 7→1 1 ψ.}.

The pair (Necα, Impα) is called a minimal network state for q (belonging to the MSM α).

For each proposition q, there can be several minimal network states. We write Mq for the set
of all minimal network states for q. We call M := M(P,I,C) :=

⋃
q Mq the set of all minimal

network states for all proteins and interactions.

Now we define a relation clashing, describing that two minimal network states cannot be
combined without producing a conflict.

6.9 Definition (Clashing Minimal Network States). Two minimal network states (Nec, Imp)
and (Nec′, Imp′) are clashing iff Nec ∩ Imp′ 6= ∅ or Imp ∩Nec′ 6= ∅.

As we prove in Theorem 6.10, in order to know if two proteins or interactions are simultane-
ously possible, it is sufficient to determine whether any pair of non-clashing minimal network
states exists for them.

6.10 Theorem. Let (P, I, C) be a protein hypernetwork. Let q, q′ ∈ P ∪I be two proteins or
interactions, q 6= q′. Assume that there exists a non-clashing pair of minimal network states
(m,m′) ∈ Mq ×Mq′. Then q and q′ are possible simultaneously, i.e., the following formula
is satisfiable.

ξ :=
( ∧
c∈C

c
)
∧ q ∧ q′.
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Proof. Let m = (Nec, Imp) ∈ Mq and m′ = (Nec′, Imp′) ∈ Mq′ be non-clashing; we show
that ξ is satisfiable by defining a satisfiying model α. Define True := Nec ∪ Nec′ and
False := Imp ∪ Imp′. Since m and m′ are not clashing, True ∩ False = ∅. Let α(r) := 1 for
r ∈ True, and α(r) := 0 otherwise. We show that α satisfies all parts of ξ.

The propositions q and q′ in ξ are satisfied since q ∈ Nec and q′ ∈ Nec′, so α(q) = α(q′) = 1.

For each c∗ = (r ⇒ ψ) in the conjunction
∧
c∈C c, there may appear two cases: α(r) = 0

or α(r) = 1. If α(r) = 0, then c is satisfied regardless of the satisfaction of ψ because of
the implication semantics. If α(r) = 1, or equivalently r ∈ True, then r ∈ Nec or r ∈ Nec′

(or both). First, consider the case that r ∈ Nec. By assumption, c∗ ∈ C is then satisfied in∧
c∈C c∧ q. Additionally, it is not clashing with q′ because True∩False = ∅. Therefore, it is

also satisfied in ξ. The case r ∈ Nec′ is analogous.

Inclusion of Perturbation Effects

The protein hypernetwork framework allows to systematically compute consequences of per-
turbations. We distinguish between perturbed and affected proteins or interactions: A per-
turbed one is the direct target of an experimental intervention which causes its complete
removal from the system (e.g. by gene knock-down for proteins or point mutations for in-
teractions), whereas an affected one is altered due to the propagation of the perturbation in
the hypernetwork. Assume that proteins P↓ ⊆ P and interactions I↓ ⊆ I are perturbed, and
thus removed from the system. The problem at hand is to compute all affected proteins and
interactions. This is done by recursively removing minimal network states m = (Nec, Imp)
that necessitate a perturbed or affected entity (protein or interaction) q ∈ Nec, while count-
ing a protein or interaction as affected once it has no minimal network state left. Formally,
we proceed as follows.

6.11 Definition. LetMq be the set of all minimal network states for entity q (Definition 6.8),
and letM be any subset of all minimal network statesM(P,I,C). For a set of entities A ⊂ P∪I,
let

M̄A := {(Nec, Imp) ∈M |A ∩Nec 6= ∅}

be the set of minimal network states from M that becomes invalid when any entity in A is
perturbed. Let R(A,M) := M \ M̄A be the remaining set of minimal network states. Let
Q(A,M) := {q ∈ P ∪ I |Mq ∩ R(A,M) = ∅} be the set of entities for which no minimal
network state is left.

We recursively define a map ρ that maps a set of perturbed entities and a set of minimal
network states to the set of affected entities. Let ρ : 2P∪I × 2M(P,I,C) → 2P∪I be defined by

ρ(A,M) :=

{
∅ if A = ∅,
A ∪ ρ (Q(A,M), R(A,M)) otherwise.

Let (P, I, C) be a protein hypernetwork with perturbations P↓ ⊆ P and I↓ ⊆ I and minimal
network states M(P,I,C). Then

Q↓ := ρ(P↓ ∪ I↓, M(P,I,C))

is the set of all affected proteins and interactions.
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Figure 6.4: (a) Example protein hypernetwork with two constraints. (b) Prediction of protein
complexes in four steps.

This provides a module that enables any algorithm that makes predictions based on protein
networks to be applied also on a perturbed network, considering the dependencies between
interactions.

6.4.2 Prediction of Protein Complexes

The prediction of protein complexes in hypernetworks consists of four steps, illustrated in
Figure 1b. First, for each protein and interaction q ∈ P ∪ I, the set of minimal network
states Mq is obtained. Then, with a network based complex prediction algorithm, an initial
set of protein complexes is predicted. Each complex c is given as a subnetwork (Pc, Ic).

The third step is more complicated. Let Mc :=
⋃
q∈Pc∪IcMq be the set of minimal net-

work states of the complex’s entities. We want to combine the individual states without
introducing clashes, as formalized by the following definition.

6.12 Definition (Maximal combination of minimal network states). For a complex c, a
set M ⊆ Mc is called a maximal combination of minimal network states iff (1) there exists
no clashing pair of minimal network states in M , and (2) the inclusion of any further minimal
network state from Mc would result in a clashing pair.

All maximal combinations of minimal network states for a given complex c can be obtained
by recursively building a tree of minimal network states to be removed from Mc. The root
of the tree is annotated with Mc; each other node is annotated with a remaining set M . If
M does not contain any pair of clashing states, the node is a leaf, and M is added to the
result set of maximal combinations. Otherwise, we take any m with clashing m′,m′′, . . .
and branch off two children which remove m on the one hand, and remove m′,m′′, . . . on
the other hand. The tree is explored in a depth-first manner, checking for redundancies in
each node. LetMc ⊆ 2Mc be the set of all found maximal combinations of minimal network
states. Its cardinality equals the number of non-redundant leaves in the removal tree. For
each maximal combination M ∈ Mc, we generate the corresponding subnetwork of (P, I).
In theory, the number of maximal combinations may grow exponentially with the number of
constraints inside a complex if all of them lead to clashing minimal network states. However,
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in practice most predicted complexes are small (between 3 and 20 proteins) and clashes are
rare.

6.13 Definition (Simultaneous Protein Subnetwork). Let M ∈ Mc be a maximal combi-
nation of minimal network states for complex c. Let PM be the set of all necessary proteins
and IM the set of all necessary interactions in M , i.e., PM := P ∩

⋃
(Nec,Imp)∈M Nec and

IM := I ∩
⋃

(Nec,Imp)∈M Nec. Then (PM , IM ) is called a simultaneous protein subnetwork.

All proteins and interactions in (PM , IM ) may exist simultaneously in the context of the
protein hypernetwork (P, I, C) because the minimal network states in M do not clash with
each other. In comparison to the subnetwork for the network based predicted complex
(Pc, Ic), each subnetwork (PM , IM ) may have lost and gained several interactions or proteins.

Finally, in the fourth step, we perform a network based complex prediction on each simulta-
neous protein subnetwork (PM , IM ) again with the same algorithm as during the initial step
(thereby it has to be ensured that the network based complex prediction does not produce
biased results when performed only on subnetworks). The proteins and interactions in the
new complexes are simultaneously possible. Since the plain-network based complex predic-
tion algorithm is not aware of constraints, the prediction may miss necessary interactions
(e.g. due to constraints modeling allosteric regulations) and proteins outside the initially pre-
dicted complex. Therefore we force these omitted entities to be contained in the predicted
complex, thus obtaining complexes that do not violate any constraint.

6.4.3 The Tableau Calculus

A suitable method for finding satisfying models is the tableau calculus for propositional
logic (Smullyan, 1995): For an input formula φ, it generates a deductive tree (the tableau)
of assumptions about φ. Each assumption a in the tree can be made due to an assumption
a′ in an ancestral node. We say that a′ results in a, and the generation of a out of a′ is
called expansion of a′. The propositional logic tableau algorithm generates satisfying models
α for φ. We write α  ψ if α satisfies a subformula ψ. The tableau algorithm now generates
assumptions of the type α  ψ with ψ being a subformula of the input formula. That is,
a conjunction α  ψ1 ∧ ψ2 is expanded into α  ψ1 and α  ψ2 on the same path, and a
disjunction α  ψ1 ∨ ψ2 results in branching into α  ψ1 and α  ψ2 (see Fig. 6.5).

Each path from the root to a leaf represents a model α. If a path does not contain any contra-
dictory assumptions, the model satisfies the input formula. Implementations of the tableau
algorithm explore the tree in a depth-first way, and use backtracking once a contradiction
occurs.

Different variations of the tableau algorithm exist. For example, one may be interested only
in the decision “does a satisfying model exist?”, or the task could be to output an (arbitrary)
satisfying model (if one exists), or to list all satisfying models. The latter is the task we
face when enumerating minimal network states. In theory, the tableau algorithm exhibits
an exponential worst case complexity, as it operates by complete enumeration of all cases
with backtracking.
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α  ¬A ∧ (A ∨B)

α  ¬A

α  A ∨B

α  A α  BX

Figure 6.5: Tableau for the propositional logic formula φ = ¬A∧ (A∨B). The path marked
by  does not lead to a satisfying model α, because it contains a contradiction
between the assumptions α  ¬A and α  A. The path marked by X is free of
contradictions, hence its generated model satisfies φ.

However, elaborate backtracking strategies can significantly reduce the running time in prac-
tice. Insights into such strategies and implementation details (even for modal logic) are pro-
vided in (Li, 2008). Also, faster heuristics exist, like GSAT (Selman et al., 1992), but they
are not adequate for the problem, as they do not guarantee a correct and complete answer.

For our purpose, the implementation has to ensure that

1. for each constraint q ⇒ ψ (i.e., disjunction ¬q ∨ ψ), the default case ¬q is explored
first, and that ψ is expanded only if the constraint is necessarily active (this allows to
find MSMs);

2. all satisfying models that comply with 1. are enumerated in the process.

In our application, the tableau algorithm can be expected to perform acceptably, since we
solve only minimal network state formulas with a fixed structure (a conjunction of con-
straints) and expect most constraints to be of a simple form. In particular, we expect
mostly mutually exclusive interactions, modeled by constraints of the form i ⇒ ¬j, and
scaffold dependent interactions that can be represented by a constraint of the form i ⇒ j.
To prove the performance of the tableau algorithm when all constraints are of this form, for
a protein hypernetwork (P, I, C) we now show that it will need only O(|C|) expansions to
find a satisfying model. Since expansions generate the deductive tree, that also limits all
tableau operations like backtracking or contradiction tests to be polynomial in |C|.

6.14 Theorem. Let MNS(P,I,C)(q) with q ∈ P∪I be the minimal network state formula for a
protein hypernetwork (P, I, C). Assume that each constraint in C is of the form c = (q1 ⇒ `)
with a literal ` ∈ {q2,¬q2} and q1, q2 ∈ P ∪ I. Then the tableau algorithm needs at most
O(|C|) expansions to find a satisfying model.

Proof. We show that a constraint that is active cannot be rendered inactive again when
assuming that the formula is satisfiable. Assume that an active constraint c = (q1 ⇒ `) is
the cause of a conflict, hence ` contradicts some literal `′. Since we require above that the
tableau explores the inactive case first, we know that ¬q1 caused a contradiction, too. We
now assume that ` is removed and we expand c to ¬q1 again to resolve the contradiction.
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Then, the formula is found to be not satisfiable, because ¬q1 can either contradict q or
another constraint, in which case the argument can be applied recursively.

Now we show that each constraint is expanded at most two times. There are three cases: (1)
The constraint is never activated; then only the inactive case is expanded and the constraint
is expanded only once. (2) The constraint is activated immediately because ¬q1 leads to a
conflict. This needs two expansions. (3) The constraint is first inactive and then activated
because of a backtracking. This needs again two expansions. Hence, the tableau algorithm
needs to perform 1 + 2|C| = O(|C|) expansions.

Note that MNS(P,I,C)(q) with above simple constraints is essentially a Horn formula for which
it is known that calculating a satisfying model has polynomial complexity with specialized
algorithms. However, proving the complexity of the general tableau algorithm for this case
remains useful: While we expect most of our constraints to have this simple form, we cannot
be sure for all of them. Hence it is reasonable to provide a computational approach that
can handle full propositional logic, but will have comparable complexity to specialized horn
formula algorithms in the majority of cases.
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