
Algorithms for Probe Selection and
DNA Microarray Design

Sven Rahmann

Februar 2004

Dissertation zur Erlangung des Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

Gutachter:

Prof. Dr. Martin Vingron
Prof. Dr. Knut Reinert

1. Referent: Prof. Dr. Martin Vingron
2. Referent: Prof. Dr. Knut Reinert

Tag der Promotion:

Für Anja

ii

Contents

Foreword xv

1 Introduction 1

1.1 The Structure of DNA, RNA and Genes 1

1.2 Functional Genomics . 6

1.3 High-Density Oligonucleotide Microarrays 11

1.4 Probe Selection and Chip Design . 18

2 Models for Feature Signal Intensity 25

2.1 The Nature of Affinity Coefficients . 26

2.2 Normalization & Expression Level Estimation 29

2.3 Thermodynamic Hybridization Stability 32

2.4 Empirical Determination of Affinity Coefficients 42

3 The Longest Common Factor Approach 45

3.1 Definition and Motivation . 45

3.2 LCF-Based Unspecificity Measures . 48

3.3 Relation to Other Approaches . 53

4 Efficient Computation of Longest Common Factor Statistics 57

4.1 Preliminaries . 57

4.2 Enhanced Suffix Arrays . 60

4.3 Matching Statistics . 65

4.4 Jumps in Matching Statistics . 70

4.5 Obtaining LCF Statistics from Jumps in Matching Statistics 76

4.6 Trading Speed for Precision . 79

4.7 Probe Selection for Saccharomyces cerevisiae 82

5 Unique Probe Selection 85

5.1 Criteria for Probe Set Selection . 85

5.2 Obtaining the Final Probe Set . 88

5.3 Workflow . 90

iii

6 Non-Unique Probe Selection and Signal Decoding 93
6.1 Preliminaries . 93
6.2 Design and Decoding for Quantitative Analysis 96
6.3 Design and Decoding for Qualitative Analysis 104

7 Design and Analysis of Genome Tiling Chips 125
7.1 Probe Evaluation and Selection . 126
7.2 Decoding . 129
7.3 Summary . 135

8 Optimization of the Deposition Sequence for Chip Production 137
8.1 Previous Work and our Approach . 138
8.2 Definitions . 139
8.3 Alphabet-Leftmost and its Stochastic Properties 140
8.4 Refining Supersequences . 143
8.5 Computational Experiments . 146
8.6 Summary . 146

9 Discussion and Outlook 149

A Software 169
A.1 Promide . 169
A.2 REFORM . 175

B Probe Selection Projects 179

C Anhang laut Promotionsordnung 181
C.1 Zusammenfassung . 181
C.2 Erklärung . 185
C.3 Lebenslauf . 186

iv

List of Figures

1.1 DNA and RNA bases . 2
1.2 RNA secondary structure . 4
1.3 Transcription and post-transcriptional processing 5
1.4 Photolithographic microarray production 13
1.5 An overview of eukaryotic target labeling. 15

3.1 Longest common factor lengths . 47
3.2 Illustration of the cross-hybridization probability 52

4.1 Basic suffix array of CACACXACC$. 61
4.2 Enhanced suffix array of CACAC$ and ACC$ 63
4.3 Bucket scan algorithm . 67
4.4 Conversion of jump lists of matching statistics to lcf values 79

5.1 Position preference as a function of the distance from the 3’-end 88

6.1 Greedy heuristic for condition-based design. 100
6.2 Changes in condition and Skeel condition number 102
6.3 MATLAB code for generating artificial affinity matrices 103
6.4 The Separate procedure ensures separation of target sets. 109
6.5 Evolutionary tree models used for artificial sequence family generation . 117

7.1 Distribution of maximal LCF length of 25-mers in the human genome . 128
7.2 Dito; cumulative distribution function 129
7.3 Principle of transfrag discovery . 130
7.4 Decoding results for genome tiling chips, χ = 0.03 133
7.5 Decoding results for genome tiling chips, χ = 0.20 134
7.6 Decoding results with underestimated error rates 135

8.1 Empirical distribution of lower and upper bound for supersequence
length with the Alphabet-Leftmost algorithm 141

8.2 Effects of supersequence edit operations 144
8.3 Effects of supersequence refinement . 146

v

vi

List of Tables

1.1 Advantages and disadvantages of PCR-product-based versus oligonu-
cleotide microarrays . 12

2.1 Nearest neighbor model parameters for DNA/DNA duplex formation . 37
2.2 Nearest neighbor model parameters for RNA/DNA hybrid formation . 38

4.1 Number of observed and expected jumps in matching statistics 75

6.1 Affinity and hybridization matrices with 12 non-unique probes and
4 targets . 101

6.2 Condition numbers for reduced random 18× 4 and 200× 20 matrices . 104
6.3 Number of probe candidates and number of probes chosen by the greedy

design heuristic and the ILP approach 118
6.4 Decoding results for model (M) . 121
6.5 Decoding results for model (a) . 122
6.6 Decoding results for model (b) . 123

vii

viii

Abbreviations and Notation

Abbreviations in alphabetical order

A, A adenine
Å Angstrom; 1Å = 10−10 m = 1/10 nm

aRNA anti-sense RNA, amplified RNA; complementary to mRNA
bp base pair(s)

C, C cytosine
◦C degrees centigrade (Celsius)

cDNA complementary DNA; DNA synthesized from mRNA by RT
CDS coding sequence

cRNA complementary RNA; same as aRNA
CSMS, csms cumulative statistics of matching statistics

Cy3 Cyanine 3-dNTP; in fluorescently labeled DNA
Cy5 Cyanine 5-dNTP; in fluorescently labeled DNA

DMD digital micromirror device
DNA deoxyribonucleic acid

dN any deoxynucleotide; any of dA, dC, dG, dT
dNTP any deoxynucleotide-triphosphate; any of dATP, dCTP, dGTP, dTTP

EST expressed sequence tag
G, G guanine

HPLC high-pressure liquid chromatography
IVT in-vitro transcription

K Kelvin; physical unit of temperature
LCF longest common factor

LCFS longest common factor statistics
M physical unit of molar concentration: 1 M = 1 mol/l

MCMC Markov chain Monte Carlo
MES 2-(N-morpholino)ethanesulfonic acid
mol physical unit of amount of substance

1 mol = as many entities as atoms in 0.012 kg of carbon 12
mRNA messenger RNA
MS, ms matching statistics

N, N any of the bases A, C, G, T/U
[Na+] salt (sodium ion) concentration
NaCl salt (sodium chloride)

NN nearest neighbor

ix

nt nucleotide(s)
oligo-(dT) primer of 12–20 dTs binding to the poly(A) tail of eukaryotic mRNA

P phosphor
33P a radioactive phosphor isotope

PAGE polyacrylamide gel electrophoresis
PCR polymerase chain reaction
PEM percent of expected mutations (unit of evolutionary time)
RNA ribonucleic acid

RT reverse transcription
RTase reverse transcriptase; an enzyme

RT-PCR reverse transcription-polymerase chain reaction
SAGE serial analysis of gene expression
SAPE streptavidin phycoerythrin
SBH sequencing by hybridization
SCS shortest common supersequence

SCSP shortest common supersequence problem
SNP single nucleotide polymorphism
SSC saline sodium citrate buffer

SSPE saline sodium phosphate buffer
SVD singular value decomposition
T, T thymine
T7 a bacteriophage that infects E. coli ;

these viral parasites are numbered T1 through T7
Taq Thermus aquaticus; a heat-resistant bacterium

TIFF tagged image file format
transfrag transcript fragment

tRNA transfer RNA
U, U uracil
UTR untranslated region; part of mRNA transcripts

Notation by topic

Notation introduced in early chapters is also used in subsequent chapters.

Chapter 1
p probe sequence; a string
|p| length of p

t transcript or target sequence
T transcriptome T = (t1, . . . , tn)
m number of probes
i probe index
n number of transcripts
j transcript index
θ hybridization conditions; parameters

x

a(p, t; θ) affinity coefficient between p and t, given θ
p � t p is a factor (substring) of t

ε lower affinity limit for specific hybridization

Chapter 2
x = (xj) n-vector of transcript expression levels
y = (yi) m-vector of measured probe signals

A = (Aij) m× n-matrix of probe-transcript affinity coefficients; y = A · x
t(i) index of the unique target that probe i binds to

a, ai particular affinity coefficients
ρij position dependent factor of Aij

βij hybridization stability dependent factor of Aij

γij sequence composition dependent factor of Aij

σij self-complementarity dependent factor of Aij

εi stochastic additive noise of probe signal intensity
ci, c systematic additive offset of signal intensity

α scale of signal intensity
ηij stochastic multiplicative noise of signal intensity

d differential operator
∆ denotes a difference

U ; q; w internal energy; heat; work
p pressure
V volume
T temperature

H; H◦
m; ∆rH

◦ enthalpy; standard molar enthalpy; standard reaction enthalpy
S; S◦

m; ∆rS
◦ entropy; standard molar entropy; standard reaction entropy

G; G◦
m Gibbs energy; standard molar Gibbs energy

∆rG
◦; ∆rG standard Gibbs energy of reaction; reaction Gibbs energy

ξ extent of reaction
R gas constant; R = 8.3145 J K−1 mol−1

K equilibrium constant
[S2]eq equilibrium concentration of reactant S2 (single stranded probes)

TM melting temperature

Chapter 3
lcf(p, t) length of the longest common factor of p and t

lcf1(p, t) same, allowing one mismatch
lcf∗(p, t) combined measure derived from lcf and lcf1

LCF(p |T) LCF vector of probe p against transcriptome T
LCFS(p |T ;∆) LCF statistics of p against T of width ∆

δ index of LCF statistics, 0 ≤ δ < ∆
difference between full probe length and LCF length

T (i) index set of intended targets for probe i
T transcriptome; see Chapter 1

U ′(pi |T) unspecificity of probe i in T ; formal definition

xi

τ temperature; to avoid confusion with transcriptome T
β(δ) average hybridization probability as a function of δ

ζ offset constant; ζ = ln(β(0)/(1 − β(0)))
b > 0 average Gibbs energy per base pair in units of (Rτ)
u(δ) approximation to β(δ)

U(pi |T) unspecificity of probe i in T ; practical definition

Chapter 4
T = (Tc) transcriptome of transcript collections Tc (c = 1..C)

C number of collections
Tc = {tc,j} transcript collection c with transcripts tc,j (j = 1..Nc)

Nc number of transcripts in collection c
s target sequence
Σ alphabet; here Σ = {A, C, G, T}

Σ∗; Σ+ all strings (non-empty strings) over alphabet Σ
$ string end marker and separator
X unspecified or wildcard character

pos suffix array
lcp(s, t) length of the longest common prefix of s and t

lcp longest common prefix array
q bucket prefix length

bck bucket array
γ = 〈Q〉 numerical radix-q representation of a q-gram Q

cl collection number array

mss|t = (ms
s|t
i) matching statistics of s against t

mss|t;f matching statistics allowing f mismatches of s against t
R0

min minimum value of relevant matching statistics
R1

min minimum value of relevant ms. with one mismatch
Rmax maximum value of relevant matching statistics

MS[i][c] matching statistics array; MS[i][c] = ms
s|Tc

i

(i, J) jump at position i to level J
n,m string lengths in Section 4.4; |s| = m, |t| = n

P generic notation for a probability measure
E generic notation for an expectation

π = (πc)c∈Σ character distribution for a random sequence model
p probability that two random characters match
q q := 1− p

KL random number of occurrences of a random L-gram in a string
ρL probability that a jump to level L occurs at a fixed position
EL expected number of jumps to level L in matching statistics
E+

L expected number of jumps to level ≥ L in matching statistics
L◦ center of the distribution of the LCF of two random strings

xii

Chapter 5
d probe distance from the transcript’s 3′-end

pi = (di, `i) probe i defined by end distance di and length `i

f(d); fi position preference factor for distance d; fi := f(di)
hi hairpin formation probability for probe i
Ui unspecificity for probe i
Bi badness value for probe i
B(δ) additional badness for probes clustering within distance δ

B′
i; B

′
modified badness value for probe i; threshold B

′

S selected probe set

Chapter 6
I{·} generic notation for an indicator function

S = (sc) target sequences for all collections c = 1, . . . , C
H = (Hij) binary m× n hybridization matrix of probes vs. targets

D design, i.e. a selection of probes; D ⊂ {1, . . . ,m}
AD; HD affinity and hybridization matrix restricted to rows from D

M minimum target coverage
A average target coverage

AT transpose of A
Σ diagonal matrix with singular values (σj) of A
σj j-th largest singular value

diag(·) diagonal matrix with specified entries
A− pseudo-inverse of A
‖ · ‖2 Euclidean norm of a vector; spectral norm of a matrix
‖ · ‖∞ maximum norm of a vector

cond(A) condition number of A
conds(A) Skeel condition number of A

µ maximal number of probes that may be selected

S,T sets of target indices
S∆T symmetric set difference of S and T
P (S) set of probes that hybridize to any target in S
T (i) set of targets that hybridize to probe i

γ desired minimum target coverage
σ desired minimum target set separation

δ ∈ {0, 1}m binary vector representation of design D
hj j-th column of binary hybridization matrix H

zS,T = (zS,T
i) indicates whether probe i separates sets S and T

δ+, h+
j , z+ vectors extended for virtual unique probes

B maximal size of target sets to be separated
f0; f1 false negative (positive) error rate
P(x) prior probability of binary expression vector x ∈ {0, 1}n

P(y |x) likelihood of probe signals y ∈ {0, 1}m, given x
π(x) = P(x | y) posterior probability of x for fixed y

xiii

q(z |x) proposal probability for new solution z at current solution x
N (x) neighborhood of x

α(x, z) acceptance probability for z at x

Q rate matrix of an evolutionary Markov process
t evolutionary time

P t Markov transition kernel for time t
expm(Q) matrix exponential; expm(Q) :=

∑

n≥0 Qn/n!

Chapter 7

csmss|t cumulative statistics of matching statistics of s against t

csms
s|t
i,µ refers to position i in s and matches of length ≥ µ

CSMS[i][µ] CSMS array; CSMS[i][µ] = csms
s|t
i,µ if µ ∈ [R0

min, Rmax]

σi
k,u unexpected CSMS at offset k for a probe starting at i

Li,δ whole genome surrogate for LCFS(pi)δ

L length of hypothetical transfrags
D distance between start points of hypothetical transfrags
K transfrags known to be present
P1 probes expected to show a signal because of K
M transfrags of unknown status; M = {1..n} \K
N transfrags most likely not present
J transfrags whose status is inferred by sampling; J = {1..n} \ (K ∪N)
χ fraction of transfrags hybridizing to additional probes

Chapter 8
Σ DNA alphabet
π permutation of the nucleotides
S sequence set
e binary embedding vector of a string into a supersequence
E embedding matrix with rows ei, i = 1..|S|
U upper bound on the supersequence length
L lower bound on the supersequence length
Li length of the i-th sequence in S

Ni(x) number of occurrences of x ∈ Σ in the i-th sequence
N(x) maxi Ni(x)

Ci completion step of the i-th sequence
Wi,k number of unproductive steps between (k − 1)-st and k-th productive

step for sequence i
Φ cumulative distribution function of the standard Normal distribution

Trademark Notice. Affymetrix r© and GeneChip r© are registered trademarks of Affy-
metrix, Inc., Santa Clara, CA, U.S.A. The terms geniom r© one and DNA processor r©

are registered trademarks of febit AG, Mannheim, Germany.

xiv

Foreword

DNA microarrays or DNA chips have become an increasingly important research tool
in functional genomics over the last few years. Several different technology platforms
exist; this thesis focuses on high-density oligonucleotide arrays.

DNA chips allow to quickly obtain and compare gene expression profiles of different
cell or tissue samples. As one of many applications, one hopes to better understand
various types and subtypes of cancer and to improve cancer therapy by characterizing
the differences between the expression profiles of healthy cells and tumor cells.

The first chapter of this thesis offers an overview of existing microarray technologies
and contrasts them with other techniques for gene expression analysis. High-density
oligonucleotide arrays are described in detail.

Gene expression analysis with DNA chips is a high-throughput technique that produces
massive amounts of data; however, this technique is not error-free. Each step of an
experiment must be performed carefully. In particular, the DNA chip must be carefully
designed and manufactured. This thesis proposes and describes solutions for some of
the algorithmic problems that arise in this phase. These problems are formulated in
detail in the last section of Chapter 1.

My research started with the general question of how to find oligonucleotide probes
for highly homologous transcripts when it cannot be guaranteed that a sufficiently
large set of clearly transcript-specific (or unique) probes can be found. An interesting
future large-scale application could be the individual expression measurement of all
splice variations of all genes in the human genome, for example. The basic idea was
to find several non-unique probes such that different probes hybridize to different
combinations of targets, with the hope that the measured signal can then be decoded
into the individual expression levels. Two question then follow immediately: How
does the decoding work, and how can the probes be designed in a way that makes the
decoding as simple as possible?

In early 2001, custom probe design was in its infancy. The design of the large com-
mercial chips, such as the Affymetrix GeneChip r©, was a well guarded secret of the
respective companies. Several other research groups were also beginning to work on
probe selection, and their results, especially those of Li and Stormo (2001), made the

xv

problem more popular. I soon realized that, before actually working on non-unique
probes, more fundamental questions should be addressed. A high-performance large-
scale probe selection system for unique probes would be very useful but did not exist.
Such a system could then be used as a basis for non-unique probe design. These
considerations are reflected in this thesis.

A fundamental problem in microarray design and analysis is to understand the re-
lationship between mRNA concentration (the “gene expression level”) and measured
signal intensity. Indeed, the relation should be approximately linear (excluding satura-
tion effects); the key is to find the growth coefficient of this linear function. Chapter 2
provides a comprehensive discussion of this topic: We point out that the stability of
the hybridization is an important factor that influences the signal strength, but it is
not the only one.

For the selection of unique probes, we must ensure that each probe hybridizes to its
intended target, and only to its intended target. If probes that fulfill this requirement
are to be found efficiently on a large scale, we cannot evaluate the hybridization
stability of each probe-target pair. Thus we introduce a rapidly computable sequence-
based surrogate measure, the longest common factor (LCF), in Chapter 3. The relation
between the LCF and the hybridization stability is developed from thermodynamic
principles. An efficient LCF-based algorithm for evaluating the specificity of probe
candidates is presented in Chapter 4. Is is based on all-against all matching statistics
computation using an enhanced suffix array and an efficient representation using the
concept of jumps in matching statistics, which we develop the the same chapter.

Evaluating the specificity is not enough in practical applications; several other con-
straints must be considered to obtain a good set of probes. Chapter 5 discusses these
constraints and presents ways to include them in the probe selection process. It con-
cludes with the outline of an efficient general-purpose selection procedure for sets of
unique probes. The procedure has been implemented as the Promide software pack-
age; technical remarks on its usage are given in Appendix A. Promide is currently
used in several chip design projects; an overview is given in Appendix B.

In Chapter 6, we look at the problems of selecting non-unique probes and decoding the
probe signals into gene expression levels. Large scale quantitative analysis becomes
rather impractical in this situation, but if non-unique probes are restricted to hybridize
only within moderately sized sequence families, quantitative decoding is a possibility.
We provide a mathematical framework based on matrix condition optimization to
select a good set of probes (called a design) from numerous candidates.

Qualitative analysis with non-unique probes, i.e., deciding whether a certain tran-
script type is present (highly expressed) or absent (at most weakly expressed) is more
versatile than quantitative analysis. We present an LCF-based probe candidate pre-
selection method, and a greedy heuristic and an integer linear programming based
method to select a design that is optimal in a certain sense (joint and ongoing work

xvi

with Gunnar Klau, Knut Reinert, Alexander Schliep, and Martin Vingron). A signal
decoding procedure based on statistical group testing is also given.

All probe selection methodologies require that the transcriptome of the organism un-
der consideration is known. This is not always the case and particularly interesting the
case of the human transcriptome. Within the ENCODE (ENCyclopedia Of Dna Ele-
ments) project, one central question is whether all transcripts have been identified and
annotated in the human genome. A promising strategy to identify transcribed regions
in the genome is to use genome tiling chips that cover the whole genome with regularly
spaced probes at a high density, say, one probe every 20 bp. Expression studies are
then carried out for many different tissue types. A new transcript is identified if sev-
eral consecutive probes show a signal that cannot be explained by cross-hybridization
from other transcripts. The problem is that many probes are not unique, and we face
a difficult decoding problem. Chapter 7 contains our contributions towards solving
the challenges presented by genome tiling chips.

Once a set of probes is chosen for a chip design, the chip must be produced. With
several technologies, such as the Affymetrix GeneChip r© arrays and febit’s geniom r©

one system, the probes are synthesized in situ on the chip with a combination of
photolithography and combinatorial chemistry. We consider the problem of optimizing
the nucleotide deposition sequence to lower production costs and to decrease the overall
error rate during synthesis. Our approach and the results are reported in Chapter 8.

A concluding discussion about the results of this thesis and an outlook into the future
can be found in Chapter 9.

Publications. Parts of this thesis have been published in advance. The basic longest
common factor approach from Chapter 3 — without the thermodynamic motivation
given in this thesis — and a first version of the algorithm from Chapter 4 were pre-
sented at the CSB’02 conference (Rahmann, 2002) and won the best paper award.
The basic procedure was later improved upon by considering and analyzing jumps
in matching statistics (Rahmann, 2003a,b); these results have been integrated into
Chapter 4. The results on non-unique probe selection and qualitative signal decoding
from Chapter 6 were first presented at CSB’03 (Schliep, Torney, and Rahmann, 2003),
and another publication is in preparation (Klau et al., 2004). The optimization of the
nucleotide deposition sequence for chip production, as described in Chapter 8, was
presented at ECCB’03 (Rahmann, 2003d).

This thesis also contains previously unpublished material, namely

• the conceptual discussion on signal modeling and affinity coefficient estimation
in Chapter 2,

• the thermodynamic motivation of the probe unspecificity measure based on
longest common factor statistics in Chapter 3,

xvii

• the systematic discussion of other constraints than specificity for probe selection
in Chapter 5,

• a framework for non-unique probe selection and signal decoding for quantitative
expression analysis based on matrix condition minimization in Chapter 6, and

• the material on genome tiling chips in Chapter 7.

The software described in Appendix A of this thesis can be obtained from the URL
http://oligos.molgen.mpg.de.

Acknowledgments. This work was carried out while I was a staff scientist at the
Department of Mathematics and Computer Science at the Free University of Berlin
and a pre-doctoral fellow in the Computational Molecular Biology department at the
Max Planck Institute for Molecular Genetics. It has been a very enjoyable experi-
ence, thanks to all present and former colleagues and students in the Bioinformatics
program.

I would especially like to thank Martin Vingron for suggesting the topic, providing
initial ideas, and for the opportunity to write this thesis under his guidance. Knut
Reinert wrote a referee report for this thesis, for which I am very grateful.

The support of the whole computer service group at the Max Planck Institute, and
in particular of Wilhelm Rüsing, was crucial to the success of this work, and I cannot
thank them enough for their help.

I enjoyed fruitful discussions with many people while this thesis was underway; in
particular, I am grateful to Verena Beier, Stefan Haas, Gunnar Klau, Stefan Kurtz,
Hannes Luz, Tobias Müller, Antonio Piccolboni, Knut Reinert, Alexander Schliep,
Jens Stoye, and Martin Vingron for their valuable hints and comments. In their
Bachelor’s theses, Christine Gräfe, Jonas Heise, and Michaela Spitzer worked on spin-
off projects of this thesis; their contributions are very much appreciated. I also thank
Holger Meyer, Reiner Matthiesen, and Jan Wildenhain for helpful discussions about
the shortest common supersequence problem.

Anja von Heydebreck, Antje Krause, Hannes Luz, Tobias Müller, Matthias Rahmann,
Stefan Röpcke, Alexander Schliep, and Christine Steinhoff read early drafts of several
chapters of this thesis and helped to improve it in many ways through their com-
ments.

Last but not least, I thank Anja Singbartl for her love and patience while I was writing
this thesis. Heartfelt thanks also go to my parents and the rest of the family.

Sven Rahmann Berlin, February 2004

xviii

Chapter 1

Introduction

In this thesis, we consider computational and modeling problems that arise during de-
sign and production of high-density oligonucleotide microarrays, which have become
increasingly important tools for gene expression analysis in functional genomics. To ex-
plain the principle of microarrays or “DNA Chips”, we first briefly review the structure
of DNA and mRNA molecules (Section 1.1). We then contrast microarrays with other
techniques for gene expression analysis and compare different technology platforms
for microarrays. The importance of microarrays in the field of functional genomics is
pointed out (Section 1.2). High-density oligonucleotide microarrays are described in
more detail; we give an overview of their production (especially the oligonucleotide
probe synthesis process), the sample preparation, the hybridization reaction, and the
data generation and analysis pipeline (Section 1.3). Having described the technical
framework and constraints of microarrays, we formulate several algorithmic problems
in chip design and oligonucleotide probe selection (Section 1.4).

1.1 The Structure of DNA, RNA and Genes

Complex organisms, such as mammals, consist of billions to trillions of cells. The
genetic information that an organism needs to perform its vital functions is encoded
in special macromolecules residing in the nucleus of each of the organism’s cells. These
molecules are called chromosomes, and each chromosome is one long molecule of de-
oxyribonucleic acid (DNA).

The structure of DNA was discovered 50 years ago in 1953 by Rosalind Franklin,
Francis Crick, James Watson and Maurice Wilkins (Watson and Crick, 1953): DNA
forms a double-helix and consists of two antiparallel complementary strands. Each
strand is a directional linear polymer of four types of nucleotides or bases (adenine A,
cytosine C, guanine G, and thymine T), held together by a sugar-phosphate backbone.
The sugar-phosphate bonds in this backbone are phosphodiester bonds. The carbon
atoms of the sugar groups are numbered 1’ through 5’. A phosphodiester bond links
the 5’ carbon of a deoxyribose to the 3’ carbon of the adjacent deoxyribose; in this

1

Chapter 1 Introduction

Figure 1.1: DNA and RNA bases. Adenine, cytosine, and guanine are common to both
DNA and RNA. The DNA base thymine is replaced by uracil in RNA. Image by Darryl
Leja, reproduced from the Talking Glossary at the National Human Genome Research
Institute, USA.

way, a direction can be assigned to a DNA strand. It is customary to look at a strand
in 5’→ 3’ orientation because DNA transcription (see below) can only proceed in this
direction (from the transcript’s point of view). Thus the sequence of nucleotides in
a DNA strand can formally be written as a finite string over the four-letter alphabet
ΣDNA := {A, C, G, T}.
In a double-stranded DNA molecule, the second strand is the first strand’s Watson-
Crick complement : A is the complement of T, C of G, and vice versa. The stability
of double stranded DNA comes from the hydrogen bonds between complementary
bases in opposite strands. There are three hydrogen bonds in a G-C-pair, and two
hydrogen bonds in an A-T-pair, making GC-rich DNA more stable than AT-rich DNA.
The hydrophobic base-pairs are on the inside of the double helix, with the hydrophilic
sugar-phosphate backbone on the outside. Because of hydrophobic interactions, base
pairs stack onto each other, forming a ladder going up the helix, adding to its stability.

2

1.1 The Structure of DNA, RNA and Genes

The stacked planes are 3.4 Å apart and almost perpendicular to the backbone axis.
A full turn of the helix consists of 10.5 base pairs (36 Å). The helix is right-handed
and exhibits two grooves within the twisted backbone: a major and a minor groove.
Sequence-specific DNA binding proteins that regulate transcription recognize their
binding sites via these grooves (Griffiths et al., 2002).

The DNA contains the information needed to synthesize the proteins that control
functions and build structures within cells. While only one strand is needed to encode
the genetic information and is “read out” for protein synthesis, the principle of base
complementarity ensures the stability of the genetic information, and its ability to
replicate itself faithfully. In order to perform its various functions, the information
in the genetic material must be transported to the location in the cell where it is
needed. Generally, a “working copy” of a part of the DNA molecule is created for
such a purpose. This process is called transcription.

The transcript consists of ribonucleic acid (RNA), a polynucleotide in many ways
similar to DNA. However, the sugar deoxyribose in the DNA backbone is replaced by
ribose in the RNA backbone, and the DNA base thymine (T) is replaced by uracil
(U), so the RNA alphabet is ΣRNA = {A,C,G,U}. Figure 1.1 shows the differences
between the DNA and RNA bases. In contrast to DNA, RNA frequently occurs as
a single-stranded molecule. Ribonucleotides in the same single RNA strand base-
pair with each other, forming a secondary structure. Typical structure elements are
hairpin loops, stems, bulges, interior loops, and junctions (see Figure 1.2). From
a given RNA sequence, the secondary structure can be predicted with specialized
algorithms, e.g., those implemented in the Mfold software package (Zuker, 2003) by
energy minimization.

Regulatory mechanisms ensure that only those parts of the DNA that have a specific
function are transcribed into RNA. Such a functional unit on a chromosome is called
a gene. With extreme over-simplification, we can say that a gene consists of

• the 5’ regulatory region containing a promoter sequence, where regulatory pro-
teins and the transcribing enzyme (RNA polymerase) attach to the DNA,

• the transcribed region (for more details see below),

• the 3’ regulatory region.

It is again the base-complementarity principle that makes transcription physically
possible. The two strands of the DNA double helix separate, and one of the strands
acts as a template for RNA synthesis. Free ribonucleotides that have been synthesized
or recycled elsewhere in the cell form stable pairs with their complementary DNA
bases in the template. The enzyme RNA polymerase attaches to the DNA and moves
along it, thereby linking the free ribonucleotides to form the growing RNA molecule,
which grows in the 5’→ 3’ direction. Thus the transcription process can be succinctly

3

Chapter 1 Introduction

Junction

U

U

G
G

GG

C

G

C

A

A

C

G
C

U

C C GU AA

A

UC A

C

A A

A

A

G C
G

3’
5’

Hairpin Loop

Interior Loop

Hairpin Loop

C

A

U

Bulge

Stem

H

C

G

C

A A
C

G
C

U
C

C

C

A

U

A

G

A

U

U

A
C

G
U

ACAA
G

U
A

G
G

C

G

3’

5’

A

Interior Loop

Hairpin

Junction

BulgeStem

Figure 1.2: Visualization of RNA secondary structure elements in a planar graph (left) and
in a circle representation (right).

described by the formal operations 3′-A-5′ 7→ 5′-U-3′, 3′-C-5′ 7→ 5′-G-3′, 3′-G-5′ 7→ 5′-C-
3′, and 3′-T-5′ 7→ 5′-A-3′.

By convention, when talking about the DNA sequence of a gene, the sequence of the
non-template strand is used because it matches that of the mRNA sequence except
for the replacement of T by U. The transcription process is visualized in Figure 1.3a.

The RNA molecule is called a transcript of the gene. If it is used to transfer in-
formation, thus acting as a messenger, we speak of an mRNA molecule. There are
also RNA molecules that have an active function of their own other than transmit-
ting information, such as transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small
nuclear RNA (snRNAs), small cytoplasmic RNAs (scRNAs). In this thesis, we are
mainly concerned with mRNA transcripts. The term upstream refers to the 5’ side of
a transcript, whereas downstream refers to the 3’ side.

A primary mRNA transcript starts with a 5’ untranslated region (5’ UTR). Next,
between the translation initiation site (also called the start codon) and the translational
termination site (stop codon), the transcript contains the coding sequence (CDS) that
is translated into a polypeptide. In eukaryotes (see below), the coding sequence is
normally interrupted by non-coding parts that are removed during post-transcriptional
processing. The coding parts are called exons, the non-coding parts are called introns,
and the process of intron removal is referred to as splicing. The transcript ends with
the 3’ UTR.

4

1.1 The Structure of DNA, RNA and Genes

(a)

� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �
5’

3’
D N A

5’

G C C A T T G T C A G A C A

C G G T A A C A G T C T G T

3’

5’

Nontemplate strand

mRNA

Template strand

3’
RNA polymerase

U G U C A

G C C
A U

.....

(b)

� � � �� � � �� � � �� � � � � � �� � �� � � �� � � �� � � �� � � �

� � � �� � � �	 	 	 		 	 	 	

� � � �� � � �

� � � �� � � �

 � � � �� � � �
� � � �� � � �

� � � �� � � �� � � �
� � � �� � � �� � � �

� � � �� � � �� � � �
� � � �� � � �� � � �

� � � �� � � �� � � �
� � � �� � � �� � � �

� � � �� � � �� � � �
� � � �� � � �� � � �

� � � � �� � � �
� � � � �� � � �
� � � � �� � � �
� � � � �� � � � �� � � �� � � �

 ! ! ! !! ! ! !

" " " " "# # # # #

$ $ $ $% % % %
& & & &' ' ' '
(((())))
* * * ** * * *+ + + ++ + + +

, , , ,, , , ,- - - -- - - -

. . . ./ / / /

0 0 01 1 1
2 2 23 3 3
4 4 44 4 45 5 55 5 5

6 6 66 6 67 7 77 7 7

8 8 8 89 9 9

Exon 1 Intron 1 Exon 2 Intron 2 Exon 3 3’ UTRRegulatory 5’UTR Regulatory

Translation initiation site Translational termination site

Transcription termination siteTranscription start site

Polyadenylation signal (AATAAA)

Exon 2 Exon 3 3’ UTR Poly(A)5’Cap 5’UTR Exon 1

Addition of
ploy(A) tail

Addition of cap

3’ cleavage

Splicing

Primary mRNA

Poly(A)

Gene:

Mature mRNA:

Figure 1.3: (a) Transcription. (b) Post-transcriptional processing of mRNA in eukaryotes.

While the basic principle of transcription is the same in prokaryotes (organisms whose
cells do not have a nucleus) and eukaryotes (organisms whose cells do have a nucleus),
there are some differences in the post-transcriptional processing of the RNA molecules.
Prokaryotic mRNA molecules usually do not undergo processing. The primary eukary-
otic mRNA transcript or pre-mRNA is processed as follows to give the mature mRNA
(see also Figure 1.3b).

Addition of cap During transcription, a cap of a 7-methyl-guanosine residue is added
to the 5’ end of the transcript, linked by three phosphate groups.

3’ cleavage An AAUAAA sequence, called a polyadenylation signal, near the 3’ end of
the transcript is responsible for cutting off the transcript about 20 bases further
down.

5

Chapter 1 Introduction

Addition of poly(A) tail 150 to 200 adenine nucleotides, called a poly(A) tail, is ap-
pended to the cut 3’ end. It is believed that the tail plays a role in the export of
mature mRNA from the nucleus as well as in helping stabilize mRNA molecules
by retarding their degradation in the cytoplasm.

Splicing Many eukaryotic genes contain non-coding parts called introns, which are
removed in a procedure called splicing. Splicing adjoins the separate coding
exons so that the mature mRNA contains a coding sequence that is completely
collinear with the peptide sequence it encodes. A mechanism called alternative
splicing allows to skip certain exons during splicing, resulting in a number of
alternative transcripts for a gene.

The mature mRNA molecules are transported to cellular structures called ribosomes
for translation into proteins. Proteins are directional linear biopolymers, made out
of 20 different building blocks called amino acids. The genetic code specifies how a
polypeptide is built by reading off the mRNA sequence: Each RNA triplet or codon
(and therefore also each DNA triplet, referring to the coding strand) encodes one
amino acid. Usually there is more than one codon that encodes the same amino acid;
hence the genetic code is said to be degenerate.

We cannot present the intricate details of the transcription and translation process
here; the reader is asked to refer to the textbooks by Alberts et al. (1994) or Griffiths
et al. (2002).

1.2 Functional Genomics

The recent sequencing of the Human genome (Venter et al., 2001; Lander et al., 2001)
has identified more than 30000 potential gene sequences and is considered to be a
milestone for future biological and medical research. Each gene contains information
to build one or more proteins; different proteins may arise from the same gene, e.g.,
by such mechanisms as alternative splicing or RNA editing. So far the genomic infor-
mation contained in Human DNA has been mainly transferred to electronic storage
media. Now the challenge is to understand the functions of the genes, their inter-
actions, and the way how they are regulated. While biology used to be a hypothesis
driven science, one of the major ideas in contemporary genomics research is to perform
experiments that capture data on the “complete” state of a genomic system. This is
the aim of the research field called functional genomics.

An important task is to gather knowledge about tissue-specific gene expression and
regulation. One wants to learn, for example, how often and how frequently each
kind of protein is synthesized in different cell types. Many techniques for measuring
gene expression focus on the quantitation of mRNA molecules in a cell. While this
information provides an important part of the picture (and indeed we will restrict

6

1.2 Functional Genomics

our consideration to such techniques), it should be kept in mind that other factors,
such as the translation rate and the mRNA degradation rate, are also important for
understanding the whole picture.

Techniques for expression analysis. Expression patterns of mRNA have been an-
alyzed long before the era of functional genomics. Most of these experimental tech-
niques, however, focus on a single gene or a few genes at a time. They exploit the fact
that nucleic acids hybridize1 to their complements. Some frequently used techniques
are given in the following non-exhaustive list; more detailed descriptions can be found,
for example, in the textbooks by Strachan and Read (2003) or Lottspeich and Zorbas
(1998). The reader who is in a hurry can skip over this list and jump to the following
paragraph about microarrays.

Northern blot analysis can be used to determine how strongly a gene or splice variant is
transcribed in a certain tissue or under specific conditions. mRNAs are extracted from
the cell sample, denatured and applied to a further denaturing agarose gel, where they
undergo electrophoresis. The fragments migrate through the gel at differing speeds
according to their respective sizes. The gel is placed into a salt solution (buffer)
and covered by a nitrocellulose or nylon membrane and many paper towels. The
RNA bands from the gel are transferred (“blotted”) onto the membrane by capillary
action, where they are immobilized. The membrane is bathed in a solution containing
single stranded radioactively labeled DNA or RNA probes that are complementary
to the targeted mRNA. The probes will hybridize stably to the targeted gene only,
and unbound probe is washed off. When an X-ray image of the membrane is taken,
the X-ray film is only exposed at those bands with bound probes. Comparing these
bands with labeled markers reveals the number and size of the fragments in which
the targeted sequences are found. The name “Northern Blotting” has been coined
to contrast this technique for RNA analysis from the similar “Southern Blotting”,
developed by Southern (1975) for DNA analysis.

RPA (Ribonuclease protection assay) requires a radioactively labeled antisense or comple-
mentary RNA (aRNA or cRNA) probe, also called a riboprobe, that is complementary
to the target mRNA (this riboprobe could also be used for Northern Blot analysis). It
can be created by cloning the gene of interest via T7 RNA polymerase in a transcrip-
tion vector containing a T7 promotor downstream of the insert. T7 is a phage (virus)
that infects the bacterium E. coli ; there are seven such viral parasites numbered T1
through T7. The T7 RNA polymerase recognizes the T7 promotor and begins tran-
scribing the gene of interest in antisense direction. The desired riboprobe is obtained
when radioactive ribonucleoside triphosphates are made available for RNA synthesis
in the vector.

1Latin hibrida or hybrida; of animals produced from two different species. Greek hubris ; an out-
rage on the person, violation. In English, the term hybrid refers to something that is made of
two different things, such as a double-stranded molecule with one DNA strand and one RNA
strand. Meanwhile, the verb “to hybridize” and the noun “hybridization” are increasingly used
as synonyms for base-complementary binding, even for DNA-DNA and RNA-RNA bindings.

7

Chapter 1 Introduction

The specific riboprobe is hybridized against the total cellular RNA, and the resulting
mixture of perfect RNA-RNA-hybrids and single stranded RNAs is incubated with
ribonucleases which specifically hydrolyze single stranded RNA molecules, so that
only perfect probe-target duplexes remain intact. These are then electrophoresed in a
denaturing polyacrylamide gel, where different RNA species are separated according
to their size. An X-ray image shows how much of each species was present in the
sample.

RT-PCR (reverse transcription-polymerase chain reaction) is a very sensitive technique
for mRNA detection and quantitation. Compared to Northern blot analysis and RNase
protection assay, RT-PCR can be used to detect mRNA presence from much smaller
samples, even from a single cell. First, the RNA molecules are reverse-transcribed into
single-stranded complementary DNA (cDNA) using a reverse transcriptase. An oligo-
(dT)-primer that binds to the poly(A) tail at the 3’ end of the mRNA may be used
for this step. With a sequence-specific primer, the second DNA strand is synthesized,
giving double stranded DNA (dsDNA). The dsDNA molecules are amplified in several
polymerase chain reaction (PCR) rounds. In each round, first single stranded DNA
(ssDNA) is produced by heat denaturing the dsDNA. Then the solution is cooled,
and sequence-specific primers bind to their complementary ssDNA sequences. The
temperature-resistant Taq polymerase (from the heat-resistant bacterium Thermus

aquaticus) replicates the ssDNA segments to which the primers have hybridized. Thus
in each round, the number of dsDNA molecules increases by a factor of two (in reality,
the factor is between 1.8 and 1.9) until product renaturation begins to compete with
primer hybridization and the amplification rate drops quickly from exponential to
linear. In order to quantify the original amount of mRNA, we need to relate the
number of rounds n to the number of molecules present after round n before the phase
of exponential amplification ends. An extension of RT-PCR, the so-called real-time

RT-PCR technique, allows automatic monitoring of the amount of amplified DNA via
the generation of a fluorescent signal in each round, and therefore a much more reliable
quantitation.

SAGE (serial analysis of gene expression) was developed by Velculescu et al. (1995). The
RNA molecules are reverse-transcribed into cDNA using a biotinylated oligo-(dT)
primer. Biotin is the cofactor required by enzymes that are involved in carboxylation
reactions and a frequently used linker molecule. The 3’-ends of the cDNA molecules
are linked to biotin, which in turn attach to streptavidin beads. Streptavidin is a
tetrameric protein that binds very tightly to biotin. The beads can be used to extract
the cDNA molecules from the mixture. The cDNA is then cleaved with a frequently-
cutting restriction enzyme, called the anchoring enzyme. This leaves a sticky CATG end
hanging out. A double-stranded oligonucleotide adapter or linker, randomly selected
from two types A and B, is attached onto each sticky end. Another enzyme, called
the tagging enzyme, locks onto the linker, reaches downstream and cuts off a short
segment of the cDNA. A collection of short tags, called SAGE tags, taken from each
molecule, is left. The tails of type-A and type-B tags are ligated to form so-called
ditags. The tags are amplified by several PCR rounds, the primer sequences being
provided by the type-A and type-B linker sequences. Finally the linker molecules are

8

1.2 Functional Genomics

released, and the tags are concatemerized via their sticky ends. The concatemers are
inserted into bacteria for cloning, and the clones are sequenced. Computer analysis
will count the tags, determine which ones come from the same RNA molecule, and
figure out which ones come from known genes and which ones are new. One of the
advantages of SAGE is that it can discover new genes in organisms for which there is
no complete genome. If a sequence does not match a known gene, it must come from
a gene that has not been discovered before. A disadvantage of SAGE is that it is a
very labor-intensive procedure.

In-situ hybridization. A radioactively or fluorescently labeled riboprobe is hybridized against
RNA in tissue sections. Tissue sections are made from paraffin-embedded or frozen
tissue and then mounted onto glass slides. The hybridized probe is visualized using
autoradiographic or fluorescence microscopy procedures. In-situ hybridization allows
to compare the expression of one gene in many different tissues.

Other techniques exist and are continuously being developed and refined. The above
mentioned techniques are well established for detection and quantitation of single or
few mRNA species. They require different knowledge and experimental protocols and
give different information. For example, RT-PCR requires knowledge of the mRNA
sequence so that one can design sequence-specific primers. SAGE does not require
the sequence information and can be used to discover new transcripts. In-situ hy-
bridization allows to monitor the activity of one gene in many different cell types or
tissues.

Microarrays for functional genomics. What the above techniques do not offer is a
possibility to monitor the activity of all or of a large fraction of all genes in a certain tis-
sue, as measured by mRNA transcript abundance. This has become possible through
the development of DNA microarrays. They promise to be an ideal research tool
for functional genomics, because according to Hieter and Boguski (1997), “functional
genomics is characterized through the use of high-throughput or large-scale experimen-
tal methodologies, combined with statistical and computational analysis of the results;
the scope of biological investigation is expanded from single genes or proteins to the
systematic study of all genes or proteins at once.” Microarray experiments quickly
generate massive amounts of data; and the interpretation of this data for hypothesis
generation and discovery has become a large subfield within bioinformatics. The above
“single-gene” methods remain important to verify the proposed hypotheses.

DNA microarrays are arrays of many DNA molecules on a quartz, glass, or nylon
substrate. Because of their resemblance to microchips used in computers, they are also
called DNA chips. The foundation of microarray technology lies in the Watson-Crick
complementarity of double-stranded DNA or RNA-DNA-hybrids. DNA molecules
with the known sequence of genes (or parts of it) are printed on the chips as probes
at regularly spaced and well defined locations called spots or features. The mRNA

9

Chapter 1 Introduction

molecules, called targets2, which are extracted from a tissue or blood sample, are
prepared and labeled with a fluorescent or radioactive dye. The details of this process
vary with the technology platform; there are some examples given below. The labeled
targets are then allowed to hybridize to the probes on the array. Whenever the Watson-
Crick complementary sequence of a probe is present in a target sequence, that target
will hybridize to the probe. Unhybridized target molecules are washed off the chip,
and the amount of hybridized target at each spot can be measured by the intensity of
the dye or radioactivity. The idea behind this procedure is that each spot represents
one gene and that the amount of hybridized target at a spot is a quantitative measure
of the gene’s transcript abundance in the cell sample, which is often interpreted as the
gene expression level or its “activity” in the cell sample.

Microarray technologies. The above description is generic, and the details vary ac-
cording to the specific type of microarray. Over the recent years, microarrays have
become increasingly important research tools, and several companies offer various
technology platforms; a recent listing appeared in the November 2003 issue of Labor-
journal (Köppelle, 2003). We can distinguish between four main technology platforms
of microarrays.

1. Nylon membrane arrays or radioactive filters are reviewed by Lennon and Lehrach
(1991). Double-stranded PCR products from cDNA clone libraries are spotted
on a nylon membrane with a spotting robot. In an experiment, sample RNAs
are reverse transcribed using nucleotides labeled with 33P, a radioactive phos-
phor isotope. The PCR products on the membrane are denatured, and the
radioactive cDNA is allowed to hybridize to the complementary DNA molecules
on the array. After washing, the hybridized signal on the array is analyzed by a
phosphorimager. The measured signal intensity should be roughly proportional
to the expression level. To compare two different cell or tissue samples, two
separate arrays must be used.

2. cDNA arrays or red/green arrays were first used by Schena et al. (1995). Here
PCR products are spotted on a glass slide, and the sample is labeled with a
fluorescent dye. With this technique, it is customary to compare two samples
(usually called the test sample and the reference sample) with two different dyes
(Cyanine 3-dNTP or Cy3, and Cyanine 5-dNTP or Cy5) on the same array, so
that the samples hybridize simultaneously. The hybridization signal is scanned
with a fluorescent imager, which produces an image with red, green and yellow
spots. A green spot indicates that the corresponding gene was more highly
expressed in the test sample than in the reference sample, while a red spot
indicates the opposite.

2Some authors, such as Schena (2002), call the molecules on the chip the targets and the molecules
in the sample the probes.

10

1.3 High-Density Oligonucleotide Microarrays

3. Polynucleotide3 arrays: For each transcript, one or more single-stranded specific
50-mers to 70-mers are synthesized separately using phosphoramidite chemistry
and then spotted on a glass surface, or synthesized in situ using ink-jet technology
(Hughes et al., 2001). The oligonucleotides are hybridized with fluorescently
labeled sample cDNA or aRNA.

4. Oligonucleotide arrays: Each transcript is represented by several specific short
(20–30 nt) substrings of its sequence. These oligomers can be synthesized chem-
ically beforehand and then spotted on the chip surface, or synthesized directly
on the chip with a photolithographic procedure, which allows the highest spot
density of all methods (Lockhart et al., 1996; Lipshutz et al., 1999).

Spotted oligonucleotide arrays have a spot or feature size of about 50 to 300 microns4,
while photolithographically synthesized arrays are even more miniaturized with feature
sizes of 15 to 30 microns. Each spot contains up to a billion (109) single-stranded
oligonucleotides. Table 1.1 compares some relative advantages and disadvantages of
PCR-product-based arrays and oligonucleotide arrays. Schena (2002) estimates that
up to 2002, 65% of all microarray experiments used cDNA arrays, about 26% used
oligonucleotide arrays, and the remaining 10% used other technologies. From now on,
this thesis focuses on high-density 12–32 nt oligonucleotide arrays.

1.3 High-Density Oligonucleotide Microarrays

Modern oligonucleotide arrays, also called DNA chips, are characterized by their high
number of spots or feature locations, concentrated on a small surface. They allow many
gene expression measurements in parallel, and hence high-throughput generation of
large-scale data. They have many applications, of which we outline a few. Young
(2000) also reviews approaches to biomedical discovery with DNA arrays.

• Gene expression measurements are presently one of the most important uses
of DNA chips. Researchers have used them to identify gene functions (Hughes
et al., 2000), to define genetic signatures of diseases (among others, Golub et al.,
1999), to understand genetic causes of diseases (e.g., Lock et al., 2002), and to
characterize the effects of certain drugs on gene expression (Oestreicher et al.,
2001). It is hoped that correlating gene expression data with other informa-
tion, such as transcription factor binding site locations (e.g., see Dieterich et al.,
2003), will give further insights into cellular pathways, and eventually into the
“blueprints” of living organisms.

3Sometimes, these are called “long oligonucleotides”.
41 micron = 1 µm = 10−6 m

11

Chapter 1 Introduction

Table 1.1: Advantages (⊕) and disadvantages () of PCR-product-based versus oligonu-
cleotide microarrays; adapted from Schena (2002).

Arrays with PCR products Arrays with Oligonucleotides

⊕ No sequence information required
when primers binding to the vector
sequence are used

	 Exact sequence information necessary

⊕ Long length provides much
complementarity for hybridization,
and hence strong signals

	 Reaction conditions must be
optimized to get strong signals

⊕ PCR is a standard procedure and
easily implemented in most
laboratories

	 Expensive equipment or external
service needed to synthesize
oligonucleotides

	 Requires a clone library ⊕ Oligonucleotides can be synthesized as
needed

	 Double stranded PCR-products must
be denatured on the array before
hybridization. Signal loss because of
partial re-annealing.

⊕ Oligonucleotides are single-stranded.

	 Cross-hybridization occurs in families
of strongly homologous genes, such as
in human heat shock protein genes

⊕ High specificity of well-chosen
oligonucleotides avoids
cross-hybridization. Splice variants
and even SNPs can be detected.

• DNA chips were originally developed for sequencing by hybridization (SBH),
which has never been commercially successful on a large scale. However, re-
sequencing of short sequences is a possibility with DNA chips. The chip usually
contains all possible 8-mers or 9-mers as probes. From the hybridization signal
one learns which 8-mers occur as substrings of the sequence of interest, and from
this spectrum one attempts to infer the original sequence (Lipshutz et al., 1994).

• A related application is the determination of single nucleotide polymorphisms
(SNPs), where a single base at a well-defined location differs across individuals
(Cutler et al., 2001; Kozal et al., 1996). For each SNP, the DNA chip contains
four probes, enumerating all four possibilities at their center location. It is also
possible to genotype human individuals with DNA chips. Different forms of
a gene are called alleles; each individual has two alleles of most genes. The
genotype is called homozygous if both alleles are identical, and heterozygous if
they are different. DNA chips allow the determination of the genotype (Hacia
et al., 1996).

We briefly describe the life-cycle of an oligonucleotide chip from its production to the
analysis of its hybridization data, taking Affymetrix’s GeneChip r© as an example.

12

1.3 High-Density Oligonucleotide Microarrays

: : : : : : : :: : : : : : : :; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; < < < < < < < < << < < < < < < < <= = = = = = = == = = = = = = =

> > > > > > > >> > > > > > > >? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?
AA

@ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @A A A A A A A AA A A A A A A A
AA

+
A

B B B B B B B B BB B B B B B B B BC C C C C C C C CC C C C C C C C C
AA

D D D D D D D DD D D D D D D DE E E E E E E EE E E E E E E E
AA

C

C C
C

F F F F F F F F FF F F F F F F F FG G G G G G G G GG G G G G G G G G

H H H H H HH H H H H HI I I I I II I I I I I
+

Several more rounds of

selective light−directed

nucleotide addition ...

de−protecting and

Legend:

A C

Wafer surface

Linker molecule

Nucleotides

Protective group

Mask

UV light

Figure 1.4: Schematic overview of photolithographic DNA microarray production. The steps
of selective de-protection by ultraviolet light and nucleotide addition are repeated until
all probes have reached their full length.

1.3.1 Chip Production

DNA chips are produced in a parallel process that combines photolithography and
combinatorial chemistry, so that the length of the probes, and not their number,
determines the number of necessary synthesis steps. Chip production begins with a
quartz wafer, from which 50 to 400 arrays can be produced. The wafer is placed in
a bath of silane, which reacts with the hydroxyl groups of the quartz and forms a
matrix of covalently bound molecules. Linker molecules are attached to the silane
matrix; these are at first chemically protected to prevent unwanted reactions.

All probes are synthesized in parallel; there are several million, up to a billion, probe
molecules per spot or feature, and several thousand, up to a million, spots per chip.
To define which probes will receive a nucleotide in each step, photolithographic masks
with windows that correspond to the spot size (18 to 20 square microns) a placed
over the wafer. When ultraviolet light is shone over the mask in the first step of
synthesis, the exposed linker molecules are selectively de-protected and made available
for chemical reactions. A solution containing a single type of deoxynucleotide with

13

Chapter 1 Introduction

a protection group is flushed over the wafer’s surface. The nucleotide attaches to
the activated linkers, initiating the synthesis process. In the following steps, other
masks are placed over the wafer for the next rounds of de-protection and nucleotide
attachment. The process is repeated until all probes reach their full length. Figure 1.4
shows the synthesis process.

The synthesis process is not entirely error-free. It happens that a nucleotide fails to
attach to an unprotected partial probe. This is not a major problem because between
two synthesis steps, still unprotected probes can be capped and irreversibly protected,
so they cannot react with the sample later. It also happens that due to stray light,
some probes are unprotected and elongated by a nucleotide when in fact they should
not. This results in a small fraction of probes on each spot that do not consist of
the desired sequence and are not available for hybridization with the intended target.
In fact, they may hybridize better with different targets, adding to the noise level of
the signal. Generally a few sample chips from each wafer are sacrificed for quality
testing. Once the chip is produced and tested, it is available for a single hybridization
experiment.

A different production technology is used in the geniom r© one device developed by
febit AG, Mannheim, Germany (Beier et al., 2001; Baum et al., 2003). Their system
offers integrated chip production, hybridization experiments, and data analysis in one
benchtop device. Their reaction carrier is called the DNA processor r©; it consists of a
glass-silicon-glass sandwich, with microchannels etched into the silicon layer. Selective
de-protection of spacer molecules and partial probes is not achieved by the use of
masks, but by selectively directing light with digital micromirror devices (DMDs), as
originally described by Singh-Gasson et al. (1999).

1.3.2 Target Preparation

Target preparation varies according to the technology platform, the intended appli-
cation, and the organism of interest. The following overview refers to eukaryotic and
prokaryotic gene expression analysis; it is based on Affymetrix’s GeneChip r© Expres-
sion Analysis Technical Manual (Affymetrix, Inc., 2003) from the NetAffx web resource
(Liu et al., 2003).

Eukaryotic target labeling. First, poly(A) mRNA is isolated from the cell or tissue
sample of interest. Then the first cDNA strand, complementary to the mRNA, is
synthesized by reverse transcription. The reaction is primed with an T7-oligo(dT)
primer that hybridizes to the poly(A) tail of the mRNA and contains a T7-promotor
at its 5’-end. Commercially available standard kits can be used for these steps. When
the synthesis of the first cDNA strand is complete, the mRNA is degraded with the
enzyme RNase, and the second cDNA strand is synthesized along the first one. This is

14

1.3 High-Density Oligonucleotide Microarrays

AAAAA

J J J JJ J J JK K KK K K
TTTTT
AAAAA5’

3’
3’
5’

L L L LM M M
TTTTT3’ 5’

N N N NO O OP P P PP P P PQ Q QQ Q Q
AAAAA
TTTTT

5’
3’ 5’

3’

Hybridization of

oligo−(dT) primer

with T7 promotor

RNA

R R R RS S S T T T TU U U

5’ 3’mRNA

First strand

cDNA synthesis by

reverse transcription

Second strand

cDNA synthesis

and purification

Amplification and

biotin−labeling

In−vitro transcription:

Clean−up and fragmentation

TTTTT
5’

3’
3’
5’

AAAAA
DNA

3’ UUUUU

T7 promotor

Legend:

Only a random fraction

U Cof s and s is labeled

with biotin.

of cRNA

3’

3’

5’

5’

5’UUUUU

UUUUU

Finally:

Biotin

RNA degradation

Figure 1.5: An overview of a typical eukaryotic target labeling procedure.

achieved by adding a dNTP mix and the enzymes DNA ligase and DNA polymerase I to
the reaction solution. The double-stranded cDNA is washed and purified. By in-vitro
transcription (IVT) of the cDNA with T7 RNA polymerase, free ribonucleotides and
biotin-labeled ribonucleotides U and C, cRNA (also called antisense RNA or amplified
RNA, aRNA) is produced. Because of this transcription step, a linearly amplified
amount of the original amount of mRNA is produced. This amplification protocol is
originally due to Van Gelder et al. (1990). The length of the in-vitro transcripts varies
(approximately uniformly) between 500 nt and 1500 nt. The biotin serves a bridge
molecule between the nucleotide and a fluorescent dye molecule. The resulting cRNA
molecules will only be stained after the hybridization reaction (see below). The cRNA
target molecules are cleaned and fragmented, and their concentration is quantified to
ensure standard conditions.

Prokaryotic target labeling. Target preparation is different for prokaryotic samples
because no polyadenylated mRNA molecules exist. Therefore total RNA is isolated
from cells grown in culture. Only a single cDNA strand is synthesized by using random
primers (usually random hexamers); this also means that not the full transcript may
be reverse-transcribed. The mRNA is degraded and the cDNA purified. When the
cDNA is fragmented, a biotin-labeled uracil is added at the 3’-end of each fragment.

15

Chapter 1 Introduction

Comparison. The main differences between eukaryotic and prokaryotic targets are
as follows: Eukaryotic targets consist of cRNA fragments from transcribed poly(A)-
RNA, with a random fraction of biotin-labeled Us and Cs, while prokaryotic targets
are cDNA fragments from total RNA, with a single biotin-labeled U at their 3’-end.
Eukaryotic targets cover mainly the last 1000 nt near the 3’-end of the transcripts,
while prokaryotic targets cover the transcripts more randomly. In both cases, however,
the target sequence is the complement of the mRNA sequence (antisense), so that the
probe sequence must match the mRNA sequence (sense).

1.3.3 Hybridization, Washing, and Staining

A hybridization cocktail with the fragmented target and controls is prepared and
heated to a high temperature, say 99◦C. The cocktail is hybridized to the microar-
ray during an incubation cycle of several hours at a much lower temperature, say
45◦C. Thus the hybridization starts at a high temperature, where fragmented tar-
gets and probes are present as single strands. The temperature gradually lowers,
and the most stable perfect probe-target pairs start hybridizing first. According to
Affymetrix’s manual (Affymetrix, Inc., 2003), it is important for successful hybridiza-
tion that the targets have been fragmented into shorter pieces of approximately 35
to 200 nucleotides. This shorter length minimizes adverse steric effects. To achieve
a uniform distribution of target fragments over the whole chip surface, the chip is
placed in a shaker, so that the whole mix is kept in constant motion. For the later
data analysis phase, it is also important that the probe concentration on the chip is
in excess of the target concentration (i.e., the overall cRNA or cDNA concentration
must be within pre-defined standard limits) to avoid saturation effects.

After overnight incubation for about 16 hours, unhybridized target molecules are
washed off the chip. First a non-stringent washing buffer of 6x SSPE (6-fold con-
centrated saline sodium phosphate buffer) is applied; then a more stringent buffer
with 100 mM 2-(N-morpholino)ethanesulfonic acid (MES) and a sodium salt [Na+]
concentration of 0.1 M is used to ensure that ideally only the perfect Watson-Crick
probe-target hybrids remain stably bound. Perfect results cannot be expected, how-
ever.

The remaining biotinylated targets are fluorescently stained with streptavidin-phyco-
erythrin (SAPE), a fluorochrome-conjugated streptavidin that binds tightly to biotin
and is frequently used in indirect staining protocols. To boost the signal intensity,
biotinylated streptavidin antibodies can bound to the SAPE molecules after the first
round of staining. Then, in a second round, more SAPE binds to the biotin on the
antibodies, amplifying the signal.

16

1.3 High-Density Oligonucleotide Microarrays

1.3.4 Data Acquisition and Analysis

After the staining phase, the first task is to measure the amount of SAPE bound
at each feature. This can be accomplished with the appropriate fluorescent imaging
technology, i.e., via a scan of the stained array. The result is a digital image in a
standard format, say, in tagged image file format (TIFF). In this image, one needs
to find the location of each feature and define which pixels constitute a spot and
which pixels make up the background of the image. This complex task is performed
by special-purpose image processing software. Once the feature locations are well
defined, one obtains a raw intensity value for each feature.

Since each mRNA transcript is usually represented by several different features, i.e.,
different probe sequences with potentially different raw intensity values, all intensities
from the same transcript are then summarized by a single raw expression value. In this
step, one usually assumes that each probe is transcript-specific, i.e., that the measured
raw intensity value is proportional to the expression level of the single target that the
probe was designed for, and that there is no or negligible cross-hybridization with
other targets. The GeneChip r© arrays attempt to measure non-specific hybridization
by using pairs of probes. A perfect match (PM) probe is always paired with a mismatch
(MM) probe, which differs from the PM probe by a single base substitution at the
middle (13th) position. It should be noted, however, that using such a control probe
may create more problems than it solves: One must explicitly ensure that there is no
other perfectly or well matching target for the MM probe.

Assuming that the raw expression values have been obtained by a reasonable aggregat-
ing procedure, they are still not comparable across different experiments. For example,
in one experiment the target concentration in the sample may have been higher, and in
another experiment, targets and probes may have been given more time to hybridize,
and in a third experiment, the washing may have been more stringent. Therefore
the expression values need to be normalized to make them comparable. In its most
simple form, normalization consists of an affine transform y 7→ s · y + c (s > 0, c ∈ R),
but more general classes of transformation can be used, for example, to stabilize the
variance of the signals of high and low abundant transcripts (Rocke and Durbin, 2001;
Durbin et al., 2002; Huber et al., 2002).

The combination of the two procedures, normalization and the inference of expression
levels (or expression level ratios for cDNA arrays), is often referred to as low-level
analysis of microarray data. A large number of differently motivated methods have
been proposed (e.g., Chen et al., 1997; Beißbarth et al., 2000; Ideker et al., 2000; Kerr
et al., 2000; Theilhaber et al., 2001; Yang et al., 2002; Huber et al., 2003). As of today,
there seems to be no universally accepted best method.

Any downstream or high-level analysis then proceeds from the normalized expression
values. An important basic procedure is the identification of differentially expressed

17

Chapter 1 Introduction

genes in two samples. Genes with similar expression profiles over varying conditions
can be clustered to find functionally related genes or to discover cellular pathways.
Previously unanalyzed tissue samples can be classified into two or several categories
based on their expression profiles, with many potential applications in medical diag-
nostics and therapy (e.g., Golub et al., 1999; West et al., 2001; Oestreicher et al., 2001;
Lock et al., 2002). Overall, the analysis of microarray data poses many algorithmic
and statistical problems; it has been and still is a very active research field.

1.4 Probe Selection and Chip Design

While there exist many publications about microarray data analysis, comparatively
little has been published about the design of microarrays, i.e., the selection of oligonu-
cleotide probes and the layout of probes on the chip. A reason may be that until
recently, only a limited number of pre-designed arrays was manufactured and sold
by a few companies who kept their probe selection strategies as a secret. Nowadays,
the probe sequences used for the Affymetrix GeneChip r© arrays are published at the
NetAffx website (Liu et al., 2003) and some probe selection criteria are known (Lock-
hart et al., 1996), but the exact selection procedure remains in the dark. Furthermore,
up to now, no technology was available that would allow quick and inexpensive design
of custom arrays. This is slowly beginning to change (e.g., see Hughes et al., 2001;
Beier et al., 2001; Baum et al., 2003), and we expect an increasing demand for fast
and reliable oligo design methodology and software over the next years.

In this section, we formulate several algorithmic problems in probe selection and mi-
croarray design, which are then treated in detail in the remainder of this thesis.

After the remarks in the previous sections, it is evident that each probe should be gene-
specific, i.e., only the transcripts of a single gene should hybridize to a given probe,
so the measurement taken at the probe’s spot can be interpreted as the corresponding
gene’s expression level in the sample. Thus the main problem we are trying to solve
is the following one.

Problem 1 (Main problem). Given hybridization parameters θ (e.g., tempera-
ture, salt concentration, number and density of probe molecules on the probe’s spot,
cRNA fragment length distribution, and other conditions specified in the experimen-
tal protocols) and a transcriptome T = (t1, . . . , tn) of transcript sequences, find a set
of transcript-specific or unique probes for each transcript for quantitative expression
analysis. •

There are many variations and facets of this problem, many interesting subproblems
are hidden within or around this main problem. We discuss the following aspects in
this thesis.

18

1.4 Probe Selection and Chip Design

Affinity coefficients. It is important to realize that a target’s cRNA or cDNA need
not contain the perfect Watson-Crick complement of an oligo to hybridize; a near-
perfect match will also suffice. Unfortunately, the extent of hybridization depends on
many parameters, and the physical details of the hybridization process on oligonu-
cleotide chips are not yet fully understood. Nevertheless, even though our results will
be limited by the current lack of understanding, it is imperative that we obtain a rea-
sonable approximate solution to the following problem, if our efforts in probe selection
are to be successful.

Problem 2 (Fundamental problem). Given

• an mRNA transcript sequence t,

• an oligonucleotide probe sequence p,

• hybridization parameters θ,

find the relationship between the concentration x of the mRNA transcripts of the given
kind (“expression level”) and the raw intensity value y at the probe’s spot. Assuming
an approximately linear relationship, which especially means assuming negligible sat-
uration effects, we need to find the proportionality constant a = a(p, t; θ) ≥ 0, which
we call the affinity coefficient, such that y = a · x. •

Indeed, Problem 2 is the fundamental problem underlying both microarray design and
analysis, and is much more complicated than may be apparent from this simplified
formulation. We propose several ways of attacking it in Chapter 2.

Unique probes. Assuming a basic understanding of the factors relating expression
level to signal intensity, we are theoretically able to attack Problem 1 in a straightfor-
ward way.

The first step would be to identify all transcript-specific probes (of a certain length
or length range). This is accomplished as follows. Let p � t express that p is a
substring of t, and let ε > 0 (say, ε ≈ 0.1) the lower affinity limit for transcript-
specific probes. Then for each transcript tj (j = 1, . . . , n), we find the set of probes
Pj = {p � tj : a(p, tj ; θ) ≥ ε and

∑

t6=tj
a(p, t; θ)� ε}. Here “� ε” should be read as

“several orders of magnitude smaller than ε”. Probes with specific affinity below ε or
unspecific affinity above ε/1000, say, are discarded for safety tolerance reasons.

There are two problems with an obvious enumeration of all probe candidates based
on the knowledge of affinity coefficients. First, we do not have (and will not have
for several years to come) an exact solution to Problem 2. And second, even if we
had one, it would be much too time-consuming to compute the coefficient for every
probe-target pair in complex genomes, such as in the human genome. Assuming a
lower bound of 30000 transcripts and about 1000 probe candidates per transcript, one

19

Chapter 1 Introduction

would have to check 30 million probe candidates against 30000 transcripts, resulting
in 900 billion (9 · 1011) affinity computations. Some simplifying assumptions need to
be made to solve this problem.

Note that we do not need to know the exact value of the affinity coefficients for making
design decisions (although we might still need them for an accurate analysis). During
the design phase, we are merely interested in making decisions of the type a(p, t∗) ≥ ε
and

∑

t6=t∗ a(p, t)� ε. Thus we are led to the following problem.

Problem 3 (Sequence-based surrogate measure for affinity). Find a sequence-
based surrogate quantity for the affinity coefficient a(p, t; θ) that, for a range of rea-
sonable parameter settings θ, allows a quick decision a(·) ≥ ε or

∑
a(·) � ε without

computing the exact a(·)-values. •

We argue in Chapter 3 that the length of longest common factor (LCF) is a reasonable
sequence-based measure on which design decision can be based. And even though it
does not provide the exact affinity coefficient, it can always be used as a filter for more
complex measures.

Problem 4 (Computation of LCF lengths). Find an efficient algorithm to com-
pute the (relevant) LCF lengths of all probe candidates vs. all targets. •

All of Chapter 4 is devoted to the detailed description of an algorithm based on en-
hanced suffix arrays that computes the LCF between probe candidates and transcripts
and thus ranks probe candidates according to their specificity.

It is practically more relevant not to merely enumerate all reasonable transcript-specific
probe candidates, but to come back to the main problem (Problem 1) and select a set of
10 to 20 probes for each transcript from all candidates. Here additional considerations
become important; these are discussed in Chapter 5.

Non-unique probes. An ideal set of transcript-specific (unique) probes cannot al-
ways be found. This is the case, for example, for highly homologous members of
some gene families, such as the human heat shock proteins. A similar situation arises
within the context of virus subtype identification or the identification of organic con-
taminants in water samples. In these latter problems a quantitative analysis is usually
not required, but may still be desirable. Thus we are led to weaken the requirement
of transcript-specific probes. Naturally, we must still take care not to choose oligonu-
cleotides that give no information, but we can allow that probes specifically hybridize
to a few transcripts with different affinity coefficients. We refer to them as non-unique
probes. A new problem that arises in addition to probe selection is the decoding of
the measured signals. The analogon to Problem 1 thus becomes

20

1.4 Probe Selection and Chip Design

Problem 5 (Quantitative expression analysis with non-unique probes). Given
hybridization parameters θ and a transcriptome T = (t1, . . . , tn) of sequences, find a
set of (possibly non-unique) probes for each transcript, and specify an appropriate
decoding procedure, such that quantitative statements about gene expression levels
can be made from the observed probe signals. It is desirable to find a probe set that
minimizes sources of error during decoding. •

The present reality, especially our lack of understanding of affinity coefficients, un-
fortunately makes large scale quantitative expression analysis with non-unique probes
difficult. At least, the data that we can presently obtain with such an approach would
be much less reliable than what we can get with unique probes. For the moment, it
is thus of more interest to focus on qualitative applications, i.e., to make only present
and absent calls for the transcripts of interest in a complex sample. It is assumed that
a probe shows a positive signal if any of the transcripts it hybridizes to is present,
that is, sufficiently highly expressed.

Problem 6 (Qualitative analysis with non-unique probes). Given a transcrip-
tome T = (t1, . . . , tn) and a set of non-unique probe candidates with their respective
target sets, efficiently compute a robust design, i.e., select a subset of the probes that
allows inferring target presence or absence, even in the presence of false positive and
false negative probe signals. Also specify an efficient and robust decoding procedure
for this case. •

Suppose that we agree on a way of measuring a design’s ability to separate different
target sets. For economical reasons, it is the interesting to consider the following
optimization problem.

Problem 7 (Design minimization). For a given target separation performance,
find a design with a minimal number of probes from an initial set of non-unique probe
candidates. •

Methods for attacking Problems 5 to 7 are described in Chapter 6. For quantitative
expression analysis, we select designs by optimizing the condition of the affinity matrix
associated to each design; decoding corresponds to solving a linear system of equations.
For qualitative analysis, we present a greedy design heuristic and an integer linear
programming based method that generates minimal designs. Probe signals are decoded
by a stochastic Markov chain Monte Carlo Method.

Genome tiling chips. If unique probes are carefully designed, the inference of ex-
pression levels is relatively easy. If non-unique probes must be used, a decoding step
is added to the procedure. In both cases, the whole transcriptome must be known
before reliable probes can be chosen. Identifying the complete transcriptome of an

21

Chapter 1 Introduction

organism is difficult, however. A project called ENCODE (ENCyclopedia Of Dna
Elements) is presently underway that aims to identify all functional elements of the
human genome, and in particular, the transcribed regions. The genomic sequence is
covered with oligonucleotide probes, e.g., by choosing one probe every 20 bp on aver-
age, as regularly as possible. Many of these probes are probably not unique and may
exhibit complex cross-hybridization behavior. To identify new transcripts, we look for
several consecutive probes on the genome that show a signal that cannot be explained
by cross-hybridization from other transcripts. This is a complex decoding problem.
Pre-selecting the probes for specificity can only help slightly in this case because every
part of the genomic sequence must be covered.

Problem 8 (Transfrag identification). Given a double-stranded genomic sequence,
find a relatively specific tiling probe set with prescribed minimum and maximum
distances between probes. Specify an efficient and robust procedure to decode binary
probe signals into locations of sufficiently long transcribed elements, called transcript
fragments or transfrags. •

A strategy for solving Problem 8 is described in Chapter 7. Preliminary studies were
carried out by Kapranov et al. (2002) on Chromosomes 21 and 22 of the human
genome, but without explicitly taking cross-hybridization into account. Evidence for
several new transcripts was found, but it was left unclear in how far this evidence can
be explained away by cross-hybridization.

Chip production. Whatever our probe design and decoding strategy may be, once
we have decided on a set of probes, and before we can actually perform experiments
and decode the probe intensities, the chip must be produced. This involves further
decisions:

1. A nucleotide deposition sequence must be found, from which all probes can
be synthesized with the parallel photolithographic process described in Sec-
tion 1.3.1.

2. Each probe sequence must be assigned to a location on the chip.

3. Given a deposition sequence s of length |s|, a sequence of |s| masks must be
defined. A mask specifies whether a nucleotide is added to a probe in a certain
step. For a given layout and deposition sequence, several possible mask designs
can exist.

Each probe is a subsequence of the deposition sequence, so the deposition sequence
is a common supersequence of all probes (in contrast to a substring, a subsequence
need not be contiguous). We are interested to keep the deposition sequence as short
as possible.

22

1.4 Probe Selection and Chip Design

Problem 9 (Deposition sequence minimization). For a given set of (thousands
of relatively short) probe sequences, find the shortest common supersequence. •

There are two main reasons for this economy. First, a shorter sequence means shorter
manufacturing times, higher throughput, and therefore better cost-effectiveness. Sec-
ond, longer sequences increase the probability of errors in the manufacturing process,
because masking is not perfect. Even when a probe is masked during a step, there
is a slight chance that the nucleotide is appended nevertheless, finally resulting in a
probe that is longer than it should be. To minimize the overall risk of errors, we must
minimize the number of masked steps for each oligo, so we minimize the length of the
deposition sequence.

Once the deposition sequence is fixed, production errors can be further reduced by
minimizing the risk of exposure to stray light. This can be achieved by placing probes
that share many masked steps next to each other, and to use the freedom in assigning
probe nucleotides to deposition steps. Overall, it is attempted to minimize the total
length of the border of the masks. This “border minimization problem” was recently
studied by Hannenhalli et al. (2002) and Kahng et al. (2002) under the assumption
that the deposition sequence is a periodic repetition of the alphabet ACGT. However,
if the manufacturing process permits, finding a shorter deposition sequence will make
the whole issue less of a problem.

We now examine the posed problems in detail. Chapters 2 to 5 present a bottom-
up approach on unique probe design. The reader who wants to get to a bird’s eye
view quickly should start with Chapter 5 and then read the preceding chapters as
necessary.

23

24

Chapter 2

Models for Feature Signal Intensity

As noted in the introduction, a major goal of probe design is to ensure transcript-
specific oligonucleotides, i.e., to minimize the risk of cross-hybridization. Therefore it
is important to discuss the general relationship between the quantity y that we can
measure, i.e., the signal intensity at each spot or feature, and the quantity x that
we want to know, i.e., the concentration of each transcript. While the basic idea
underlying microarray experiments suggests that both things are one and the same,
this is not true, even with the idealizing assumption of no cross-hybridization.

To set up a simple deterministic model for a single microarray experiment, we write

yi =
∑

j

Aij · xj , (2.1)

where yi denotes the measured signal at spot i and xj denotes the concentration of
transcript j in the sample. The Aij ≥ 0 are called affinity coefficients or intensity
coefficients. Assuming no cross-hybridization means that a single transcript t(i) is
associated to each spot i, so that Aij = 0 for j 6= t(i) and the model reduces to
yi = ai · xt(i) with ai > 0 taking the role of Ai,t(i). The model is more realistic, but
considerably more complex, if general coefficients Aij ≥ 0 are allowed.

The purpose of this chapter is to shed some light on the nature of Aij , a topic that
is rarely discussed in the microarray analysis literature. In Section 2.1, we discuss
the factors that influence an affinity coefficient: While the hybridization stability
between probes and targets is an important factor, other quantities have an impact
as well. Fortunately, it turns out that exact knowledge of affinity coefficients is not
necessary for normalization and expression level estimation (Section 2.2), as long as
sufficiently many probes with approximately the same coefficient distribution exist for
each transcript (see Example 2.2). Nevertheless, it is desirable to know at least the
order of magnitude of affinity coefficients, and here we follow two paths: First, we
can predict the coefficients from the sequence with a thermodynamic two-state energy
model (Section 2.3) that only models the hybridization strength, however. Second,
we may predict the coefficients by analyzing existing intensity measurements across

25

Chapter 2 Models for Feature Signal Intensity

several experiments (Section 2.4). We conclude this chapter by presenting a combined
estimation approach.

2.1 The Nature of Affinity Coefficients

Recall that each yi-value is a digitized representation, obtained from image analysis, of
a fluorescence intensity generated by SAPE-stained biotin molecules that are attached
to cRNA1 bound to probe molecules at feature i on the chip. The cRNA was produced
in several steps (reverse transcription using a T7-promotor-oligo(dT)-primer; then in-
vitro transcription) from the original mRNA molecules. There are several systematic
effects and several sources of stochastic error in this process. This section lists and
classifies the most important ones.

• We assume that there are no saturation effects, i.e., that probe molecules are in
excess and that the target concentration is within a range that avoids significant
competition of targets for the same probe molecule. In fact, if we cannot ensure
that this assumption holds at least approximately, not much can be done in
terms of quantitative analysis for that spot.

• The overall cRNA concentration used for the hybridization influences the sig-
nal intensities in a linear way. Therefore the concentration is measured and
standardized before each experiment.

• Measurements are perturbed by optical noise in the image scanning process. The
noise can be a systematic general offset c, or a systematic feature-specific offset
ci included in the measurement yi. It also has a stochastic component that we
leave unspecified for the moment.

• The measurement yi depends linearly on the number of bound SAPE-molecules,
which in turn depends linearly on the number of biotin molecules attached to
target fragments bound to spot i. Both dependencies vary stochastically, and
we can assume that the standard deviation is proportional to yi.

• The number of biotin molecules depends linearly on the number of Cs and Us in
all cRNA fragments attached to the probe molecules. For target j, this depen-
dence is modeled by the intensity coefficient Aij. Several influencing factors are
apparent.

1. It is fundamental to ask if the cRNA of transcript j has sufficient length to
bind to probe i. As mentioned previously, experience shows that the in-vitro
transcribed cRNAs have a varying length with an average of approximately
1000 nt; the exact length distribution depends on the protocol. If the probe

1For brevity, we only discuss GeneChip r©-based eukaryotic expression analysis in the main text.

26

2.1 The Nature of Affinity Coefficients

occurs much further than 1000 nt from the 3’-end of the mRNA transcript,
there is a high change of the cRNA not containing the complementary
sequence.

2. Recall that a random fraction of Cs and Us in the cRNA is biotinylated.
As long as the target preparation protocols are not changed, this fraction
should be relatively constant because of the large number of cRNA frag-
ments and the law of large numbers. It follows that for each transcript j
that binds significantly strongly to probe i, the signal strength is propor-
tional to a weighted fraction of As and Gs in a window around the binding
site (in the DNA sequence). The further details of this relationship depend
on the distribution of the target fragment length, which can vary with the
experimental protocol. Stochastic noise can be assumed to be proportional
to this factor.

3. The binding stability of a probe-target complex can be translated into a
probability that probe and target have hybridized in a stable way after the
annealing phase and are not washed off in the washing phase. Because of
the overall large number of fragments, this probability immediately trans-
lates into the fraction of bound fragments. Again, stochastic noise can be
assumed to be proportional to this factor.

4. As Naef and Magnasco (2003) point out, biotinylation interferes with the
base-pairing ability of nucleotides. Therefore, the fraction of biotinylated
nucleotides should neither be too low, as this would lead to low signal
strength because of SAPE binding, nor too high, as this would also cause
low signal strngth, because of reduced hybridization stability. This problem
disappears in the prokaryotic labeling protocol, where a single biotinylated
U is appended to each target fragment.

5. If a probe is highly self-complementary, it may fold back onto itself and
cease to be available for hybridization. This is much more a concern with
PCR-product arrays and polynucleotide arrays, but the effect cannot be
completely ruled out.

6. A more serious concern is the complementarity of the cRNA transcripts. A
cRNA fragment can form stable secondary structures with itself or other
fragments, given a sufficiently high local sequence complementarity. It is
still conceivable that a cRNA fragment that has either formed a secondary
structure with itself or bound to another fragment hybridizes to a probe
when the required part of the fragment is still single stranded. These pos-
sibility cannot be controlled by probe selection and chip design decisions;
one can only attempt to choose hybridization conditions in such a way that
the probe-target hybridization is preferred over target-target binding.

27

Chapter 2 Models for Feature Signal Intensity

7. Another reason why a probe molecule may not be available for hybridiza-
tion (with the intended target) is that some step may have failed during
its synthesis process. Nucleotide addition might have failed at a particular
step; in this case the molecule should be irreversibly protected and deacti-
vated, and hence not hybridize at all. Worse is the case when additional
nucleotides have been inserted due to erroneous activation by stray light.
This problem usually concerns a certain fraction of all probe molecules at
a spot, which depends on the masks and deposition sequence used in the
synthesis process and is hard to model explicitly. It is best to ensure that
this problem is minimized.

8. Any cRNA fragment can bind to at most one feature. Therefore, if there
are two or more probes whose sequences are taken from physically close
positions in the same target sequence, and these features are physically
close to each other on the chip, they may compete for the target fragments.
The best way to avoid this undesirable effect is to choose probes that are
spread out over the target and do not cluster. Another good strategy is to
distribute the chosen probes over the chip to avoid competition at the same
location. Competition should be avoided to the maximum extent possible
and as uniformly as possible for all features, because modeling it exactly
difficult.

The above list suggests ways to extend Model (2.1) stochastically, and how to model
the affinity matrix A. Let us focus on the affinity coefficients for now.

Claim 2.1. Ignoring the modeling of erroneous probes and of competition effects,
where different features compete for the same target fragment, and assuming fixed
hybridization parameters θ, the affinity matrix (Aij) can in principle be computed by
sequence analysis, i.e., by comparing the sequence pi of probe i with the sequence tj
of transcript j, and potentially by comparing all tj with each other for secondary-
structure formation. 3

In practice, this can still be difficult to impossible because we do not understand the
physics of the hybridization in detail. And of course in reality, competitive effects of
probes may well be present. For now, let us put these concerns aside and write

Aij = ρij · βij · γij · σij . (2.2)

In principle, all individual factors can be estimated by combining sequence analysis
with appropriate physical or statistical models. They have the following meaning,

• The factor ρij depends on the position of probe i within the mRNA sequence
of transcript j, relative to its 3’-end. It can be assumed to be approximately
constant, ρij ≈ 1, for probe locations within 1000 nt of the 3’-end, and we have

28

2.2 Normalization & Expression Level Estimation

ρij ≈ 0 if the probe location is much further away than 2000 nt. Of course, these
distances are not absolute and can change with the protocol.

• The factor βij is a factor for the binding stability between probe i and target j;
it is studied in more detail in Section 2.3.

• The factor γij models the sequence composition and is a function of the weighted
fraction of As and Gs around the binding site.

• The last factor σij denotes the fraction of probe-i-target-j-hybridizations that are
not lost because of self-complementarity of probe i or because of the interactions
of target j with itself and other targets. We may factor σij = σ′

i · σ′′
j into

these two independent effects. We have σ′
i ≈ 1 for probes with negligible self-

complementarity and 0 < σ′
i � 1 for highly self-complementary probes. Special

purpose tools for RNA folding, such as Mfold (Zuker et al., 1999; Zuker, 2003)
can be used to predict σ′

i. An idea how probes with a small σ′′
j -factor can be

avoided is described in Chapter 5.

To find a compromise between realism and simplicity, we assume that the binding
stability is the dominant systematic effect. That is, we assume that all probes for
transcript j are well spread over the last 1000 nt of the transcript, that the probes are
not significantly self-complementary, that the sequence composition of the targets is
relatively homogeneous, and that their interactions do not cause extreme differences in
affinity coefficients. We also assume that the coefficients are constant between different
experiments carried out under the same conditions. We then have Aij ∝ βij , and it
follows that it is worthwhile to study the stability factor in more detail; this is done
in Section 2.3.

2.2 Normalization & Expression Level Estimation

The above list of systematic effects and stochastic errors suggests the following exten-
sion of model (2.1):

yi = εi + ci + α ·
∑

j

exp(ηij) · Aij · xj . (2.3)

Here ci is a deterministic per-spot bias introduced, for instance, by systematic per-
spot effects of optical noise. For simplicity, it could be replaced by a global constant c.
There is a stochastic additive per-spot noise term εi with zero expectation, which we
may assume to have a Gaussian distribution because of many independent sources of
error. An overall scaling factor α > 0 adjusts for different overall cRNA concentration.
There is also an interaction-specific stochastic multiplicative error term exp(ηij) which
models the noise that is proportional to the true measurable signal Aij xj . Rocke and

29

Chapter 2 Models for Feature Signal Intensity

Durbin (2001) model the multiplicative error with a log-normal distribution, i.e., they
assume that ηij has a Gaussian distribution with mean zero, mainly for convenience.

Application to normalization. Assuming no cross-hybridization, that is, only one
target per feature, and for the moment, exactly one feature per target such that the
target of feature i is t(i) = i, we obtain a variation of models proposed by Li and
Wong (2001) and Rocke and Durbin (2001) that differs only by the explicit inclusion
of the affinity coefficient ai and the parameters ci being constant ci ≡ c. One has

yi = εi + c + α · exp(ηi) · ai · xi,

with constant variances of η and ε over all features. The model of Rocke and Durbin
(2001) is useful for inter-array normalization. Setting the scale α and the offset c to
pre-defined values (e.g., α = 1, c = 0) for the first array, the parameters for the other
arrays can be estimated from the data, assuming known intensity coefficients and that
the majority of genes or some particular known genes do not change their expression
significantly. If control targets of known concentrations are used on each array, the
model can even be calibrated to absolute quantities. Frequently, however, one is more
interested in differences or ratios (fold-changes) of expression levels than in absolute
quantities. In either case, a transformation that makes the variance of yi independent
of xi (a so-called variance-stabilizing transform) has been successfully applied. The
papers by Durbin et al. (2002) and Huber et al. (2002, 2003) provide details.

We point out again that in this context, it is assumed that no significant cross-
hybridization occurs and that the remaining amount can be absorbed into the offset
term c and its stochastic noise εi. In our presentation, it is also assumed that the
affinity coefficients ai are known; they are unidentifiable and absorbed into xi in the
formulation in the above mentioned references. The reason is that these references do
not explicitly consider the case that many probes measure the expression level of the
same transcript.

Estimation of Expression Levels. On real oligonucleotide chips, there are several
probes with different affinity coefficients per transcript. Hence when the ai or more
generally the Aij are known, and we set the global scale α = 1 and the global offset
c = 0 without loss of generality for a single experiment, the system

yi = εi +
∑

j

[exp(ηij) · Aij · xj]

has more measurements yi than unknowns xj. This allows in principle to estimate the
remaining two parameters, i.e., the variances of the η and ε terms, from the data, and
to use a robust maximum likelihood approach to estimate x from y. This still remains
a complex problem, however; the book of Rousseuw and Leroy (1987) contains an

30

2.2 Normalization & Expression Level Estimation

arsenal of methods. As our main interest is probe selection, not data analysis, we will
avoid the statistical and methodological details here, and only illustrate some general
issues. Suffice it to state that “solving” the over-determined system y = A ·x for x can
be formulated as a (possibly non-smooth) minimization problem ‖y − A · x‖ → min,
where ‖·‖ denotes an appropriate norm. As the whole microarray technology contains
many potential sources of errors that may lead to extreme outlier measurements at
some features, such as defect or very intense spots, it is not advisable to ask for a
classical least-squares solution; a more robust method should be employed. Written
out, a robust version of the minimization problem could be stated as

∑

i

wi ·
∣
∣
∣yi −

∑

j

Aij · xj

∣
∣
∣

p

→ min,

where the wi > 0 are weights that could depend on the variances of the η- and ε-
terms in the statistical model, and p ∈]0, 2] is a robustness parameter. The choice
of p = 2 would correspond to a weighted least-squares solution, which is not robust.
Smaller values of p lead to greater robustness, and for example p = 1 poses the
problem to minimize a weighted sum of absolute errors. The general solution of such
a minimization problem, and especially with the constraints that all xj should be
nonnegative, is beyond the scope of this thesis.

Fortunately, the case of most practical interest is simple. Suppose that, for a certain
target transcript, we have several signal measurements yi from specific probes pi with
different affinity coefficients ai. If we knew the coefficients, a robust way to infer the
expression value x would be to minimize the sum of absolute errors

∑

i |yi − ai · x|.
The solution minimizing the sum of absolute errors is the median, and so we take
x = median(yi/ai). This easy solution exists because we assumed ideally specific
probes and the matrix Aij is a block diagonal matrix in this case. We also assumed
that we know the coefficients ai.

In practice, even if we assume that the probes are sufficiently specific, we do not
know the exact values of the ai, and a disturbing question arises: Why (or when)
does quantitative gene expression analysis work in practice although we do not know
affinity coefficients?

One option is to simply ignore the coefficients and take x′ = (1/a) ·median(yi), where
a > 0 is a “typical” affinity coefficient, i.e., a single-value approximation of the affinity
coefficients of all probes. If the magnitude and distribution of the affinity coefficients
for each transcript are similar, this method can produce results comparable to the
above method.

Example 2.2. Suppose that there are two transcripts and three specific probes for
each transcript. Further assume that we know the affinity coefficients and observe the

31

Chapter 2 Models for Feature Signal Intensity

following signal intensities.











1000
1200
700
120
110
90











=











10
12
7

12
11
9











·
(

x1

x2

)

Knowing the affinity coefficients, this over-determined system has the exact solution
x1 = 100, x2 = 10. Not knowing the matrix and assuming an overall coefficient
of a = 1, the medians for each transcript are x′

1 = 1000 and x′
2 = 110, which is

approximately proportional to the correct solution.

The software that comes with the Affymetrix GeneChip r© arrays uses a related “robust
averaging” approach that differs mainly in the details. Each transcript is represented
by 10 to 20 relatively specific 25-mer probes. In fact, each probe is really a probe
pair, consisting of a perfect match (PM) probe and a mismatch (MM) probe that
differs from the PM probe only at the middle nucleotide. It is assumed that the MM
probe mainly captures non-specific hybridization and, therefore the probe pair signal
is defined as the difference PM − MM. If the difference is negative, the signal is
discarded. Of the remaining pairs, a weighted trimmed geometric average is taken as
the expression value (Affymetrix, Inc., 2002).

We conclude that the current practice of gene expression level determination can in fact
agree rather well with the “true” values that one would obtain from a full statistical
model. The essential conditions for this to work are that the probes are reasonably
specific, there are enough probes per transcript, and the affinity coefficients for each
transcript have approximately the same distribution. In this case a sufficiently robust
estimation procedure can ignore their existence. In Chapter 6, it is shown that this
fortunate situation breaks down when one begins to consider non-unique probes.

2.3 Thermodynamic Hybridization Stability

We have remarked that the stability of the probe-target hybridization is one important
factor influencing the affinity coefficient. Often, it is the only factor that is considered
(Li and Stormo, 2001; Kaderali and Schliep, 2002), mainly in the form of the melting
temperature of the probe-target duplex. In this section we give a brief overview over the
state-of-the-art thermodynamic models being used to predict the stability expressed as
Gibbs free energy. Using a two-state model, Gibbs free energy can then be converted
into the stability factor βij of the affinity coefficient in Equation (2.2). We also argue

32

2.3 Thermodynamic Hybridization Stability

why we think that the melting temperature is a less appropriate quantity and should
be given less emphasis for probe selection.

2.3.1 Basic Notions of Thermodynamics

As mentioned in Section 1.1, the backbone of a DNA or RNA molecule consists of
alternating (deoxy)ribose sugars and phosphate groups. The OH groups form hydrogen
bonds with water, and phosphate is always negatively charged. Therefore the backbone
is very hydrophilic. The bases forming the side groups along the backbone are nearly
planar and hydrophobic. The stacking interactions between the hydrophobic parallel
planes in the middle of the hydrophilic backbone are one reason for the stability of
helical DNA; the other reason is given by the hydrogen bonds between the base pairs
(3 for a G-C-pair, 2 for an A-T-pair).

The stability of a double-stranded DNA duplex or an RNA-DNA hybrid can be ex-
pressed quantitatively in terms of the Gibbs free energy ∆G, which is introduced in
the following paragraphs, following Atkins and de Paula (2002).

Internal energy. In thermodynamics, the total kinetic and potential energy of a
system’s molecules is called the internal energy U of the system. Internal energy,
heat, and work are all measured in the same unit, the joule (J), which is defined
as 1 J = 1 kg m2 s−2. The molar internal energy Um of a substance is its internal
energy per amount of substance; it is usually given in kilojoules per mole (kJ mol−1)
or kilocalories per mole, where 1 kcal = 4184 J exactly.

We denote by ∆U the change in internal energy when the system changes from an
initial state i with internal energy Ui to a final state f with internal energy Uf. It has
been found experimentally that the internal energy of a system may be changed either
by doing work on the system or by heating it, and that if a system is isolated from its
surroundings, then no change in internal energy takes place. These observations are
summarized as the first law of thermodynamics that states that the internal energy of
an isolated system is constant. It follows that ∆U = q+w, where w denotes work done
on the system and q denotes energy transfered as heat to the system. For infinitesimal
quantities, we have

dU = dq + dw.

The internal energy is a state function in the sense that its value depends only on the
current state of the system and is independent of how that state has been reached.

Enthalpy. When the system is free to change its volume V while it is heated, some of
the supplied energy is returned to the surroundings as expansion work. We thus have
dU < dq and dw > 0. It would be desirable, however, to have a state function H

33

Chapter 2 Models for Feature Signal Intensity

such that dH = dq. Under the assumption of constant pressure p and no additional
work except expansion work, the definition H := U + pV satisfies this property. H is
called the enthalpy of the system.

As a combination of the state functions U , p and V , H is also a state function.
Obviously we have dH = dU +p dV +V dp. We use the relationship dU = dq+
dw from above and the assumption that the system is in mechanical equilibrium
with its surroundings at constant pressure p and does only expansion work; so
dw = −p dV and dp = 0. It follows that dH = dq− p dV + p dV + 0 = dq.

Changes in enthalpy are normally reported for processes taking place under a standard
set of conditions. The standard enthalpy change is the change in enthalpy for a process
in which the initial and final substances are in their standard states (their pure forms
at a specified temperature at 1 bar). For a chemical reaction with reactants and
products, the standard reaction enthalpy ∆rH

◦ is such a change and defined as

∆rH
◦ :=

∑

Products P

ν(P) ·H◦
m(P)−

∑

Reactants R

ν(R) ·H◦
m(R),

where H◦
m(J) is the standard molar enthalpy of substance J, and ν(J) is the stoichio-

metric coefficient of substance J in the reaction.

Hess’s law states that the standard enthalpy of an overall reaction is the sum of the
standard enthalpies of the individual reactions into which a reaction may be divided.

Entropy. The internal energy U is a state function that tells us which state changes
are permissible: Only those changes may occur for which the internal energy of an
isolated system remains constant. It does not tell us which changes are spontaneous
and which ones are not. To answer the latter question, another state function has
been found; it is called the entropy S and is a measure of the molecular disorder of a
system.

The thermodynamic definition of entropy concentrates on the change in entropy dS
that occurs as a result of a process. It is motivated by the idea that a change in
the extent to which energy is dispersed in a disorderly manner depends on how much
energy is transfered as heat: Heat stimulates disorderly motion; work does not change
the degree of disorder. Now at a high temperature, the molecules of a system are
already highly disorganized; so a small additional transfer of energy will result in a
relatively small additional disorder. In contrast, at low temperatures molecules have
access to far fewer energy states, and the same quantity of heat will have a pronounced
effect on the degree of disorder. This suggests to define entropy changes for reversible
state transitions in terms of the differential equation

dS =
dqrev

T
, so ∆S =

∫ f

i

dqrev

T
,

34

2.3 Thermodynamic Hybridization Stability

where the integral is over a reversible state change path from initial state i to final
state f. It can be shown that S is indeed a state function (Atkins and de Paula, 2002,
Section 4.2): The integral vanishes when dS is integrated over a closed path, i.e.,
∮

dqrev/T = 0.

So far the entropy S is defined via its change; not on an absolute scale. Observations
indicate that the entropy of all perfect crystalline substances is zero at T = 0. There-
fore one adopts the convention to report entropies on the basis that S(0) = 0. When
a substance J is in its standard state at temperature T , the standard molar entropy
is denoted S◦

m(T ; J). For a chemical reaction at temperature T , the standard reaction
entropy is defined as

∆rS
◦ :=

∑

Products P

ν(P) · S◦
m(T ; P) −

∑

Reactants R

ν(R) · S◦
m(T ; R),

Consider a system in thermal equilibrium with its surroundings at temperature T =
Tsur. A spontaneous state change of the system entails an entropy change in the system
dS and an entropy change in the surroundings dSsur. Regardless of how the change
is brought about in the system, reversibly or irreversibly, we can calculate the change
of entropy of the surroundings by dSsur = dqsur/Tsur, if we assume the surroundings
to be a reservoir of either constant pressure or constant volume. Because the process
might be irreversible, the entropy change in the system may exceed | dSsur|. Thus we
can write

dS ≥ − dSsur =
dq

T
,

because dqsur = − dq. The above inequality is known as the Clausius inequality.

The second law of thermodynamics then follows: For an isolated system, dq = 0,
and in the course of a spontaneous change, the total entropy increases: ∆Stot =
∆S + ∆Ssur > 0.

Gibbs energy. When heat is transfered between the system and the surroundings at
constant pressure (as it is for most biological processes), we have dq = dH , and the
Clausius inequality becomes dS ≥ dH/T or

dH − T · dS ≤ 0.

At constant enthalpy and pressure, this becomes dS ≥ 0: The entropy of the system
must increase because there can be no change in entropy of the surroundings (dH =
dq = 0). At constant entropy and pressure, the inequality reads dH ≤ 0: The enthalpy
of the system must decrease if the entropy of the system is constant, because then it
is necessary to have an increase in the entropy of the surroundings.

35

Chapter 2 Models for Feature Signal Intensity

The above form of the Clausius inequality suggests to define a new thermodynamic
quantity, the Gibbs energy G as

G := H − T · S; so dG = dH − T · dS.

Thus at constant temperature and pressure, chemical reactions are spontaneous in the
direction of decreasing Gibbs energy dG ≤ 0.

The standard Gibbs energy of reaction is defined in terms of the standard reaction
enthalpy and entropy by

∆rG
◦ = ∆rH

◦ − T ·∆rS
◦.

It is the difference in standard molar Gibbs energies G◦
m of the products and reactants

in their standard states at the temperature of the reaction.

Intuitively, ∆rG
◦ can be interpreted as a difference in stability between the products

and the reactants.

2.3.2 Nearest Neighbor Models

Our goal is to estimate the Gibbs energy change for perfect Watson-Crick DNA-duplex
or RNA/DNA-hybrid formation in the context of a chip hybridization experiment.
We consider the reaction S1 + S2 → D, where Si (i = 1, 2) denotes a single stranded
DNA or RNA molecule, and D denotes a double stranded DNA or a hybrid molecule.
Because the stability depends on stacking interactions and sequence composition, it is
reasonable to attempt the prediction of the standard Gibbs energy of reaction ∆rG

◦ by
a nearest-neighbor (NN) model, i.e., a model that expresses ∆rG

◦ for a duplex of n bp
as a sum of n−1 terms for consecutive overlapping dinucleotides plus additional terms
for the ends. Additionally for DNA/DNA duplexes, the model should be symmetric
with the respect to the operation of taking the reverse complement.

In a review article, SantaLucia (1998) presents unified parameters for such a model
and discusses the history of differently obtained parameter sets. In detail, for a DNA
sequence S1 = 5′-(s1, . . . , sn)-3

′, and S2 being the reverse complement of S1, the model
specifies that

∆rG
◦ =

(
n−1∑

i=1

∆rG
◦(sisi+1)

)

+ ∆rG
◦(init(s1)) + ∆rG

◦(init(sn)) + ∆rG
◦(sym).

The last term ∆rG
◦(sym) is a symmetry correction: For self-complementary oligonu-

cleotides, it takes the value of +0.43 kcal/mol; otherwise it is zero.

Table 2.1 specifies the parameters at a sodium concentration of 1 M NaCl and at a
fixed temperature of 37◦C or 310.15 K. The components enthalpy ∆rH

◦ and entropy

36

2.3 Thermodynamic Hybridization Stability

Table 2.1: Unified NN parameters for the standard reaction enthalpy ∆rH
◦, entropy ∆rS

◦,
and the Gibbs energy of reaction ∆rG

◦ at 37◦C and 1 M NaCl. Under a uniform random
sequence model, the average Gibbs energy of reaction is −1.42 kcal/mol per dinucleotide
(SantaLucia, 1998).

∆rH
◦ ∆rS

◦ ∆rG
◦

Dinucleotide [kcal/mol] [cal/(mol·K)] [kcal/mol]
5′-AA-3′ ≡ 5′-TT-3′ −7.9 −22.2 −1.00

5′-AT-3′ −7.2 −20.4 −0.88
5′-TA-3′ −7.2 −21.3 −0.58

5′-CA-3′ ≡ 5′-TG-3′ −8.5 −22.7 −1.45
5′-GT-3′ ≡ 5′-AC-3′ −8.4 −22.4 −1.44
5′-CT-3′ ≡ 5′-AG-3′ −7.8 −21.0 −1.28
5′-GA-3′ ≡ 5′-TC-3′ −8.2 −22.2 −1.30

5′-CG-3′ −10.6 −27.2 −2.17
5′-GC-3′ −9.8 −24.4 −2.24

5′-GG-3′ ≡ 5′-CC-3′ −8.0 −19.9 −1.84

init(G), init(C) 0.1 −2.8 0.98
init(A), init(T) 2.3 4.1 1.03
Symmetry corr. 0 −1.4 0.43

∆rS
◦ are also given; thus ∆rG

◦ can be computed for other temperatures by using the
Gibbs-Helmholtz equation ∆G = ∆H − T∆S. Different salt concentration can be
accommodated by applying a salt correction to each individual dinucleotide entropy
term:

∆rS
◦(dinucleotide, [Na+]) = ∆rS

◦(dinucleotide) + 0.368 · ln[Na+].

Similar parameters for RNA/DNA-hybrids are given by Sugimoto et al. (1995); they
are shown in Table 2.2. No salt correction is given in this case.

There are some caveats:

• The NN model is only a model, not the reality. All values, especially the salt
correction, are approximate, and the parameters reported by different researchers
vary; for example, compare SantaLucia (1998) with Sugimoto et al. (1996, data
not shown here).

• For temperatures substantially different from 37◦C, results become increasingly
inaccurate, because the different heat capacities of products and reactants should
be considered.

• The parameters were derived by measuring the thermodynamic properties of free
short oligonucleotides in solution. The conditions under which oligonucleotides
attached to the chip surface hybridize to long cRNA or cDNA fragments in

37

Chapter 2 Models for Feature Signal Intensity

Table 2.2: Thermodynamic NN parameters for RNA/DNA hybrid duplex initiation and
propagation at 37◦C and in 1 M NaCl buffer (Sugimoto et al., 1995). r(·) denotes RNA
sequence; d(·) denotes DNA sequence.

∆rH
◦ ∆rS

◦ ∆rG
◦

Hybrid [kcal/mol] [cal/(mol·K)] [kcal/mol]
r (5′-AA-3′)
d(3′-TT-5′) −7.8 −21.9 −1.0

r (5′-AC-3′)
d(3′-TG-5′) −5.9 −12.3 −2.1

r (5′-AG-3′)
d(3′-TC-5′) −9.1 −23.5 −1.8

r (5′-AU-3′)
d(3′-TA-5′) −8.3 −23.9 −0.9

r (5′-CA-3′)
d(3′-GT-5′) −9.0 −26.1 −0.9

r (5′-CC-3′)
d(3′-GG-5′) −9.3 −23.2 −2.1

r (5′-CG-3′)
d(3′-GC-5′) −16.3 −47.1 −1.7

r (5′-CU-3′)
d(3′-GA-5′) −7.0 −19.7 −0.9

r (5′-GA-3′)
d(3′-CT-5′) −5.5 −13.5 −1.3

r (5′-GC-3′)
d(3′-CG-5′) −8.0 −17.1 −2.7

r (5′-GG-3′)
d(3′-CC-5′) −12.8 −31.9 −2.9

r (5′-GU-3′)
d(3′-CA-5′) −7.8 −21.6 −1.1

r (5′-UA-3′)
d(3′-AT-5′) −7.8 −23.2 −0.6

r (5′-UC-3′)
d(3′-AG-5′) −8.6 −22.9 −1.5

r (5′-UG-3′)
d(3′-AC-5′) −10.4 −28.4 −1.6

r (5′-UU-3′)
d(3′-AA-5′) −11.5 −36.4 −0.2

Initiation 1.9 −3.9 3.1

38

2.3 Thermodynamic Hybridization Stability

solution can be expected to be very different. Zhang et al. (2003) have recently
proposed a tentative model for this situation.

• The NN model appears to be a reasonable approximation for perfect Watson-
Crick duplexes. For duplexes with internal mismatches or loops, the NN model is
not likely to yield accurate ∆rG

◦ values because the normally parallel base-pair
planes, and therefore the stacking interactions between neighbors, are disturbed
in complex ways. Nevertheless, tentative parameters for single-base mismatches
have been published by Allawi and SantaLucia (1997, 1998a,b,c) and Peyret
et al. (1999).

2.3.3 From Gibbs Energy to Stability Factors

The question of interest is how we can relate the Gibbs energy of reaction ∆rG
◦ to

the stability factor βij in Equation (2.2), at least for perfect Watson-Crick duplexes.
In (2.2), the β-factor models the probability that a cRNA or cDNA fragment of target j
that is at feature location i has hybridized.

The hybridization S1 + S2 ↔ D occurs under constant pressure and temperature and
is reversible. It is assumed that a fragment close to a feature location with a matching
probe has only two options: to be in the single stranded random-coil state, or to be
in the more ordered hybridized state. As the forward reaction proceeds, the amount
of substance of the single strands becomes smaller by dξ. The quantity ξ is called the
extent of reaction and reported in moles.

While the standard molar Gibbs energy of each substance is constant, the total Gibbs
energy G of the reacting system changes because the amounts of substance change.
The reaction Gibbs energy ∆rG is defined as the derivative to the Gibbs energy with
respect to the extent of reaction. It is equal to the difference between the chemical
potentials of products and reactants at the instantaneous composition of the reaction
mixture, which justifies the ∆-notation. It can also be expressed in terms of the
standard reaction Gibbs energy ∆rG

◦ (Atkins and de Paula, 2002, Chapter 9):

∆rG =
∂G

∂ξ
= µProducts − µReactants = ∆rG

◦ + RT ln Q.

Here µ denotes chemical potential, T is the temperature in Kelvin,

R = 8.3145 J K−1 mol−1 = 1.987 cal K−1 mol−1

= k ·NA is the gas constant,

k = 1.38065 · 10−23 J K−1 is the Boltzmann constant,

NA = 6.02214 · 1023 mol−1 is the Avogadro constant,

39

Chapter 2 Models for Feature Signal Intensity

and Q is the reaction quotient, which can be approximated by the molar concentrations
in this case, Q = [D]

[S1][S2]
. The concentrations are functions of ξ.

If ∆rG < 0 at the current extent of reaction, then the forward reaction is spontaneous
and the reaction is called exergonic (work-producing). If ∆rG > 0, the backward
reaction is spontaneous and the reaction is called endergonic (work-consuming). If
∆rG = 0, the corresponding extent of reaction represents the thermodynamic equilib-
rium. The reaction quotient Q at equilibrium is denoted by K. One obtains thus

K = exp(−∆rG
◦/(RT)) =

[D]eq
[S1]eq[S2]eq

. (2.4)

As noted, a target fragment (represented here by S1, say) can be in one of two states.
The probability β that it is single stranded is

β =
[S1]eq

[S1]eq + [D]eq
=

1

1 + [D]eq/[S1]eq
=

1

1 + [S2]eq ·K
.

Therefore the probability β = 1− β that the fragment has hybridized is

β =
[S2]eq ·K

1 + [S2]eq ·K
=

1

1 + [S2]−1
eq ·K−1

=
1

1 + [S2]−1
eq · exp(∆rG◦/(RT))

. (2.5)

The basic premise was that the probe molecules S2 are in excess so that no satura-
tion effects occur. Thus we can treat [S2]eq as a constant and assume that is still
approximately equal to the probe concentration on the original chip.

Example 2.3. For ∆rG
◦ = −19.12 kcal/mol = −80000 J/mol at T = 45◦C =

318.15 K, we have exp[∆rG
◦/(RT)] = exp(−30.2429) ≈ 10−13. We assume a hypothet-

ical probe concentration of 10−6 M and find that β is fairly close to 1: β ≈ 1− 10−7.

We have seen how the stability factor β in (2.2) can be estimated in principle. It
should be noted, however, that the simple two-state model (no intermediate reaction
steps) may not be entirely accurate for the annealing reaction, but can still provide a
reasonable approximation. The exact role of [S2]eq remains somewhat mysterious as
the model assumes that the molecules can freely move against each other. In the “chip
reality”, the targets have to find the probes. Therefore [S2]eq should probably take a
relatively low value, much lower than the true concentration at the feature location.
We also do not know the correct ∆rG

◦ values (see the caveats in Section 2.3.2) for
array hybridizations yet, but this problem is likely to be addressed in the near future
(Zhang et al., 2003). In (2.5), we have ignored the possibility of multiple binding
sites in the same target. Recall that the targets are fragmented. If the same binding
site exists twice in the same target at distant positions, two times as many fragments
may hybridize and βij should be multiplied by 2. This effect rarely occurs in practice,
however, and we will ignore it here (but see also Section 3.1).

40

2.3 Thermodynamic Hybridization Stability

2.3.4 Melting Temperature

The fundamental relation (2.4) can be developed in another direction. Instead of fix-
ing the reaction temperature, we can look for the temperature TM, called the melting
temperature, at which half of the potential duplexes have hybridized and the other
half is still in the form of single strands when equilibrium is reached, such that
[D]eq/[S1]eq = 1.

Substituting the relationship ∆rG
◦ = ∆rH

◦ − T∆rS
◦ into (2.4) and solving for T , we

obtain

T =
∆rH

◦

∆rS◦ −R · ln([D]eq/([S1]eq[S2]eq))
.

As [D]eq = [S1]eq, the melting temperature is

TM =
∆rH

◦

∆rS◦ + R · ln([S2]eq)
. (2.6)

If Ctarget and Cprobe denote the respective initial molar target and probe concentrations
and probes are in excess, we have [S2]eq = Cprobe−Ctarget/2, because half of the target
fragments have hybridized. If probe and target concentrations are approximately equal
and we set Ctot := Ctarget + Cprobe ≈ 2Ctarget, then [S2]eq ≈ Ctot/4. However, since
we assume that Cprobe � Ctarget, we can usually set [S2]eq ≈ Cprobe and use the molar
probe concentration in (2.6).

Le Novère (2001) provides a software tool called MELTING and a web service for the
computation of melting temperatures and enthalpy and entropy values for a variety of
parameter sets.

Melting temperatures should not be a basis for probe selection. Although we can
in principle compute TM, we discourage using melting-temperature-based approaches
for probe selection. This is in contrast to other work (e.g., Li and Stormo, 2001;
Kaderali and Schliep, 2002), and also to our own early work (Rahmann, 2002). The
reason is not that TM might depend on the target concentration (as we have just
shown, this effect is not so pronounced). Instead, we feel that for chip design, the
melting temperature is relatively insignificant. Kaderali and Schliep (2002) suggested
that probes should be selected such that they share similar TM values, but from the
present chapter we have learned that a more sensible goal is to aim for approximately
constant affinity coefficients Ai,t(i) for all probes i. If they are all equal and Ai,j = 0 for
targets j 6= t(i), knowledge of them is not required to decode probe signals; they can
then be treated as a constant coefficient that is removed during global normalization.
We have also seen that TM has no direct relation to Aij, but ∆rG

◦ is related to Aij

via βij and Equations (2.2) and (2.5).

41

Chapter 2 Models for Feature Signal Intensity

2.4 Empirical Determination of Affinity Coefficients

We have seen that knowing affinity coefficients is useful for low-level data analysis,
especially for inferring a gene expression level from signal measurements of various
probes. We have discussed one key component of affinity coefficients, the probability
β of probe-target hybridization in detail, and we have learned (a) that it is hard to
predict accurately because we lack valid parameters for RNA or DNA hybridization
to DNA probes attached to a chip surface, and (b) that the stability is only one pa-
rameter influencing an affinity coefficient. It is unclear whether a systematic modeling
approach will eventually be able to predict the coefficients accurately; this has not
been attempted so far.

At present, it appears simpler to predict the coefficients from microarray experiments,
either controlled ones with known target concentrations (so-called spike-in experi-
ments), or by exploiting the fact that relative affinity levels can be inferred by exam-
ining data from many published datasets.

Spike-in experiments. Recall the basic noise-free model (2.1) with y = A · x, where
y contains m observed probe signals, x contains n ≤ m expression values, and A is
the m × n affinity matrix. If we set x := ej , the j-th unit vector, then y becomes
the j-th column of A. Doing this for j = 1, . . . , n, we successively obtain the whole
matrix A. On the experimental side, we would have to create a sample containing only
transcript j at fixed unit concentration and let it hybridize to the array. This would
have to be repeated for every transcript; and for accuracy several repetitions should
be used. The disadvantage is that these experiments are expensive and the sample
preparation is time-consuming, so it would be too costly to systematically use them
to obtain all affinity coefficients.

If it is known that each probe i is highly specific to only one transcript t(i), the
knowledge that Aij ≈ 0 for j 6= t(i) can be used, and the experiment can be made
with an artificial sample that contains each transcript in unit concentration, i.e., that
corresponds to x = (1, 1, . . . , 1). Then the non-zero affinity coefficients can be found
in y: We have yi =

∑

j Ai,j = c + Ai,t(i) with a constant c > 0 modeling global
unspecific hybridization. It is close to impossible, however, to create artificial samples
that contain each transcript in the same known concentration.

Inferring affinity coefficients from existing datasets. Thinking more practically,
every microarray experiment with the same chip type and under the same conditions
provides some information about the relative affinity coefficients. We still assume that
each probe is highly specific. Consider the index set Ij = {i : t(i) = j} of those
probes belonging to the same transcript j, and the corresponding observations yIj

.
Since they share the same expression level xj , which can be estimated by a robust

42

2.4 Empirical Determination of Affinity Coefficients

averaging procedure as outlined in Section 2.2, the relative size of the Aij ≈ yi/xj

(i ∈ Ij) can be determined, except for a global scaling factor. In reality, not all probes
are very specific, and unavoidable errors in the estimation of xj would propagate into
the estimated Ai,t(i). This is especially severe for low-expressed transcripts: If xj ≈ 0,
but yi � 0 due to noise, Aij is easily overestimated by several orders of magnitude.

Statistical approaches that infer affinity coefficients from published experimental data
have been pioneered by Li and Wong (2001) and attracted more interest recently
(Irizarry et al., 2003a,b). Zhang et al. (2003) have recently constructed a phenomeno-
logical NN model from such estimates by assuming Aij ≈ βij in (2.2) and using (2.5) in
reverse. Mei et al. (2003) from Affymetrix r© are taking a similar approach. Wang et al.
(2003) used the model of Li and Wong and the known structures of 21 alternatively
spliced genes to infer the mixture of splice variants present in a sample by estimating
the appropriate probe-variant affinity coefficients.

For the probe selection process, however, the empirical models are less useful: We
need to ensure that Aij ≈ 0 for j 6= t(i) before producing the chip and running
experiments. When we later find that the data gives high-variance estimations for xj

and inconsistent estimates for ai = Ai,t(i) because we overlooked some Aij � 0, it is
too late. Our answer is to keep it simple and develop a sequence-based measure to
predict probe specificity in Chapter 3.

A combined approach. To conclude this chapter, we propose a new approach for
estimating arbitrary affinity coefficients. We do not assume that each probe has only
one perfectly matching target; thus we may have that Aij � 0 for several j in every
row. Our approach combines inference from data and modeling from first principles.

Consider again the basic model (2.1). We extend it to K > 1 experiments performed
with the same protocol so that the affinity coefficients remain constant. We observe
m probe signals in every experiment. It is assumed that these intensities are globally
normalized (any simple method will do for this purpose) so that the orders of magni-
tude of the intensities are comparable across experiments. We collect the observations
in an m×K matrix Y = (Yik), with Yik being the observed signal at feature i in exper-
iment k. The unknown expression levels are collected in an n×K matrix X = (Xjk),
where Xjk is the expression level of transcript j in experiment k. It is assumed, of
course, that m � n. The m × n affinity coefficients A = (Aij) are also unknown.
Except for measurement errors and noise, the equation

Y = A ·X

should now hold.

On the right side we face mn+nK unknowns; on the left side we have mK (normalized)
observations. The equation is highly non-linear because both A and X are unknowns.

43

Chapter 2 Models for Feature Signal Intensity

We only have a chance of robustly fitting both A and X in the general case if mK �
mn + nK, or equivalently, n� mK/(m + K), or K � mn/(m − n). Because of the
non-linearity, a unique solution cannot be guaranteed, however, and different choices
of A and X may lead to small residuals ‖Y − AX‖. Here ‖ · ‖ denotes a generic
norm-like one-dimensional measure of difference that we do not further specify. Any
implementation of the method we sketch here would of course have to make a specific
choice at this place.

The key idea is to use reasonable prior knowledge about the affinity coefficients to
develop an initial guess A0. The longest common factor approach developed in sub-
sequent chapters of this thesis provides a reasonable starting point. The basic idea is
that a long common substring (factor) of probe i and target j is an indicator for high
Aij � 0, whereas if no sufficiently long substring exists, one may assume that Aij ≈ 0.
If we trust this initial guess, we can assume A0 as known for the moment obtain a
usual linear system Y = A0 ·X0 which we can “solve” for the initial expression level
X0 estimate by minimizing ‖Y − A0 ·X0‖ under the side condition that X0 ≥ 0 (no
negative expression levels).

We then alternate in re-estimating A and X for a fixed number of steps or until
convergence is observed. Starting with step s = 1, we repeat:

• Find As ≥ 0 such that ‖Y − As ·Xs−1‖ → min.

• Find Xs ≥ 0 such that ‖Y −As ·Xs‖ → min.

If we allow fully general A ≥ 0 and assume that there are, say 10 probes per target,
so m = 10n, we need K > 10n2/(9n) = 1.11n experiments. If however we determine
initially that some affinity coefficients Aij are insignificant and then force them to
remain zero in every step of the iteration, the number of unknowns can be considerably
reduced. Assume that the number of non-zero affinity coefficients per probe is bounded
by a constant c > 1. Then there are mK observations for only mc + nK unknowns,
and we only need K > mc/(m−n) experiments. If for instance also m = cn, then the
condition becomes K > c/(1− 1/c), so 2c to 3c experiments should always provide a
reasonable data basis.

The approach we described can be used in an incremental way: As more data becomes
available for a chip type, more information is gathered about A, and even past analyses
can be gradually improved.

It remains yet to be seen whether the idea, as it is sketched here, can be efficiently
implemented and produces the expected results. It should be noted that for large scale
projects m = 100000, n = 10000, c = 10 on average could be possible parameters. The
resulting minimization problems are large, and specialized methods may be required
to deal with large sparse matrices. It would be very interesting to apply the method
to situations where non-unique probes must be used for the analysis; such as in the
inference of mixtures of alternatively spliced transcripts (e.g., Wang et al., 2003).

44

Chapter 3

The Longest Common Factor
Approach

Given the difficulties in affinity coefficient estimation, but also for efficiency reasons,
we propose a sequence-based surrogate measure. Decisions about probe selection can
then be made from this surrogate instead of from the unknown affinity coefficients.
We introduce and motivate the longest common factor (LCF) measure in Section 3.1
and derive probe unspecificity measures from it in Section 3.2. The LCF approach is
compared to other approaches in Section 3.3.

3.1 Definition and Motivation

We propose to exploit the correlation between the affinity coefficient a(p, t) of probe p
and target t and the length of the longest common factor of p and t. In this context,
factor is a synonym for substring. We prefer the word factor to better distinguish it
from a subsequence: A factor is contiguous, while a subsequence need not be. For
example, AAT is a subsequence, but not a substring of ACAGT, and CAG is both a
substring and a subsequence of ACAGT.

Basics. We write s� t if s is a factor of t; the cases that s is empty or that s = t are
allowed. The length of a string s is denoted by |s|.

Definition 3.1 (Longest common factor). A common factor of two strings p and
t is a string s with both s � p and s � t. A common factor is a longest common factor
if no longer common factor exists. We write

lcf(p, t) := max{|s| : s � p and s � t}

for the length of the longest common factor of p and t.

45

Chapter 3 The Longest Common Factor Approach

A probe physically hybridizes to a cRNA or cDNA target sequence that contains the
complement of p, not p itself. However, we adopt the convention to describe target
sequences by the target’s mRNA sequence in the DNA alphabet, such that a probe for t
is in fact a substring of t.

Motivation. The choice of the longest common factor as a stability surrogate is
motivated by the following physical evidence.

• Every sufficiently stably hybridized probe-target pair needs a stable core for the
hybridization to start. Differences in the probe-target alignment correspond to
destabilizing irregularities in the normally parallelly stacked planes of basepairs.

• A non-perfect hybridization can be interpreted as consisting of several stable
perfect sub-matches, interrupted by destabilizing mismatches or indels. Even if
the whole imperfect duplex is relatively stable under hybridization conditions, it
is more easily de-stabilized under stringent washing conditions. The two-state
model (Section 2.3.3) is much less applicable to non-perfect hybridizations; many
possible intermediate states exist between the single strands and the duplex.

• In general, duplexes with the same number of (non-consecutive) matches can
have very different stabilities (see Figure 3.1). The stacking interactions between
consecutive matching basepairs are an important factor. Therefore it seems more
reasonable to consider the length of consecutive matches instead of the number
of total matches.

• On average, but not in all cases, the most stable perfect sub-duplex is the longest
perfect sub-duplex. A common base corresponds to 2.5 hydrogen bonds on
average when a uniform base composition is assumed.

• Pozhitkov and Tautz (2002) report that, if a mismatch is introduced into a
perfect probe-target duplex, the resulting stability loss depends on the position
of the mismatch; it is most pronounced when the mismatch occurs at the middle
position of the probe and drops when the mismatch position moves closer to
either end of the probe. Zhang et al. (2003) also suggest a position-dependent
model. The longest common factor automatically takes such a dependence into
account: If a mismatch occurs in the middle, both sub-matches have only about
half the length of the probe. Mismatches near the ends leave one longer perfect
sub-match.

We therefore use the working hypothesis that the longest perfect match, i.e., longest
common substring, of probe and target provides the dominating contribution to the
hybridization stability ∆rG

◦. This is also a practical assumption. The nearest neighbor
model and the two-state assumption, as discussed in Section 2.3.3, are essentially
applicable only to perfect matches. We will also see in Chapter 4 that the LCF and
further LCF-based quantities can be computed efficiently.

46

3.1 Definition and Motivation

ATCTCCACCCGTTGTTCAT ATCTCCACCCGTTGTTCAT ATCTCCACCCGTTGTTCAT

||| || ||| |||| ||| ||||||||||||||| |||||||||| ||||||||

ATCACCTCCCTTTGTCCAT ATCTCCACCCGTTGTCAGG ATCTCCACCCTTTGTTCAT

(a) lcf = 4, lcf1 = 8 (b) lcf = 15, lcf1 = 16, (c) lcf = 10, lcf1 = 19

matches = 15, len = 19 matches = 15, len = 19 matches = 18, len = 19

Figure 3.1: Lengths of longest common factors (lcf values), longest common factors allowing
one mismatch (lcf1), and number of matches between imperfect probe-target alignments
of length 19.

There are some natural disadvantages of the basic LCF measure.

• The longest match need not be the most stable one: The base composition of
the probe-target match is ignored and replaced by an average. We show in Sec-
tion 4.6 how to efficiently re-incorporate the sequence information by exploiting
the concept of jumps in matching statistics, introduced in Section 4.4.

• The LCF measure must be expected to systematically underestimate stability
because it considers only one match (the longest perfect one), even when there
are several (long perfect and imperfect) ones for the same probe-target combi-
nation. This effect also arises because the target is fragmented; so one target
molecules can in fact hybridize several times to one spot if each fragment contains
a long match. Because fragmentation is random, this effect is hard to quantify
systematically.

The second point suggests that even if accuracy is of prime importance, the LCF can
still be used as a filter to quickly reduce the number of probe candidates that must
be considered: If already lcf(p, t) is high, but probe candidate p is not intended for
target t, the stability need not be evaluated and p can be immediately discarded.

LCF with one mismatch. To heuristically counter-act systematic underestimations,
we generalize the longest common factor to contain mismatches. In practice, we will
always restrict ourselves to the case of at most one mismatch.

Definition 3.2 (Factors with at most f mismatches). We write s �f t if s is a
factor of t with at most f mismatches, i.e., if there exists a position i in t and an index
set F with |F | ≤ f , such that sj = ti+j for all j ∈ {0, 1, . . . , |t| − 1} \ F .

Definition 3.3 (Longest common factor with at most f mismatches). A com-
mon factor with at most f mismatches of two strings p and t is a string s with both
s�f p and s�f t. It is a longest common factor with at most f mismatches if no longer
common factor with at most f mismatches exists. We write

lcff (p, t) := max{|s| : s �f p and s �f t}

47

Chapter 3 The Longest Common Factor Approach

for the length of the longest common factor with at most f mismatches of p and t.

Figure 3.1 provides some examples of different possible (lcf, lcf1)-combinations. In-
cluding both lcf ≡ lcf0 and lcf1 in our considerations has two beneficial effects. First,
it provides a chance to assess two different potential binding sites in the same tar-
get if the positions of the LCF and the LCF with one mismatch are different (case
not shown). Second, it provides a foot in the door towards stability assessment of
non-perfect hybridizations.

How should we compare, for instance, two probe candidates p1, p2 of length 19 that
have (lcf(p1, t), lcf

1(p1, t)) = (10, 19) as in Fig. 3.1c (similar to MM probes on Affymetrix
GeneChips r©) and (lcf(p2, t), lcf

1(p2, t)) = (15, 16) as in Fig. 3.1b, respectively? In
other words, how can we combine the two-dimensional quantity (lcf, lcf1) into a one-
dimensional quantity lcf∗ in order to exploit the linear order on the real numbers?
We cannot offer a unique answer to this question, but two approaches suggest them-
selves.

1. We set lcf∗(p, t) := max{lcf(p, t), lcf1(p, t)−y}, where y > 0 is an average penalty
term for the internal mismatch. If, for instance, we assume that three additional
matching bases are required to “outweigh” the mismatch (lcf1 ≥ lcf + 4), we
could set y := 3.5. In the above example, this results in lcf∗(p1, t) = 15.5 and
lcf∗(p2, t) = 15.

2. We use a (weighted) average lcf∗(p, t) := α · lcf(p, t) + (1 − α) · lcf1(p, t) with a
weighting factor α ∈ [0, 1]. If we place twice more importance of lcf than on lcf1,
i.e., set α := 2/3, we obtain lcf∗(p1, t) = 13 and lcf∗(p2, t) = 15.3.

The methods disagree when ranking the two examples, but so do experts. Both
approaches share the property that lcf∗(p, t) ≥ lcf(p, t) and can potentially correct
for the systematic stability underestimation of lcf.

The development in the following sections is presented for lcf, but can be immediately
applied to lcf∗ without changes. Thus lcf∗ should be seen as an attempt to bias-correct
the basic lcf measure.

3.2 LCF-Based Unspecificity Measures

To identify target-specific probes, the obvious procedure now is to compute lcf(p, t)
for all probe candidates p and all targets t ∈ T , where T denotes an arbitrary enu-
meration of the targets or transcripts. For a given probe candidate p, one obtains
the vector of longest common factors with each target, the LCF vector LCF(p | T) :=
(lcf(p, t))t∈T .

48

3.2 LCF-Based Unspecificity Measures

LCF Statistics. To assess the (un-)specificity of p, it is unnecessary to know which
transcripts have high or low lcf values with p. The information can therefore be
compressed into a vector that merely counts the number of transcripts that share a
certain lcf value with p. Additionally, the exact lcf value is irrelevant if it is small,
e.g., less than half of the probe length, say. Therefore we fix an integer ∆ > 0 and
consider lcf values below or equal to |p| −∆ as equivalent to zero.

Definition 3.4 (LCF statistics). The LCF statistics of width ∆ for probe p against
transcriptome T are defined as the vector LCFS(p | T ; ∆) with

LCFS(p | T ; ∆)δ := #{t ∈ T : lcf(p, t) = |p| − δ} (δ = 0, . . . , ∆− 1).

When p, T or ∆ are obvious from the context, we simply write LCFSδ or LCFS(p | T)δ

for the δ-component of the LCF statistics.

If probe p∗ is to be specific for target t∗, we know that we must have p∗ � t∗, or
equivalently lcf(p∗, t∗) = |p∗|, and lcf(p∗, t) must be small for all t 6= t∗. Thus we
should have LCFS0 = 1 because of t∗. The next few components should vanish, and
only for δ approaching ∆, we would accept to see some LCFSδ > 0.

Conceptually the parameter ∆ has no special meaning as long as it is not too small. In
practice, however, its choice is crucial for efficient methods that compute LCFS(p|T ; ∆)
for many probe candidates. If it can be determined early that lcf(p, t) ≤ |p| −∆, then
the exact value of lcf(p, t) need not be computed. This observation can save tremen-
dous amounts of computational resources. Therefore it seems desirable to choose ∆ as
small as possible. Care must be taken, however, not to ignore significantly long LCFs
which could indicate a potential for cross-hybridization. Our experiences suggest that
it is desirable to choose ∆ > |p|/2 and that it appears reasonable to set ∆ := 16 for
25-mer probes, such that lcf values below or equal to 9 need not be computed. The
computational method is explained in Chapter 4.

Probe Unspecificity. The LCF statistics provide a multidimensional measure of un-
specificity for each probe. It is desirable to combine the information into a one-
dimensional quantity U by which all probe candidates for a transcript can then be
ranked. We now derive such a measure using the signal intensity model from Chap-
ter 2.

Consider a hypothetical spike-in experiment where the expression level xj of each
transcript j is constant; so x = (1, 1, . . . , 1) except for the common constant. The
cRNA or cDNA target fragments are uniformly distributed over the chip, and we
assume that a unit amount of each type is available for hybridization with each probe
type. Probe candidate pi has a certain intended target t(i), or when non-unique probes
are allowed (Chapter 6), a set T (i) ⊂ T of intended targets within the transcriptome
T . The undesired part of the signal observed at pi is then given by

∑

j∈T\T (i) Ai,j · 1,

49

Chapter 3 The Longest Common Factor Approach

where Ai,j = a(pi, tj; θ) is the affinity coefficient under the hybridization conditions
described by θ.

Ignoring that other factors than the hybridization probability βi,j contribute to Ai,j

in (2.2), we thus define preliminarily the unspecificity of pi in T by

U ′(pi | T) :=
∑

j∈T\T (i)

βi,j . (3.1)

Recall that βi,j is a function of the hybridization “stability”, which we have chosen
to approximate by the Gibbs energy of the longest perfect match (common factor) of
pi and tj . Given appropriate nearest neighbor parameters, we can find the average
energy γ := E[∆rG

◦] < 0 per common dinucleotide under a given base composition.
Then the Gibbs energy of the hybridization of pi with an unintended target tj differs
from the energy of the hybridization of pi with its intended targets by an average
amount of δi,j · γ, where δi,j = |pi| − lcf(pi, tj).

From (2.5), we see that the average hybridization strength β decreases with increas-
ing δ:

β(δ) =
1

1 + [S2]−1
eq · exp((G− δγ)/(Rτ))

. (3.2)

Here G� 0 denotes the Gibbs energy of the perfect duplex, [S2]eq is a probe concen-
tration term as in (2.5), and τ is the temperature in Kelvin (we use τ here instead of
T to avoid confusion with the transcriptome T). As in Section 2.3.3, R denotes the
gas constant.

We can simplify the presentation of the above equation by setting b := −γ/(Rτ) > 0
and ζ := −G/(Rτ) + ln[S2]eq, so that

β(δ) =
1

1 + exp(b · δ − ζ)
. (3.3)

Since b > 0, β(δ) decreases with increasing δ. The parameters b and ζ depend on
the reaction temperature τ , the perfect duplex stability G, and the nearest neighbor
model parameters (including salt concentration).

We will usually try to ensure that all selected probes share approximately the same
stability G, i.e., we prescribe a certain narrow stability range for probe candidates.
This is also true if we consider probes of different lengths: A candidate can be extended
until it enters the prescribed stability range. Therefore the parameters b and ζ are
constants within one microarray experiment.

The interpretation of ζ remains somewhat mysterious because it contains the probe
concentration term [S2]eq. which should typically be chosen much lower than the true
concentration because the probes are attached to the chip (cf. Section 2.3.3). We can

50

3.2 LCF-Based Unspecificity Measures

take a more practical approach, however. In reality, under optimized conditions that
balance strong hybridization of perfect duplexes against high specificity with respect
to non-perfect duplexes, not all target fragments in the vicinity of a feature location
will hybridize. If the probes are well chosen and have the same affinities, we may
assume that for δ = 0, always the same constant fraction z < 1 hybridizes. Solving
1/(1 + e−ζ) = z results in ζ = ln(z/(1 − z)). Especially, for z = 0.5, the constant ζ
vanishes. The following table shows some useful values.

z ζ
0.5 0
0.9 ln(9) = 2.1972
0.99 ln(99) = 4.5941
0.999 ln(999) = 6.9068

1− 10−k ln(10k − 1) ≈ k · 2.3 (k � 0)

Suppose that ζ is small in (3.3) and δ is sufficiently large. Then the influence of the
constant 1 in the denominator of β(δ) becomes negligible and we can approximate
β(δ) by

u(δ) := e−b·δ+ζ (δ large). (3.4)

If we use this approximation for smaller values of δ, we can only overestimate the
cross-hybridization probability β, which is not a bad thing. Therefore the simplified
quantity u(δ) version can be used wherever this appears more convenient. Note that,
apart from ζ , both β and u contain only one parameter b := −γ/(Rτ) > 0 that
depends on the average energy E[∆rG

◦] < 0 per common dinucleotide and the reaction
temperature τ .

Example 3.5. For the purpose of illustration, we assume that z = 0.9, so ζ = 2.1972
from the table above. For 25-mers at 45◦C = 318.15 K with a Na+-concentration of
0.075 M (i.e., ln([Na+]) = −2.6), and using the parameters of SantaLucia (1998) from
Table 2.1, we find b = 1.4741. Figure 3.2 shows β on a log-scale as a function of δ.

We now come back to the definition of the unspecificity U ′(pi | T) in (3.1). Replacing
βi,j by its approximation u(δi,j) from (3.4), where δi,j = |pi| − lcf(pi, tj), we obtain a
computationally convenient definition of probe unspecificity U .

U(pi | T) : =
∑

j∈T\T (i)

u(δi,j) =
∑

j∈T\T (i)

e−b·δi,j+ζ

=

∆−1∑

δ=0

e−b·δ+ζ · LCFS′(pi | T ; ∆)δ (3.5)

In (3.5), we have aggregated all targets j with the same value of δ; these are counted
by the δ-th component of the longest common factor statistics LCFS(pi | T ; ∆). The

51

Chapter 3 The Longest Common Factor Approach

0 2 4 6 8 10 12 14 16 18 20
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

δ

β(
δ)

 a
nd

 u
(δ

)

Cross−hybridization risk as a function of δ

Cross−hybridization probability β(δ)
Approximation u(δ)

Figure 3.2: Cross-hybridization probability β log-scale as a function of the difference δ
between probe length and longest common factor of probe and unintended target. The
parameters are given in Example 3.5.

prime-notation LCFS′ denotes that for δ = 0, we subtract the number |T (i)| of in-
tended targets for pi, usually a single one. Technically, U(pi | T) depends on the value
of ∆, but if ∆ is large enough, the terms with δ ≈ ∆ only contribute an exponentially
small additional amount to U ; so we shall drop the dependence on ∆ in the notation.

The threshold for U below which we can consider a probe to be sufficiently specific
may depend on the requirements imposed by the intended application. Generally, if
U(pi | T) < 10−4, we can assume that we have found a sufficiently specific probe. Note
that this means that the individual u(δi,j)-terms in U(pi | T) must all be considerably
smaller than 10−4. Therefore it does not matter whether the decision is based on the
more exact value β from (3.3) or on its approximation u(δ); so we have chosen the
simpler functional form u(δ).

Summary. The final definition of probe unspecificity U(p | T) provides an LCF-based
way to assess the cross-hybridization risk of a probe candidate p. Its form is intuitive:
With decreasing LCF length, the risk drops exponentially from a certain length differ-
ence on. The measure also considers all unintended targets; not only the most stable
one. This makes the assessment more robust. Only the LCF statistics are required
for its computation, not the individual values lcf(p, t) for all targets t.

52

3.3 Relation to Other Approaches

While the relation between hybridization stability and lcf or lcf∗ is not simple or
even one-to-one, the longest common factor approach can provide a simple and robust
sequence-based approximation; no knowledge of energy parameters is necessary as
soon as the parameter b has been agreed upon and ζ has been fixed. For 25-mer
design, the parameters from Example 3.5, b = 1.47 and ζ = 2.2, can be used and
agree reasonably well with experience: For any probe p, a non-intended target t with
lcf(p, t) ≥ 17, that is δ ≤ 8, leads to unspecificity >

∼ 10−4 and is thus borderline.

3.3 Relation to Other Approaches

We originally introduced the LCF approach at the CSB’02 conference (Rahmann,
2002), but the notion of unspecificity was only defined heuristically. In the previous
section, we presented a thermodynamic motivation of the unspecificity’s exponential
decay rate with increasing LCF difference δ. In particular, the rate b in (3.4) has a
physical interpretation.

Before we move on to show how the LCF statistics can be efficiently obtained in
the next chapter, we briefly compare the LCF approach against other methods for
oligonucleotide selection that have been proposed in the current scientific literature.
We point out that the LCF approach is mostly designed for short oligonucleotides.
For polynucleotides (50–70-mers), it is less reasonable that only the longest contiguous
match provides the dominating contribution to hybridization stability. As we shall see,
software based on the LCF approach can outperform the other methods presented here
by several orders of magnitude in term of speed.

• Primer design programs such as PRIDE (Haas et al., 1998) are based on similar
ideas as oligonucleotide probe design programs (counting mismatches, etc.), but
they only need to find one primer or primer-pair within a well-defined sequence
region (specificity would still be checked against the whole transcriptome), de-
creasing the need for computational efficiency. Also, different side conditions
must be taken into account. Generally, primer design methodologies cannot be
expected to scale up to whole genome short oligonucleotide probe design without
modification.

• “ProbeSelect” by Li and Stormo (2001) use a specificity prediction based on
sequence landscapes (Levy et al., 1998) and edit distance (Myers, 1999) be-
tween probe and target. The assumption is that the probe-target affinity can
potentially be high when an optimal local unit-cost alignment (penalizing each
mismatch, insertion, and deletion by −1) results in more than 4 differences; such
probe candidates are then discarded. Stabilities and melting temperatures are
computed for the remaining candidates using Mfold (Zuker et al., 1999; Zuker,
2003). Overall, the approach is relatively slow; Verena Beier reports that the

53

Chapter 3 The Longest Common Factor Approach

software designs oligos for predicted Neurospora crassa genes (15.5 Mbp) within
one week (personal communication). The method is applicable to both short
and long oligonucleotides, but does not attempt to model affinity coefficients.

• “Probesel” by Kaderali and Schliep (2002) is similar in spirit. It directly at-
tempts to find an alignment with the maximal melting temperature using a
heuristic dynamic programming algorithm. The focus on melting temperature
can be problematic, as discussed in Section 2.3.4. This approach is also relatively
slow and appears to have been tested only on small datasets. It is reported that
the selection of unique probes for 58 HIV-1 subtypes (total length 600 kbp) takes
about nine hours.

• Pozhitkov and Tautz (2002) focus on species identification with oligonucleotide
arrays and therefore restrict their probes and targets to small fractions of the
genome, such as the ribosomal RNA genes. They suggest an ad-hoc stability
function that depends on the position within the probe. For each probe, only
non-intended targets that share an alignment with the intended target with
more than 90% sequence similarity are explicitly checked for cross-hybridization.
Finding one probe within a database of 16000 small subunit sequences took 1.5
hours.

• Rouillard et al. (2002) focus on the design of long oligonucleotides (50-mers).
The increased length allows them to find and exclude possible cross-hybridization
candidates with BLAST. They emphasize the requirement that the oligos do not
form a secondary structure. This issue is not considered by the other programs.
Oligos for the 6343 yeast (Saccharomyces cerevisiae) ORFs (a total of 9.5 Mbp)
are selected within a day.

• Lipson et al. (2002) measure the specificity of 30-mer probes by the minimum
Hamming distance between the probe and all targets. They also provide a sta-
tistical model to predict the minimal reasonable probe length for unique probes
in a given transcriptome.

• Sun and Lee (2003) design fixed-length polynucleotides (50-mers) and use the
local Hamming distance between probe and target as a specificity criterion. Their
paper describes an efficient filtering algorithm for quickly deciding whether the
Hamming distance is larger than a given threshold.

• Wang and Seed (2003) reject a 70-mer probe candidate when any non-intended
target shares at least a contiguous 15-mer with the probe. A hash table is used
to quickly locate all 10-mer occurrences; common 15-mers are then found as
two-overlapping 10-mers with the correct offsets. Their work comes most closely
to the LCF approach, but lacks the robustness provided by LCF statistics. We
also believe that the LCF approach is more suited for short oligonucleotides.

The LCF approach offers several features that other approaches do not offer:

54

3.3 Relation to Other Approaches

• It allows ranking probe candidates by their (un-)specificity based on cross-
hybridization probabilities obtained from a physical model, distilled into the
constant b in Equation (3.5).

• Whereas other methods base their decisions only on the most stable cross-
hybridization site the whole transcriptome, the longest common factor statistics
LCFS(p | T ; ∆) provides a more robust measure.

• It avoids the imprecise computation of melting temperatures and works with the
more plausible affinity model 2.2.

• Single mismatches in otherwise perfect probe-target duplexes are automatically
position-dependent with the LCF approach, which is consistent with experimen-
tal observations; methods that count the total number of matches (i.e., consider
the Hamming distance) do not have this property.

• Last but not least, the LCF approach is the only one that is fast enough to allow
whole genome projects (see also Chapter 7).

55

56

Chapter 4

Efficient Computation of Longest
Common Factor Statistics

This chapter presents efficient algorithms for the computation of longest common fac-
tor statistics, the key component for evaluating the unspecificity of probe candidates,
as defined in (3.5). We begin with some preliminaries in Section 4.1, and introduce en-
hanced suffix arrays, the data structure on which our method is based, in Section 4.2.
LCF statistics are computed in several steps; in the first step, matching statistics of
all targets against all transcript collections are found. We present the first efficient
suffix-array based algorithm for this all-against-all procedure (Section 4.3). To reduce
the considerable output size, we exploit the structure of matching statistics and intro-
duce the concept of jumps (Section 4.4) and provide an algorithm to obtain the desired
LCF statistics from the jump lists (Section 4.5). We then describe two variations of
the algorithm that trade precision for speed in both ways (Section 4.6). The chapter
concludes with computational results on probe selection for all open reading frames of
Saccharomyces cerevisiae (baker’s yeast).

4.1 Preliminaries

4.1.1 Targets, Transcripts, and Collections

So far, we have used the terms target and transcript quite synonymously; they were
sequences for which probes are to be designed. At this point, however, it is convenient
to make a finer distinction between these terms, and to further introduce transcript
collections.

Target sequences or targets are those sequences which furnish the probe candidates.
In other words, every probe candidate is a substring of at least one target. We
generally denote a target sequence by s.

57

Chapter 4 Efficient Computation of Longest Common Factor Statistics

Transcript sequences or transcripts are the sequences against which probe speci-
ficity must be checked. Transcripts are denoted by t.

Transcript collections are simply sets of transcripts. We introduce them to be able
to model a larger variety of probe design applications in practice within the same
basic framework (examples follow). Thus the transcriptome T does not consist
of individual transcripts, but of transcript collections, which in turn consist of
one or more transcripts. The number of collections is denoted by C; the number
of transcripts in collection c is denoted by Nc.

T = (T1, . . . , TC), Tc = {tc,1, . . . , tc,Nc
}

The notation t ∈ T means that there exists an index c ∈ {1, . . . , C} such that
t ∈ Tc.

A target s typically has the property that every substring p of s is also a substring of
some transcript t ∈ T : (p � s) =⇒ (∃t ∈ T : p � t).

To assess the unspecificity of a probe candidate p, we do not compute the longest com-
mon factor length lcf(p, t) for every transcript t ∈ T , but only for every collection,

lcf(p, Tc) := max
t∈Tc

lcf(p, t).

This additional level of abstraction can be ignored in standard applications where each
transcript forms its own collection. Even if this is not the case, one can represent Tc

as a single string by concatenating the individual transcripts with a special separator
character $.

Tc = tc,1$tc,2$. . . $tc,Nc

Every target s is associated to a single collection c = c(s). Typically, for every probe
candidate p � s, we expect that lcf(p, Tc(s)) = |p|, i.e., that p occurs in Tc(s). This
would increase LCFS(p | T)0 by 1, but of course, this contribution is ignored for the
unspecificity value U(p | T), as explained subsequently to Equation (3.5).

The usefulness of the above distinctions becomes evident from the following two ex-
amples.

1. Frequently, probes are only required for a small subset of all transcripts. Addi-
tionally, the probes should be taken from approximately the last 1000 bases of
the 3’-end of each transcript (see Section 1.3.2). The targets then consist only
of the 1000-nt-suffixes of those transcripts for which probes are required. Of
course, specificity must be checked against all transcripts. For safety reasons,
the full-length transcripts are taken, and each transcript is placed in its own
collection.

58

4.1 Preliminaries

2. In large and highly homologous gene families, such as the human heat shock
protein family, it may be impossible to find specific probes for each transcript.
Instead, it is desired to find family-specific probes, i.e., probes that occur in each
family member but not in other transcripts. Assume that the family members
are organized in a collection Tc. It is a non-trivial task to construct the target
sequence s. It should consist of several separated strings with the property that
every substring (without a separation character) in s is a substring of every
t ∈ Tc, and not too far away from the 3’-end.

3. Organizing large gene families into collections also has the advantage that fewer
lcf values need to be computed.

4.1.2 Key Observations

Potentially, every substring p of a given target s is a probe candidate for s. In practice,
length and stability ranges will be prescribed. More details are given in Chapter 5.
Here the key is to recognize that probe candidates can start and end at every position
in s and be of varying length. Generally, the set of probe candidates to consider can
be larger than |s|, but assumed to be bounded by a constant times |s|.
Assume that there are n targets of constant length, say, 1000 nt, each giving rise to 2000
probe candidates of average length 25. Assume further that there are C collections,
each represented by a string of 10000 nt. Thus 2000 · n · C longest common factor
values must be computed. To compute lcf(p, Tc), a naive algorithm might attempt
to find the longest match at every combination of starting position in p and starting
position in Tc. These are 25 ·10000 combinations, and we may assume that the average
number of comparisons at each combination is 2. Thus lcf(p, Tc) is determined with
half a million matching operations. Altogether, we thus require n · C · 109 matching
operations. Assuming n = 10000 targets and C = 10000 collections, this leads to 1017

(one hundred quadrillion) matching operations. Probe design would be only possible
on petaflop supercomputers.

Of course, a lot of work is superfluous in the naive algorithm. The following observa-
tions are helpful.

• Probe candidates overlap with each other, and the lcf-values of two probes that
share a long stretch of common sequence are highly correlated.

• As we already noted, very short matches are irrelevant, and their exact length
need not be determined.

Index data structures for strings are of great utility here. The first observation suggests
to use suffix trees, and the second observation suggests to use a lookup or hash table
for words of a certain minimum length. Suffix trees have an excellent reputation for
their usefulness in such problems, but not such a good one for their high memory

59

Chapter 4 Efficient Computation of Longest Common Factor Statistics

requirements (but see Kurtz, 1999, for memory reduction techniques). Fortunately,
enhanced suffix arrays (Abouelhoda et al., 2002a) provide all of the desired features
at reasonable memory requirements, and are even well suited for use with secondary
memory. We use enhanced suffix arrays, which we introduce in the next section, to
compute matching statistics (Sections 4.3 and 4.4), an intermediate quantity from
which we obtain the lcf-values for LCF statistics (Section 4.5).

4.2 Enhanced Suffix Arrays

4.2.1 The Basic Suffix Array

The basic suffix array as introduced by Manber and Myers (1993) is an index of the
alphabetically ordered suffixes of a string. The concept of enhanced suffix arrays is
formally introduced in a paper by Abouelhoda et al. (2002a), but the use of additional
tables was already proposed in Manber and Myers’ paper to accelerate lookup oper-
ations in the suffix array. The concept is quite versatile. Additional tables may be
added as needed according to the particular application.

Let Σ := {A, C, G, T} be the DNA alphabet. We use the character $ 6∈ Σ as an end-
marker and as a sequence separator when two or more sequences are concatenated.
We use X as a wildcard character, that is, to represent a sequence character not in
Σ, such as an undetermined DNA base like N. We use the character order A < C <
G < T < X < $, with the additional property that X and $ do not match themselves
($ 6= $, X 6= X). A string of length q is called a q-gram. We write Σq for the set of
all q-grams and Σ+ for the set of all non-empty strings consisting of characters from
Σ. A prefix of a string is a factor that starts at the beginning of the string, and a
suffix is a factor that ends at the end of the string. We use subscripts to refer to the
individual characters of a string s: s = (s0, . . . , s|s|−1). We also write sp1..p2 for the
factor (sp1, . . . , sp2), and s(p) := sp..|s|−1 for the suffix starting at position p. (In this
section, s is an arbitrary string, not necessarily a target sequence, and p denotes a
position in s, not a probe. The index i generally serves as an index into the suffix
array.)

Definition 4.1 (Suffix array). Let s′ = (s0, . . . , sn−1) ∈ (Σ ∪ {X})n be a string of
length n. We set s := s′$. The suffix array of s is an array pos = (pos[0], . . . , pos[n])
of length n + 1 that contains the starting positions of the suffixes of s in alphabetical
order, s(pos[0]) < s(pos[1]) < · · · < s(pos[n]) (see Figure 4.1).

The suffix array can also be defined for a set of sequences: One concatenates the
sequences, separating them by the separator $. The fact that two separators or wild-
cards never compare as equal can lead to ambiguity in the definition of the suffix array:

60

4.2 Enhanced Suffix Arrays

Pos. p sp

0 C

1 A

2 C

3 A

4 C

5 X

6 A

7 C

8 C

9 $

=⇒

Rank i pos[i] s(pos[i])

0 1 ACACXACC$

1 6 ACC$

2 3 ACXACC$

3 0 CACACXACC$

4 2 CACXACC$

5 7 CC$

6 4 CXACC$

7 8 C$

8 5 XACC$

9 9 $

Figure 4.1: Basic suffix array pos of s = CACACXACC$. On the left side, s is shown. On the
right side, the suffixes have been alphabetically sorted, assuming A < C < X < $. The
suffixes are only shown to make the sorted order apparent; only pos forms the suffix array.

When comparing ACGT$A and ACGT$T, the first four characters match, but the result
of the comparison may be either ACGT$A<ACGT$T or ACGT$T<ACGT$A. Note that the
resulting inequality is of no relevance, and both orderings yield a correct suffix array
for our purposes.

4.2.2 Enhancing the Basic Array

The basic suffix array is augmented with additional information. Recalling that very
short common factors are irrelevant to the problem of probe selection, we decide on a
threshold q > 0 such that common factors shorter than length q can be considered as
equivalent to zero. Because of the alphabetical order, suffixes that share a common
prefix are found adjacent to each other in the suffix array. Especially, suffixes that
start with the same q-gram form a contiguous region of the suffix array, a so-called
q-bucket. The formal definitions follow.

Definition 4.2 (Longest common prefix). The longest common prefix of two
strings s and t is the longest string that is both a prefix of s and t. We write
lcp(s, t) := max0≤p<|s|,|t|{p : s0..p−1 = t0..p−1} for its length.

Definition 4.3 (Longest common prefix (lcp) array). Let s′ = (s0, . . . , sn−1) ∈
(Σ ∪ {X})n, s := s′$, and pos be the suffix array of s. Then lcp is an array of length
n + 1, where lcp[i] is the length of the longest common prefix of s(pos[i−1]) and s(pos[i])

(for i > 0) and lcp[0] = 0.

Note the typographical distinction between the lcp-array and the lcp-function of two
strings: lcp[i] = lcp(s(pos[i−1]), s(pos[i])). We emphasize that the separator $ and the

61

Chapter 4 Efficient Computation of Longest Common Factor Statistics

wildcard X do not match anything, not even themselves. Therefore lcp(ACGT, ACGA) =
3, but lcp(ACXT, ACXA) = 2.

Definition 4.4 (q-bucket). A q-bucket of pos is an interval [l, r] such that lcp[l] < q,
lcp[r + 1] < q and lcp[i] ≥ q for all i = l + 1, . . . , r.

Thus the suffixes s(pos[l]), s(pos[l+1]), . . . , s(pos[r]) all start with the same q-gram (string
of length q). They may even share a longer common prefix, but the suffixes s(pos[l−1])

and s(pos[r+1]) start with a different q-gram. It is convenient to have the starting points
of all q-buckets available.

Definition 4.5 (Bucket (bck) array). Define a code 〈a〉 for each letter a ∈ Σ
as follows: Let 〈A〉 := 0, 〈C〉 := 1, 〈G〉 := 2, and 〈T〉 := 3. For a q-gram Q =
(Q0, . . . , Qq−1) ∈ Σq, let 〈Q〉 :=

∑q−1
i=0 4q−1−i 〈Qi〉. Let s be a string with suffix array

pos. For γ = 0, . . . , 4q − 1, let bck[γ] be the left end l of the q-bucket [l, r] of the
q-gram Q with 〈Q〉 = γ if Q � s, and set bck[γ] := ∞ (or any special value not else
used) otherwise.

Note that we do not store the left endpoints of buckets of q-grams containing wildcards
or separators in bck; the code 〈Q〉 is only defined for q-grams Q ∈ Σq. The above code
definition has the advantage that it is easily updated when moving from one q-gram
to the next one along a sequence.

Lemma 4.6. For a string s ∈ Σn of length n, let Q(p) := sp..(p+q−1) be the q-gram
starting at position p (p = 0, . . . , n− q). Then for p ∈ [1, n− q],

〈Q(p)〉 = 4 · (〈Q(p− 1)〉 mod 4q−1) + 〈sp+q−1〉.

This update can be implemented by bitwise operations since the DNA alphabet size
is a power of two.

For probe design, we will build an enhanced suffix array of the entire transcriptome
T , which consists of several collections Tc, which in turn consist of transcripts tc,k. We
represent T as a single long string that concatenates all tc,k, not necessarily sorted by
collection. We need to be able to identify the collection associated to the i-th suffix in
alphabetical order, i.e., the collection of the transcript sequence that occupies position
pos[i] in T .

Definition 4.7 (Collection number (cl) array). Let cl[i] be the collection number
c of the transcript in which the suffix T(pos[i]) starts.

Stefan Kurtz (personal communication) pointed out that in practice, the cl-array may
be computable on the fly with a binary search in a list of start- and end-points of each
transcript, and with a table that associates the running number of each transcript to

62

4.2 Enhanced Suffix Arrays

its collection number. While this modification slows down the lookup operation from
constant time to time that increases with the logarithm of the number of transcripts,
the memory for the cl-array can be saved. Only memory proportional to the number
of transcripts instead of the total length of the transcripts is needed to emulate the
cl-array in this way.

A full example of an enhanced suffix array built from strings from two collections is
given in Figure 4.2.

p sp

0 C

1 A

2 C

3 A

4 C

5 $

6 A

7 C

8 C

9 $

⇒

i pos[i] s(pos[i]) lcp[i] cl[i]
0 1 ACAC$... 0 103
1 6 ACC$ 2 27
2 3 AC$... 2 103
3 0 CACAC$... 0 103
4 2 CAC$... 3 103
5 7 CC$ 1 27
6 4 C$... 1 103
7 8 C$ 1 27
8 5 $... 0 103
9 9 $ 0 27

+

γ bck[γ]
〈AA〉 = 0 ∞
〈AC〉 = 1 0
〈CA〉 = 2 3
〈CC〉 = 3 5

Figure 4.2: Enhanced suffix array of the concatenation s of CACAC$ and ACC$ from collections
103 (positions 0–5) and 27 (positions 6–9), respectively. Because two separators never
compare as equal, their order is not important, and we have lcp[7] = 1 (not 2) and
lcp[9] = 0. The bucket array bck was built for a q-gram length of q = 2 on the alphabet
{A, C} with 〈A〉 = 0 and 〈C〉 = 1. As AA occurs nowhere in s, we have bck[〈AA〉] =∞.

4.2.3 Enhanced Suffix Arrays vs. Suffix Trees

Suffix arrays are closely related to suffix trees. The definition of suffix trees, methods
for their construction, and many applications are described extensively by Gusfield
(1997).

The suffix tree of a string s of length |s| = n is a rooted directed tree with n leaves
numbered 0 to n− 1, which correspond to the suffixes of s. Each internal node, other
than the root, has at least two children and each edge is labeled with a non-empty
substring of s. No two edges out of a node have edge-labels beginning with the same
character. The concatenation of the edge-labels on the path from the root to each leaf
p exactly spells out the suffix s(p). Therefore each internal node u can be identified
with the common prefix of all suffixes below u. A fundamental property is that the
suffix tree of a string of length n can be represented with O(n) space and built in O(n)
time, as first shown by Weiner (1973). A simpler algorithm was given by Ukkonnen
(1995). A key component of the algorithm is the use of suffix links that directly link

63

Chapter 4 Efficient Computation of Longest Common Factor Statistics

each internal node u to the internal node that corresponds to u(1), i.e., to u without
its first character.

From a suffix tree, the basic suffix array can be obtained by a “lexical” depth-first
traversal. Therefore the suffix array can also be built in O(n) time. Because of the
space requirements of suffix trees (about 20 bytes or 5 integers per input character;
Kurtz, 1999), however, it is more practical to build the suffix array directly, i.e., with-
out building the tree as an intermediate step. Manber and Myers gave an algorithm
that builds the pos and bck arrays in O(n log n) time using a linear amount of ad-
ditional space. The vmatch implementation by Kurtz (2002) requires no additional
space, is asymptotically slower in the worst case, but competitive in practice. The
year 2003 brought no small surprise when three groups (Kim et al., 2003; Ko and
Aluru, 2003; Kärkkäinen and Sanders, 2003) showed simultaneously that the direct
construction of suffix arrays is possible in linear time; the approach of Kärkkäinen
and Sanders uses a ternary divide-and-conquer approach and is probably the simplest
one. Before then, it was assumed that the suffix links are an essential component for
all linear-time algorithms, and these are not represented in suffix arrays.

As discovered by Kasai et al. (2001), the lcp array can be built from pos and its inverse
rank in O(n) time. It can be interpreted as an “encoding” of the tree structure.

From rank (which is trivially computable from pos in linear time by rank[pos[i]]← i
for all i), the cl array is also built in O(n) time by a linear traversal of the concatenated
sequence: cl[rank[p]]← collection of the transcript that spans position p.

Enhanced suffix arrays have many practical advantages over suffix trees. Most impor-
tantly, they do not require implementing data structure for trees, but can be stored as
flat arrays. This automatically makes them easier to handle and less costly in terms
of memory. Additionally, they can be used independently of the method with which
they have been generated; the user need not adopt the creating program’s internal
tree structure.

Initially it appeared that some problems can be solved more efficiently with suffix
trees than with suffix arrays, but recently increasingly more direct array methods are
found that are as efficient as or sometimes even more efficient than the tree methods.
For example, determining whether u is a substring of s can be answered in O(|u|)
time (independently of |s|!), given a suffix tree of s by attempting to following the
path labeled u from the root as deep as possible into the tree. If and only if this
is possible for |u| steps, u is a substring of s. Given a suffix array of s, one would
perform a binary search which takes up to O(|u| log |s|) time. Using an appropriately
sized bucket array, this can be reduced to expected O(|u|) time, with additional tables,
i.e., by further enhancing the array, the problem, can also be solved in O(|u|) worst
case time (Abouelhoda et al., 2002b; Sim et al., 2003).

The “bucket scan” algorithm that we present below is one of the few examples that is
much more naturally and efficiently implemented with suffix arrays than with trees.

64

4.3 Matching Statistics

4.3 Matching Statistics

4.3.1 Definitions

Instead of looking at each probe in a target separately, we compare the whole target s
to each transcript (or collection) t. For every i = 0, 1, . . . , |s| − 1, we find the longest
string that starts at position i in s and occurs somewhere in t. The resulting match
lengths are called the matching statistics of s against t (Chang and Lawler, 1994).

Definition 4.8 (Matching statistics). For strings s and t, the matching statistics of
s against t are mss|t = ms = (ms0, . . . , ms|s|−1), where msi is the length of the longest
prefix of s(i) that occurs somewhere in t.

Since we are also interested in longest common factors with mismatches, we generalize
the definition of matching statistics as follows.

Definition 4.9 (Matching statistics with f mismatches). For strings s and t, the
matching statistics allowing f mismatches of s against t are mss|t;f = (msf

0 , . . . , msf
|s|−1),

where msf
i is the length of the longest prefix of s(i) that occurs somewhere in t with

at most f mismatches.

Example 4.10. Suppose that s = GAATACT and t = ATACGACT. We find mss|t;0 =
(2, 1, 4, 3, 3, 2, 1). For instance, the third value, 4, is obtained by finding the longest
prefix of s(2) = ATACT that matches somewhere in t. It is ATAC, a string of length 4.
For one mismatch, we have mss|t;1 = (4, 3, 5, 4, 3, 2, 1). The first value, 4, results from

the match GAAT versus GACT at the end of t. Trivially ms
s|t;f
k ≥ ms

s|t;0
k + f , unless the

end of either string is hit.

For probe design, the exact value of certain matching statistics is irrelevant. Even
without specifying the exact probe lengths yet, we know that the length of all probes
is bounded by some constant, say 32; so there is no need to determine the exact value of
matching statistics above 32. Also, small values of matching statistics are unimportant;
the only relevant piece of information is that they are smaller than a certain threshold.
Let 0 < R0

min ≤ R1
min ≤ Rmax be three positive integers that determine the range of

relevant matching statistics, [R0
min, Rmax] for ms, and [R1

min, Rmax] for ms1. We assume
that the bucket prefix length q of the suffix array has been chosen such that q ≤ R0

min.
It is also reasonable to ensure that for given width ∆ of longest common factor statistics
LCFS, we have R0

min ≤ |p| −∆ + 1 for all probes p. Thus if |pmin| and |pmax| are the
respective lengths of the shortest and the longest probe candidate to be considered,
we need the following chain of inequalities to hold:

q ≤ R0
min ≤ |pmin| −∆ + 1 ≤ R1

min ≤ |pmin| ≤ |pmax| ≤ Rmax.

65

Chapter 4 Efficient Computation of Longest Common Factor Statistics

For example, for 25-mer probes, we take ∆ = 16, implying that common factors down
to length 10 are counted in the final longest common factor statistics. Then one could
take q = R0

min = 10, R1
min = 13, and Rmax = 25. Now the computational problem is as

follows.

For a given target s and C transcript collections Tc (c = 1, . . . , C), where
Tc is represented as a single string, compute approximations MS[i][c] and

MS1[i][c] (i = 0, . . . , |s| − 1; c = 1, . . . , C) to the matching statistics ms
s|Tc

i

and ms
s|Tc;1
i such that

MS[i][c] = ms
s|Tc

i if ms
s|Tc

i ∈ [R0
min, Rmax − 1],

MS[i][c] < R0
min, if ms

s|Tc

i < R0
min,

MS[i][c] ≥ Rmax if ms
s|Tc

i ≥ Rmax;

(4.1)

MS1[i][c] = ms
s|Tc;1
i if ms

s|Tc;1
i ∈ [R1

min, Rmax − 1],

MS1[i][c] < R1
min if ms

s|Tc;1
i < R1

min,

MS1[i][c] ≥ Rmax if ms
s|Tc;1
i ≥ Rmax.

4.3.2 The Bucket Scan Algorithm

We present an efficient algorithm to compute the MS-array according to (4.1) using an
enhaced suffix array of the entire transcriptome T concatenated to a single long string
t. For each starting position i of the target s, we proceed as follows.

• We first obtain the code γ of the q-prefix Q(i) of s(i), γ = 〈Q(i)〉 = 〈si..(i+q−1)〉.
According to Lemma 4.6, this code can be updated in constant time as i in-
creases. (If Q(i) is not a valid DNA q-gram, because it contains a separator or a
wildcard, then γ is not defined. There is nothing to do and we may skip ahead
to the next valid q-gram in the sequence.)

• The code γ is used as an index to the bucket array; let r := bck[c]. Unless
the bucket is empty (r = ∞), we perform a bucket scan to find MS[i][c] for all
collections c. The bucket scan is shown in detail in Figure 4.3. After the bucket
scan, we move to the next position i + 1 of the target sequence s.

To understand the bucket scan in detail, note two things: First, the index variable
r is incremented from its starting value (the left end of the bucket) until the right
end of the bucket is reached (that is, until lcp[r] < q for the first time). Second, the
variable µ keeps track of the longest common prefix of s(i) and t(pos[r]) as r scans over
the bucket.

In line 1, we know already that s(i) and t(pos[r]) have a common prefix of at least q
characters, but we need to check for a longer match of length µ ≥ q by comparing
additional characters (at most Rmax − q because matching statistics above Rmax are

66

4.3 Matching Statistics

The Bucket Scan
Input: Target sequence s; Current position i;

Transcriptome T (concatenated from C collections) and its
Enhanced suffix array pos, cl, lcp;
Starting position r of the q-bucket of si..i+q−1 (r = bck[〈si..(i+q−1)〉]);
Maximum relevant matching statistic Rmax;
Initially MS[i][c] = 0 for all c = 1, . . . , C

Output: Approximate matching statistics MS[i][c] from (4.1) for all c = 1, . . . , C
1. µ← q + min(lcp(s(i+q), t(pos[r]+q)), Rmax − q)
2. MS[i][cl[r]]← µ
3. r ← r + 1
4. while (lcp[r] ≥ µ)
5. if (lcp[r] = µ) then

µ← µ + min(lcp(s(i+µ), t(pos[r]+µ)), Rmax − µ)
6. MS[i][cl[r]]← µ
7. r ← r + 1
8. while (lcp[r] ≥ q)
9. if (lcp[r] < µ) then µ← lcp[r]

10. if (MS[i][cl[r]] < µ) then MS[i][cl[r]]← µ
11. r ← r + 1

Figure 4.3: The bucket scan algorithm constitutes the core of all-against-all matching statis-
tics computation.

irrelevant). In line 2, the matching statistics for the collection belonging to position
pos[r] are set. As r scans over the bucket, there are two phases. First, there is a phase
of increasing µ (lines 4–7); additional matches can only be obtained when the current
value of µ equals the lcp-value at the current position. The phase ends once lcp[r]
drops below µ, because then in line 4,

lcp(s(i), t(pos[r])) ≤ lcp(t(pos[r−1]), t(pos[r])) = lcp[r]
< lcp(t(i), s(pos[r−1])) = µ,

so to maintain the loop invariant µ = lcp(s(i), t(pos[r])), µ must decrease. In the second
phase (lines 8–11), µ decreases until it drops below q. In lines 6 and 10, the MS

entry for the collection cl[r] corresponding to position pos[r] is set; in the second
phase, we must explicitly ensure that we do not decrease a possibly existing value of
MS[i][cl[r]].

After the bucket scan, we have MS[i][c] = 0 if and only if collection c never appears in

the bucket (i.e., ms
s|Tc

i < q ≤ R0
min). Otherwise

MS[i][c] = min(Rmax, max
k

lcp(s(i), (Tc)(k))),

67

Chapter 4 Efficient Computation of Longest Common Factor Statistics

where k is any position in the concatenated background string that belongs to collec-
tion Tc. Thus MS[i][c] contains a correct value in the sense of (4.1).

Computing Matching Statistics with one Mismatch. In principle, we compute
MS1[i][c] in the same way as MS[i][c]. The only difference is that instead of a single
bucket scan, 3Rmax +1 bucket scans are necessary for each position i, because we scan
with the exact substring si,...,i+Rmax−1, and with each of the 3Rmax strings obtained by
applying each possible mismatch type at each possible position. The value MS1[i][c] is
set to the maximum of all 3Rmax + 1 values of MS[i][c] obtained in this way.

Even though this is a brute force approach to compute ms1, it is surprisingly fast
because a bucket scan takes an unnoticeable amount of time if the value of bucket
prefix length q is chosen appropriately.

4.3.3 Analysis and Choice of the Bucket Prefix Length

Define L as the length of the longest target sequence, C as the number of different
collections, and n as the total length of all transcripts in all collections (the length of
the suffix array).

As presented, the algorithm has one major problem: The MS array needs L · C bytes
(e.g., 10 MB for L = 1000 and C = 10000), and only initializing it to zero requires
O(LC) time for every target. Since small matching statistics are not recorded, how-
ever, the resulting array is sparse anyway. We can also exploit that consecutive match-
ing statistics are not independent. A sparse representation that exploits this property
is thus desirable. We provide a solution in Section 4.4 where we describe how to
represent a vector of matching statistics as a jump list. Conceptually this does not
change the algorithm, only the memory representation of MS is changed. The average
length of a jump list also increases linearly with L, and we need 3 bytes per entry (one
short integer for the position number and one byte for the jump level; see Section 4.4).
Experiments on real DNA sequences show that the average list length is much shorter
than L, approximately L/250, so the space requirement reduces to about L/80 bytes
per collection. If carefully implemented, the re-initialization of the C jump lists for
each target can be done in O(C) total time. For matching statistics with one mis-
match, jumps become more frequent, but this can be compensated by setting R1

min

higher than R0
min. We found that for R1

min = R0
min + 3, the jump lists have about the

same size.

A central point in the performance of the algorithm is the choice of the bucket prefix
length q. Since matching statistics smaller than q are reported as zero, q must be
sufficiently small so that no relevant long matches are lost. On the other hand, q should
be as large as possible to keep the buckets small. When we choose q := blog4(n/128)c,

68

4.3 Matching Statistics

the expected occurrence of each q-gram ranges between 128 and 512, thus the buckets
have constant expected size. When n is large enough and the typical probe length is
more than twice the value of q, there are no problems with this choice. In practice,
q = 10 works well for the design of 25-mers. Choosing q = Θ(log n) always yields
an expected running time of O(|s|) for the matching statistics algorithm for a target
sequence s, independently of C. The reason is that only a single q-bucket, which has
constant average size, is considered for each position i of s.

The memory requirements of the algorithm are dominated by those of the suffix array.
We need n + 1 integers (4n + 4 bytes) for each of pos and cl, 4q integers (at most
n/32 bytes when q is chosen as above) for bck, and n + 1 bytes for lcp (we do not
need to know the exact lcp-value when it is above 255). The sequence itself requires
n bytes. Here we disregard memory needed to store sequence identifiers and other
administrative information. Thus the total memory requirement for the suffix array
is slightly more than 10n bytes. For the human transcriptome, as available from the
GeneNest database (Haas et al., 2000) of size 550 MB, this amounts to 5.5 GB. If the
cl-array is computed on the fly, as described above, we save 4n bytes, reducing the
memory requirement to slightly more than 6n bytes, i.e., 3.3 GB for the GeneNest
transcripts. This option should only be used when memory is more valuable than
time, as we found that the computation time increases by a factor of approximately
3.3 in this case.

An issue to be considered in the future is the size of a basic integer. We have worked
with a basic integer type of 4 bytes, restricting the total background sequence length
to 232 − 1 at most. During the next years, we will be confronted with ever larger
genomes and must move to 8-byte integers; hence memory requirements will roughly
double.

4.3.4 The Role of the Enhanced Suffix Array

Would it have been possible to implement the same algorithm with a suffix tree instead
of an enhanced suffix array? We do not see a way that would be as efficient as our
solution.

An asymptotically optimal algorithm to compute matching statistics of s against one
string was given by Chang and Lawler (1994): To compute ms

s|t
0 , start matching the

prefix of s in the suffix tree of t by walking down from the root until no further matches
are possible. The number µ of matches is exactly ms

s|t
0 . To compute ms

s|t
1 , use the

suffix links to move to the position in the tree that corresponds to s1..µ−1 and try to
obtain additional matches from there until no more matches are possible. This gives
ms

s|t
1 . The procedure is repeated for every position i < |s| of s. Since every character

of s is matched only once against some character in t and following the suffix links

69

Chapter 4 Efficient Computation of Longest Common Factor Statistics

is possible in O(|s|) overall time, the matching statistics are computed in O(|s|) time
once the suffix tree of t is built.

To compute matching statistics of s against many sequences or collections, we may
either use a separate suffix tree for each of the C collections (requiring O(C|s|) total
traversal time), or one generalized suffix tree of all sequences, in which each leaf is
annotated with the collection number. However, to compute MSi,c for all c with this
method, we must examine the set of leaves not only below the maximally matching
prefix of s(i) in the tree, but also of all shorter prefixes, since the different collections
have different matching statistics with s. The need to look at this leaf set results in
a large time overhead. The faster alternative to annotate each internal node with the
set of collection numbers that occur in the leaves below it must be discarded because
of the O(C) memory requirement per node.

In principle the bucket scan algorithm can be understood as a traversal of only the
leaf level of the generalized suffix tree, and only below the required q-prefix. The
key is that this procedure is more simply and more efficiently implemented with the
enhanced suffix array traversing the suffix tree. Additional advantages gained by using
the array are the lower space requirements and a much better cache performance due
to linear array scans instead of the random memory access caused by traversing a tree
structure.

4.4 Jumps in Matching Statistics

4.4.1 Motivation and Definition

As noted in Section 4.3.3, the MS array requires considerable O(CL) space and also
O(CL) time for its initialization to zero for each target. Additionally, it contains
redundant information because successive matching statistics are not independent:
From the definition of matching statistics, one property follows immediately.

Lemma 4.11 (Suffix property of matching statistics). Consecutive matching
statistics decrease by at most one:

ms
s|t
i ≥ ms

s|t
i−1 − 1 for all i = 1, . . . , |s| − 1.

Proof. The inequality holds, because a prefix of s(i−1) of length m matching at some
position j in t implies a matching prefix of s(i) of length m− 1 at position j + 1 in t.
Of course, there can be a longer match of s(i) elsewhere in t.

The suffix property leads to the concept of jumps in matching statistics.

70

4.4 Jumps in Matching Statistics

Definition 4.12 (Jumps in matching statistics). We say that a jump occurs at

position i > 0 in mss|t if and only if ms
s|t
i 6= 0 and ms

s|t
i > ms

s|t
i−1− 1. At the beginning

of s (i = 0), there is always a jump unless ms
s|t
0 = 0. When there is a jump at position

i, we call J := ms
s|t
i the jump level.

Lemma 4.11 and Definition 4.12 can also be stated for matching statistics with f
mismatches mss|t;f without any changes.

A jump is formally written as a pair (i, J) of the jump’s position and level. Then
a vector of matching statistics can be succinctly represented by list of jumps. Since
there are relatively few jumps compared to the string length, it pays to store lists of
jumps instead of the complete matching statistics.

Using jump lists in the bucket scan. The bucket scan algorithm (Figure 4.3) was
presented using an array MS[i][c] of matching statistics. Lines 2, 6 and 10 are easily
modified not to store the value directly into an array, but to update a jump list. A
straightforward approach is to keep a jump list for each collection Tc and to check
whether the current value of µ during the bucket scan results in a jump at position i
by comparing it to J − d, where J is the level of the most recent jump in collection
Tc, and d is its distance to position i.

The jump lists can be organized in a way that minimizes their lengths. For example,
even though all jumps to levels ≥ q are detected during the bucket scans, we only need
to store those to levels ≥ R0

min in the jump lists. On the other hand, m consecutive
jumps at positions i, i + 1, . . . i + m− 1 to levels all ≥ Rmax can be stored as a single
jump at position i to level Rmax + m− 1.

4.4.2 Stochastic Properties of Jumps

We shall estimate the frequency of jumps to level L in a (non-uniform) i.i.d. random
text model, where each character c ∈ Σ receives a probability πc. We generate two
independent i.i.d. strings s and t of lengths |s| = m and |t| = n according to π. We use
P as a generic probability measure for events in this text model. Especially, we write
P(w) :=

∏|w|−1
k=0 πwk

for the probability that the word w is generated in |w| steps. Let
us define p as the probability that two random characters match, p :=

∑

c∈Σ π2
c . We

also set q := 1− p.

Frequency of jumps. Consider the random number of occurrences KL of a random
string of length L in t and its expectation E[KL].

71

Chapter 4 Efficient Computation of Longest Common Factor Statistics

Lemma 4.13 (Expected number of occurrences of a random word).

E[KL] = (n− L + 1) · pL.

Proof. We have

E[KL] =

n−L+1∑

i=0

∑

w∈ΣL

P(W = w, and w occurs at position i in t)

= (n− L + 1) ·
∑

w∈ΣL

(P(w))2 = (n− L + 1) · pL,

because the characters of w are independent.

Exact statements about the whole distribution of KL are more difficult, because we
need to take possible self-overlaps (also known as autocorrelations or period sets) of
all words w into account. This is theoretically possible, and an efficient algorithm to
enumerate all autocorrelations for a given word length L is described by Rivals and
Rahmann (2001). Rahmann and Rivals (2003) prove for uniform π that the Poisson
approximation P (KL = 0) ≈ e−E[KL] is highly accurate.

Both intuition and simulations suggest that KL has approximately a Poisson distribu-
tion with parameter λ := E[KL] when π is close to uniform and E[KL] � n. Unless
π is close to a Dirac distribution, a typical randomly drawn word W has no or low
self-overlap, and therefore its KL occurrences in t are likely non-overlapping and hence
independent. The condition E[KL] � n ensures that the occurrences are sufficiently
rare, so it is unlikely that two occurrences are adjacent. Thus approximately

P(KL = k) = e−λ · λk/k!, (4.2)

where λ = E[KL] = (n− L + 1) · pL by Lemma 4.13.

Now we compute the expected number EL of jumps in mss|t to jump level L. Consider
an arbitrary but fixed position 1 ≤ i ≤ m − L − 1; we shall estimate the probability
ρL that a jump to level L occurs at position i in s.

Lemma 4.14. We have
ρL = e−λ·(1−q2) − e−λ, (4.3)

where λ = (n− L + 1) · pL as before.

Proof. A jump to level L occurs at i if and only if the following three conditions hold.

1. The L-gram w := si..i+L−1 occurs in t at least once.

2. No occurrence of w in t is followed by the letter si+L.

72

4.4 Jumps in Matching Statistics

3. No occurrence of w in t is preceded by the letter si−1.

We condition on the number k of occurrences of w in t and find that the probability
that the second and third conditions hold, given that KL = k, is just q2k since we
assume that the letters following and preceding each occurrence are independent (the
occurrences are not adjacent). Thus we have approximately

ρL =
∑

k≥1

P(KL = k) · q2k = e−λ ·
∑

k≥1

(λq2)k/ k!

= e−λ · (exp(λq2)− 1),

as claimed.

Theorem 4.15. An estimate of the expected number EL of jumps in mss|t with jump
level L is given by

EL = (m− L− 1) e−λ·(1−q2) + 2 e−λp − (m− L + 1) e−λ,

where λ = (n− L + 1) · pL.

Proof. The expectation EL is

EL =

m−L∑

i=0

P(Jump to level L at i).

As stated in Lemma 4.14, this probability is ρL for i = 1, . . . , m − L − 1. For the
L-grams at each boundary of s, either the second or third condition in the proof
of Lemma 4.14 is automatically satisfied. Instead of ρL we obtain a probability of
ρ′

L = e−λp − e−λ. Summing (m− L + 1)ρL + 2ρ′
L yields the stated result.

Let us point out again that Theorem 4.15 provides only an approximation of EL, based
on the assumption that occurrences of typical length-L words are relatively rare and
non-overlapping and hence Poisson-distributed. The approximation is likely to break
down when highly periodic words become more probable, that is, when π is far from
the uniform distribution on Σ, or when L becomes too short in comparison to the
string length n such that λ approaches n.

All calculations may be generalized to the case where we allow f mismatches. The
main problem is to determine the distribution of KL, the number of occurrences with
f mismatches of a random L-gram in t. For increasing values of f , occurrences become
more frequent, so the Poisson approximation eventually breaks down. Therefore we
shall restrict the discussion to the case of a single mismatch and proceed as in the
previous section.

73

Chapter 4 Efficient Computation of Longest Common Factor Statistics

Theorem 4.16. The expected number EL of jumps to level L in the matching statistics
with one mismatch mss|t;1 is approximately given by

EL = (m− L + 1) (e−λ·(1−q2) − e−λ),

where λ = (n− L + 1) · L · pL−1 · q.

Proof. The expected number of 1-mismatch-occurrences of a random L-gram in a
string of length n is λ := E[KL] = (n − L + 1) · L · pL−1 · q. Assuming that Poisson
approximation is reasonable, the rest of the computation remains unchanged, except
that we completely ignore edge effects this time.

Length of the longest common factor. Let E+
L :=

∑

`≥L E` be the expected number

of jumps to level at least L. Consider the length L∗ where E+
L∗ ≥ 1 but E+

L∗+1 < 1.
Thus in typical cases, we observe jumps to level L∗, but not to or above level L∗ + 1.
Therefore L∗ is a good estimate of the typical length of the longest common factor
lcf(s, t) of s and t.

Necessary conditions for E+
L ≈ 1 are λ� 1 and that L is small compared to both m

and n when m and n are of comparable magnitude. Thus for the case of no mismatches,
we may approximate λ ≈ npL, and e−λx ≈ 1− λx. Therefore EL ≈ mq2λ ≈ mnq2pL.
In the case of one mismatch, we obtain the approximations λ ≈ nLqpL−1 and EL ≈
Lmnq3pL−1. By geometric summing, it follows that

E+
L ≈ mnqpL (exact matches),

E+
L ≈ Lmnq2pL−1 (one mismatch). (4.4)

While substring lengths and L∗ are integers, the functional form of E+
L is also defined

for non-integer values of L. Therefore we define the center of the distribution of the
lcf as the value L◦ where E+

L◦ = 1. Note that the center is neither the mean nor the
median, nor any other moment of the lcf distribution.

Theorem 4.17. The center L◦ of the lcf of two random strings with lengths m and
n = Θ(m) generated with close-to-uniform character distribution π on Σ is

L◦ ≈ ln(mn) + ln q

ln(1/p)
. (4.5)

This simplifies to L◦ ≈ log|Σ|(mn) when π is uniform and |Σ| � 1.

For the length of the longest common factor with one mismatch lcf1, the center L◦ is
the solution of the equation

mnq2 · L◦ · pL◦−1 = 1. (4.6)

74

4.4 Jumps in Matching Statistics

Proof. This follows directly from the functional form of E+
L above.

While this result is approximate, it agrees with more precise results given by Wa-
terman (1995) and Abbasi (1997) when m = n, π is uniform, and the strings are
considered as cyclic (so there are no edge effects). In this case it has been shown
that for any a ≥ 1, P[|lcf(s, t) − log|Σ| n

2| > a] ≤ 18|Σ|−a/n2; so lcf(s, t) is indeed
tightly concentrated around log|Σ| n

2. Even though Equations (4.5) and (4.6) do not
make a precise statement, they give us an intuitive idea about the longest common
factor in the non-uniform Bernoulli model, for unequal string lengths, and allowing
mismatches.

Table 4.1: Comparison of the observed (OL) and expected (EL) number of jumps to level
L in mss|t and mss|t;1 for 100 four-letter strings s of length 61140 against 10 four-letter
strings t of length 1048576.

ms0 ms1

L OL EL P(lcf = L) OL EL P(lcf1 = L)
7 0.000 0.000 0.000 0.000 0.000 0.000
8 56.472 56.050 0.000 0.000 0.000 0.000
9 9560.324 9550.611 0.000 0.000 0.000 0.000

10 17059.882 17063.854 0.000 0.048 0.123 0.000
11 7222.149 7223.793 0.000 1284.051 1646.841 0.000
12 2064.799 2064.855 0.000 15475.076 16479.856 0.000
13 533.840 533.867 0.000 13440.482 13654.596 0.000
14 134.500 134.593 0.000 5020.893 5039.977 0.000
15 33.599 33.719 0.000 1471.427 1471.212 0.000
16 8.531 8.434 0.067 401.045 401.500 0.000
17 2.148 2.109 0.418 107.368 107.308 0.000
18 0.528 0.527 0.357 28.614 28.451 0.000
19 0.132 0.132 0.115 7.517 7.511 0.084
20 0.034 0.033 0.032 2.058 1.977 0.445
21 0.007 0.008 0.007 0.483 0.519 0.323
22 0.004 0.002 0.004 0.134 0.136 0.115
23 0.000 0.001 0.000 0.033 0.036 0.029
24 0.000 0.000 0.000 0.004 0.009 0.004

Simulations. To check the accuracy of our estimations, we created a set S of 100
DNA sequences (|Σ| = 4) of length 61140 (60 Kb), and a set T of 10 DNA sequences
of length 1048576 (1 Mb). We counted the number of jumps in the matching statistics
mss|t of each sequence pair (s, t) ∈ S×T , averaged the observed numbers over all 1000
pairs, and compared the averages with the expected numbers EL. We did the same
comparison for the matching statistics with one mismatch. The results are shown in
Table 4.1. Additionally, we found the lcf for each of the 1000 string pairs. Its empirical
distribution is shown in the same table.

75

Chapter 4 Efficient Computation of Longest Common Factor Statistics

The observed jump counts agree well with the approximated expected counts for the
matching statistics allowing no mismatches. The center of the longest common factor
distribution is 17.75, and most of the probability mass is indeed found on the lengths
17 and 18. The mean of the empirical distribution is 17.66. The comparison for mss|t;1

shows, however, that the approximation is less good than for mss|t, and this becomes
worse for decreasing L. The approximate lcf-center is at 20.73, and the empirical mean
is at 20.57.

4.5 Obtaining LCF Statistics from Jumps in Matching

Statistics

So far we have a way to obtain mss|t and mss|t;1 for a target sequence s against each
transcript t (or transcript collection). Probe candidates are certain substrings p � s;
they are specified by a starting position i and a length L. We are interested in obtaining
lcf(p, t) from mss|t.

4.5.1 Matching Statistics of Substrings

From the definition of matching statistics, it is immediate that the length of longest
common factor between p and t is equal to the maximum value of the matching
statistics between p and t,

lcf(p, t) = max msp|t.

At the moment, we know the matching statistics of s against t, not those of p against
t. Therefore we need to discuss the general connection between mss|t and msu|t when
u � s (during this general discussion, we use the generic notation u instead of the
probe-specific p). Our main interest lies in the connection between the jump lists of
mss|t and msu|t.

Lemma 4.18 (Matching statistics of substrings). Let u := si..i+L−1, be the length-
L substring of s that starts at position i. Then

ms
u|t
k = min(ms

s|t
i+k, L− k) (k = 0, . . . , L− 1).

Proof. A match starting at position k in u initially consists of the same characters as
a match starting at position i+k in s. It may be truncated by the remaining substring
length, which is L− k for the suffix starting at position k in u.

76

4.5 Obtaining LCF Statistics from Jumps in Matching Statistics

Lemma 4.19 (Jumps in matching statistics of substrings). Jumps in msu|t can
occur at position k = 0, and otherwise at most at those positions 0 < k < L where a
jump occurs in mss|t at position i + k. If there is a jump at position k = 0, its jump
level is

J0 = min(max{j − d, 0}, L).

If there is a jump at position k > 0, its jump level is

Jk = ms
u|t
k = min(ms

s|t
i+k, L− k).

Proof. There is always (unless u0 does not occur at all in t) a jump at k = 0 in u (the
start of the substring), even when there is no jump at position i in s. Its jump level

J0 = ms
u|t
0 is obtained by looking at the closest jump to the left of i in s. Assume it

occurs at position i − d for some d ≥ 0 and its level is j. Because there are no other
jumps between i − d and i, we know that ms

s|t
i = j − d unless this is below zero. It

follows that J0 = min(max{j − d, 0}, L).

For 0 < k < L, note that a jump at position k in msu|t implies a jump at position i+k in
mss|t, because ms

u|t
k > ms

u|t
k−1−1 is equivalent to min(ms

s|t
i+k, L−k) > min(ms

s|t
i+k−1, L−

k + 1) − 1, which implies ms
s|t
i+k > ms

s|t
i+k−1 − 1. (The converse implication does not

hold, as shown by the following example.) The statement about the jump level follows
from the previous lemma.

Example 4.20. For s = GAATACT and t = ATACGACT, mss|t = (2, 1, 4, 3, 3, 2, 1). We
now focus our attention on the substring u = AATA of s. We obtain the following
jumps (non-jumps are marked with a dot).

Position i in s 0 1 2 3 4 5 6
Jumps in mss|t 2 . 4 . 3 . .

Jumps in msu|t 1 3 . .
Position k in u 0 1 2 3

There is an initial jump to level 1 at k = 0 (derived from the jump to level 2 at i = 0).
The jump to level 3 at k = 1 is the jump to level 4 at i = 2 restricted to the remaining
substring length. Finally, the jump to level 3 at i = 4 does not become a jump at
k = 3, because the value of ms

u|t
3 = 1 is already implied by the previous jump.

Definition 4.21 ([i, L]-jump-set). We define the [i, L]-jump-set of mss|t as the set
consisting of the jumps between positions i+1 and i+L−1 (inclusive), and the closest
jump to the left of i + 1 at position i− d for the appropriate distance d ≥ 0.

From Lemma 4.19, we deduce

Corollary 4.22. Let u be the substring of length L of s that starts at position i. To
obtain the jumps in msu|t, it suffices to look at the [i, L]-jump-set of mss|t.

77

Chapter 4 Efficient Computation of Longest Common Factor Statistics

It is easy to see that all relationships continue to hold when jumps in matching statis-
tics with f mismatches are considered. Thus we obtain the following result.

Theorem 4.23. Let u be a substring of s starting at position i. The longest common
substring of u and t with at most f mismatches is the maximal level of all jumps in
msu|t;f. It can be computed from the [i, |u|]-jump set of mss|t;f.

Proof. By definition, lcf(u, t) = maxi=0,...,|u|−1 ms
u|t;f
i . The maximum must occur at a

jump; therefore it is equal to the maximal jump level in msu|t;f. The last statement
now follows from Corollary 4.22.

4.5.2 Jump List Processing

We come back to the problem of obtaining LCF statistics for all probe candidates
from the same target s. The probes can be succinctly described by specifying s
and a list P with a pair of starting position and length (i, L) for each probe, i.e.,
P = (p1, . . . , pN) = ((i1, L1), . . . , (iN , LN)) with 0 ≤ i1 ≤ i2 ≤ · · · ≤ iN < |s| and
ij + Lj ≤ |s| for all j. Note that it is allowed that several probes start at the same
position in s.

Assume that the jump list for the matching statistics of s against target collection Tc

is written as J = ((i′1, J1), (i
′
2, J2), . . .) with 0 = i′1 < i′2 < (If in fact there is no

jump at position 0, we introduce the artificial jump (0, 0) for convenience.)

We move through P from left to right and maintain the jump set that belongs to the
current probe. For probe j, the jump set is {(i′α, Jα), (i′α+1, Jα+1), . . . , (i

′
β, Jβ)} with

α = max{a : i′a ≤ ij},
β = max{b : i′b < ij + Lj}. (4.7)

• For the first probe candidate p1, we find α and β by scanning through the list
of i′-values from left to right to satisfy (4.7). From the jump levels in the so
determined [i1, L1]-jump-set and using Lemma 4.19, we find lcf(p1, Tc).

• For each successive probe candidate pj , we increase α or β (or both) from their
current values until (4.7) is again satisfied and proceed as before.

The jump sets are typically very small (say, 2 to 3 jumps per probe candidate); there-
fore this is a rapid procedure. Figure 4.4 illustrates the method.

It is possible to determine lcf1(pj , Tc) similarly from the jump list of mss|t;1. If desired,
the lcf and lcf1 values can be combined into lcf∗(pj, Tc) at this point (cf. the discussion
at the end of Section 3.1).

78

4.6 Trading Speed for Precision

Position i, i′ 00 01 02 03 04 05 06 07 08 09 10 11 12
Jump level 4 7 . . . 5 . . . 6 . . .
Index α, β 1 2 3 4
p1 = (0, 6)
Adj. levels 4 5 1

α = ⇑1
β = ⇑3

Position i, i′ 00 01 02 03 04 05 06 07 08 09 10 11 12
p2 = (2, 7)
Adj. levels (7) 6 4

α = ⇑2
β = ⇑3

Position i, i′ 00 01 02 03 04 05 06 07 08 09 10 11 12
p3 = (7, 6)
Adj. levels (5) 3 4

α = ⇑3
β = ⇑4

Figure 4.4: Conversion of jump lists of matching statistics to lcf values. There are four
jumps, indexed 1–4, at positions 0, 1, 5, and 9 to levels 4, 7, 5, and 6, respectively:
J = ((0, 4), (1, 7), (5, 5), (9, 6)). There are three probe candidates. For p1, we have α = 1,
β = 3, and the adjusted jump levels within p1 are 4, 5, and 1 by Lemma 4.19. The lcf
value is the maximum 5 of these levels. For p2, the jump set begins to the left of the probe
(α = 2); the jump level at the left end of p2 is reduced to 6 (see Lemma 4.19).

As we move through the jump list of each collection c, the unspecificity U for each pj

from (3.5) and the appropriate LCF statistic are incremented. Of course, the collection
to which the current target is associated is skipped, so that U is not erroneously
increased. It is assumed that initially U and all LCF statistics are zero. Let δ denote
the difference between the probe length |pj| and the lcf or lcf∗ value. Then for δ < ∆,

U(pj | T ; ∆) ← U(pj | T ; ∆) + e−b·δ+ζ ,

LCFS(pj | T ; ∆)δ ← LCFS(pj | T ; ∆)δ + 1.

If a non-integer value of lcf∗ is used to obtain δ, it can be rounded up to obtain a
conservative integer index for LCFS.

4.6 Trading Speed for Precision

The method that we presented in Sections 4.3 through 4.5 is sufficiently fast even for
large scale probe design projects in practice. It also has additional desirable features.

79

Chapter 4 Efficient Computation of Longest Common Factor Statistics

• Jump lists of matching statistics need only be computed once for all target-
collection-pairs and can then be stored on disk. If the probe selection criteria
are later changed (e.g., to a different length range), only the part of Section 4.5
must be re-done.

• All sufficiently large lcf values (lcf(p, Tc) ≥ R0
min) are computed before they are

aggregated into the LCF statistics. This allows, for example, to obtain detailed
information about which collections c are almost certain to cross-hybridize (say,
when lcf(p, Tc) ≥ |p| − 3).

• It is also the individual knowledge of lcf values that allows their combination
with lcf1 to obtain adjusted values lcf∗.

If time is at a premium, however, the individual lcf values may not be of interest,
and it is more important to obtain the worst case or maximal lcf value for each
probe candidate quickly. This goal can be achieved by a minor modification of the
bucket scan algorithm, but it yields a less robust unspecificity measure. On the other
hand, if precise estimates are more important than short running times, the jump
list processing in Section 4.5.2 can be modified to directly estimate the hybridization
probability β from the Gibbs energy ∆rG

◦ by (2.5). We now provide details on these
two variations of the basic probe selection method.

Finding the maximal lcf value. If the two-dimensional array MS[i][c] is replaced by
a one-dimensional vector MS[i] — no jump lists are required in this case because the
amount of data is reduced by a factor of c—, the bucket scan algorithm is easily mod-
ified to return the maxima of matching statistics over all collections. It is important,
though, that the target’s own collection cs is not considered, because otherwise the
returned maximum would always be the maximum possible value Rmax.

The only required changes to the algorithm in Figure 4.3 are to replace each of the
following lines.

• Lines 2 and 6 become: if (cl[r] 6= cs) then MS[i]← µ

• Line 10 becomes: if (MS[i] < µ) and cl[r] 6= cs) then MS[i]← µ

For a probe p starting at position i in target s, we obtain the maximal longest common
factor across collections `(p | T) := maxc 6=cs

lcf(p, Tc) (within the range of interest)
from maximal matching statistics across collections stored in MS[i] (within the range

80

4.6 Trading Speed for Precision

of interest) from the relationship

`(p | T) = max
c 6=cs

lcf(p, Tc)

= max
c 6=cs

max
k=0..L−1

ms
p|Tc

k

= max
c 6=cs

max
k=0..L−1

min{ms
s|Tc

i+k , L− k} (by Lemma 4.18)

= max
k=0..L−1

min{(max
c 6=cs

ms
s|Tc

i+k), L− k}

= max
k=0..L−1

min{MS[i + k], L− k}.

The main advantage of this method lies in its considerably reduced memory require-
ments: Only one instead of C vectors of matching statistics are stored for each target;
jump lists are not required. The unspecificity (3.5) of probe pi becomes

U(pi | T) = exp(−b · [|pi| − `(pi | T)] + ζ);

it cannot discriminate between a single or several transcripts with long lcf values.

Using jumps to compute energy-based probe unspecificity. The LCF-based un-
specificity measure (3.5) has the inherent disadvantage that all common factors of the
same length are treated equally, independently of their sequence composition.

Recall that we arrived at (3.5) after several approximations. The most principled
definition would have been to set U(pi | T) =

∑

j∈T\T (i) Aij . In (3.1), we approximated

Aij by the hybridization probability βij, which we obtained by (2.5) from the Gibbs
energy of the longest common factor of pi and transcript tj . Only in (3.3) and (3.4)
we replaced the specific energy contribution of a dinucleotide by an average value.

Given enough computational resources, we can take one step back and use the un-
specificity definition U ′(pi | T) =

∑

j∈T\T (i) βi,j from (3.1), where we now express βij

through the difference ∆∆Gij between the standard Gibbs energy of hybridization
∆rG

◦
i of pi to its intended targets and the energy ∆rG

◦
ij of pi to transcript tj . In other

words, ∆∆Gij := ∆rG
◦
ij − ∆rG

◦
i > 0 is a more precise measure of the stability dif-

ference between the intended hybridization and the potential cross-hybridization with
transcript j than the averaged δ · γ with δ = |pi| − lcf(pi, tj) in (3.2). It follows that
we can replace (3.5) by

U ′(pi | T) =
∑

j∈T\T (i)

1

1 + exp[∆∆Gij/(Rτ)− ζ]
≤

∑

j∈T\T (i)

exp(−∆∆Gij/(Rτ) + ζ),

where R, τ , and ζ are as in Section 3.2.

81

Chapter 4 Efficient Computation of Longest Common Factor Statistics

It remains to compute ∆∆Gij = min{∆rG
◦(s) : s � pi and s � tj} − ∆rG

◦(pi) ef-
ficiently. We evaluate the Gibbs energy only for perfect matches, but the longest
match need not be the most stable one: A long AT-rich common factor is less stable
than a slightly shorter GC-rich common factor. Because of monotonicity, however, the
“most stable common factor” s minimizing ∆rG

◦(s) must still begin at a jump in the
matching statistics mspi|tj . Therefore we only need to modify the jump list process-
ing (Section 4.5.2) slightly: Instead of using the [i, L]-jump-sets to determine longest
common factors, we use them to minimize ∆rG

◦(s) by evaluating the Gibbs energy
of the longest perfect match at every jump. Computational studies show that with
the energy-based unspecificity evaluation, probe selection takes 2 to 3 times as long
as with LCF-statistics-based selection.

4.7 Probe Selection for Saccharomyces cerevisiae

We applied probe selection based on longest common factor statistics and on stability
difference (∆∆G) estimates to all 6342 open reading frames (ORFs) of Saccharomyces
cerevisiae (baker’s yeast) and their reversed complements (12684 sequences, about
18 Mbp). All computations were carried out on a Compaq AlphaServer ES45 with
four 64-bit 1 GHz processors and 27 GB of main memory (only 250 MB were used).
Programs were compiled with the native C compiler with all speed optimizations.

The preprocessing took 38 minutes (35 seconds for the creation of the enhanced suffix
array, and 37 minutes for the jump lists of all matching statistics). The values of
18 · 106 · 12684 ≈ 240 · 109 matching statistics are evaluated during this time. Storing
these in the straightforward way using 1 byte per value would take 2 · 240 GB for
ms0 and ms1. Our jump list format uses 3 bytes per jump, and we only store jumps
to levels of at least 10 for ms0 and to at least 13 for ms1. The resulting file requires
only 2.4 GB, only 0.5% compared to the naive approach. This corresponds to about
800 · 106 jumps overall. The estimate E+

L from (4.4) predicts 2.3 · 106 jumps to levels
10 or above for exact matching statistics ms0, and 1.4 · 106 jumps to level 13 or above
for ms1. The observed number of jumps exceeds the predicted number by a factor
of more than 200, because the yeast genome is not a random text: Local similarities
are frequent, and jumps to medium levels occur more often than in random texts.
Nevertheless, the use of jump lists saves 99.5% of the required space.

We selected oligos under the following constraints: length between 19 and 21 bp; stan-
dard Gibbs energy of intended hybridization ∆rG

◦ between −19.8 and −18.8 kcal/mol
at 45◦C (318 K) and a salt concentration of 0.075 M NaCl. We attempted to pro-
vide the 20 best probes for every ORF and its reversed complement. In 514 out of
12684 cases, even the best probe is not satisfactory, either because of lack of suitable
candidates in very short ORFs, or because of high similarity to other sequences.

82

4.7 Probe Selection for Saccharomyces cerevisiae

The longest common factor based selection took 138 minutes, and the selection based
on ∆∆G took 317 minutes. When the oligo candidates are restricted to a fixed length
of 20, the times drop to 57 minutes and 127 minutes, respectively. The energy-based
approach is slower by a factor of only 2.0 to 2.5, but is naturally more accurate.

83

84

Chapter 5

Unique Probe Selection

In Chapters 2 through 4, we have described in a bottom-up way how the specificity
of probe candidates can be efficiently estimated by a sequence-based quantity, the
longest common factor statistics; see Equation (3.5). We have also discussed ways of
trading computational speed for precision (Section 4.6). Of the factors that influence
the affinity coefficient Aij in (2.2), we have mainly discussed the hybridization proba-
bility factor βij. In summary, we have proposed solutions to Problems 2 to 4 from the
introduction, but we have not yet said how to solve the main probe selection problem
(Problem 1) as a whole, i.e., how to find a good set of probes, when several candi-
dates are pre-selected and ranked by their (un)specificity. In the present chapter, we
thus define criteria and propose methods for probe set selection (Sections 5.1 and 5.2,
respectively). The chapter concludes with the presentation of a general workflow de-
scription for unique probe selection (Section 5.3). Our software Promide is discussed
in more technical terms in Appendix A.

5.1 Criteria for Probe Set Selection

From the discussion in Section 2.2 and in particular from Example 2.2, we conclude
that to minimize variance in expression level estimates in the case of unique probes,
affinity coefficients should have the same order of magnitude and approximately the
same distribution across the probes of all targets. It would be even better if they
were as constant as possible. Specificity selection has ensured that the hybridization
probability factor βij satisfies βij � 0 for the intended target j of probe i and βij ≈ 0
for all other transcripts j in (2.2). We face the dilemma that we cannot exactly quantify
the contribution of the other factors in (2.2), but a reasonable approach is to avoid
probes spanning target positions that show a risk of producing extreme factors.

In particular, assuming sufficient specificity, selected probes should

(a) be located in a stretch of sequence with “normal” base composition to avoid
excessively many or few bound biotin molecules in the fragments that hybridize

85

Chapter 5 Unique Probe Selection

to it (modeled by the γ-factor in (2.2)). This requirement can actually be ad-
dressed before the probe selection process by pre-filtering target sequences for
low complexity regions and masking problematic regions.

(b) be located close to the 3’-end of the target to ensure a constantly strong signal,
even under slight variations of the biotin-labeling step (the ρ-factor in (2.2);
see also Section 1.3.2). In principle it suffices to keep targets reasonably short.
A problem arises when the transcription stop site is not known; resources like
GeneNest (Haas et al., 2000) are helpful in this situation. An alternative to
cutting the target at a fixed position is to integrate the 3’-end distance into a
position-specific preference factor (see also the next requirement).

(c) not be selected from a part of the target where the cRNA fragments are likely to
bind to other cRNA fragments instead of the intended probe. This requirement
corresponds to the σ′′-part of the σ-factor in the discussion following (2.2). We
introduce a position-specific preference factor fk to model both the ρ- and σ′′-
factors in (2.2) of probes that span position k. Details are given below.

(d) not be highly self-complementary (the σ′-part of the σ-factor in the discussion
after (2.2)). Probe self-complementarity is only a problem in extreme cases, and
it suffices to check for self-complementarity at the latest step, i.e., when post-
processing the final candidate list. This procedure is described in Section 5.2.

As before, we assume that the effect of erroneous probes on the chip can be ignored
(not all probes are synthesized perfectly and thus some may have the wrong sequence;
we present a method for minimizing one source of error in Chapter 8). We also assume
that cRNA fragments do not compete for probes because probes are in excess. The
converse effect that probes compete for cRNA fragments is kept small by distributing
the probes for the same target uniformly across the chip. Additionally, and to increase
the general robustness of the design, we may add the following item to the list of
requirements: Selected probe should

(e) be uniformly distributed over the target sequence. Indeed, high-quality probe
candidates tend to cluster together: If a probe p starting at position k satisfies
all criteria, a probe starting at position k+1 or k−1 is likely to share some of p’s
properties. Candidate post-processing therefore should include a de-clustering
step; it is described in Section 5.2.

Computing preference factors. Every position in a target sequence sj receives a
preference factor f that incorporates the distance from the 3’-end and models the risk
that the base at this position form a basepair with another base in a molecule of the
same target type j.

86

5.1 Criteria for Probe Set Selection

• The position-specific factor ρ should be approximately equal to 1 for positions
less than 1000 nt away from the 3’-end and then decrease exponentially fast for
larger distances d. A suitable function is given by

ρ(d) =
1

1 + exp((d− 1000) · drop/100)
,

which depends on a tunable parameter drop that controls how quickly ρ drops
to the right of 1000. Figure 5.1 shows the behavior of ρ(d) for different values of
drop. The choice of drop = 2 appears reasonable, because it marks probes that
are 1500 nt away from the 3’-end as “borderline” (ρ ≈ 10−4).

• We need to estimate the probability that the base at a given distance d from the
3’-end is available for hybridization with a probe on the chip, i.e., the probability
that it is unpaired in a sufficiently stable secondary structure that the cRNA
target forms with itself. An estimate of this probability is given by the so-called
“S-num value” introduced by Jaeger et al. (1989, 1990). Given several predicted
optimal and suboptimal foldings of the target, S-num(d) is defined as the fraction
of foldings in which the base at distance d is unpaired. The estimations can be
carried out, for example, with the Mfold software (Zuker et al., 1999; Zuker,
2003).

Combining these pieces of information, we define the preference factor for distance d
from the 3’-end as

f(d) := ρ(d) · S-num(d).

Avoiding unavailable target bases. The preference factor does not contain the risk
that a target base forms a basepair with a base in a target molecule of a different
target type. Let us call such a target base unavailable. The following argument shows
that special consideration of unavailable bases is unnecessary and can be accounted
for by a simple trick already during LCF statistics computation.

The idea is to include the reverse complement of each target sequence (i.e., the anti-
sense sequence) together with the target sequence (sense) in the same collection and
compute LCF statistics against such extended collections. Assume that a certain tar-
get sequence j has unavailable bases because the antisense fragments tend to bind to
bases in an antisense fragment of another target sequence j′. This means that the se-
quence of the antisense fragment in j′ is identical to the sense sequence of j and hence
to the probe sequence. Therefore this probe candidate receives a high lcf value with
the collection of j′, provided that the antisense sequence of j′ has been included.

87

Chapter 5 Unique Probe Selection

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Distance from 3’−end

ρ
(lo

g−
sc

al
e)

Position−specific preference factor ρ

Drop=1
Drop=2
Drop=3

Figure 5.1: Position preference ρ(d) as a function of the distance from the 3’-end d.

5.2 Obtaining the Final Probe Set

After candidate selection, we have a list of probes candidates P = (pi)i=1..m. Each
probe is specified by its starting position in the target, expressed as the distance di

from the 3’-end, and its length `i, i.e., pi = (di, `i).

Each probe comes with a hybridization probability estimate βi ≈ 1 (with respect to
its intended target), an unspecificity measure Ui (i.e., total cross-hybridization risk
with respect to unintended targets). At this time, we remove probe candidates with
Ui ≥ U , where U is the unspecificity threshold. For example U = 10−4 means that
modulo approximations, the total probability that a probe candidate cross-hybridizes
to any non-intended target is four orders of magnitude smaller than the hybridization
probability to its intended target, assuming equal target concentrations. Less specific
probes for which U > U are not further considered as candidates.

Probe pi also has its preference factor fi ≤ 1 that is an aggregate measure (e.g., the
median) of all preference factors f(di), . . . , f(di + `i − 1) at positions spanned by pi.
At this time, we also assess the self-complementarity of pi as the hairpin formation
probability hi, defined via the energy of the most stable secondary structure of pi

that contains a stem-hairpin-loop (see Figure 1.2). It is computable with Mfold, for
example. Spitzer (2003) provides a thermodynamically motivated alignment algorithm
to estimate hi.

88

5.2 Obtaining the Final Probe Set

For the purposes of candidate ranking, we compute a badness measure Bi of each
candidate that includes the unspecificity Ui, the hairpin formation probability hi, and
the preference factor fi. Excellent probes candidates have Ui ≈ 10−6, hi ≈ 0, and
fi ≈ 1. Bad candidates have Ui ≈ 1, hi ≈ 1, and fi ≈ 0. Therefore the badness of
probe i is defined as

Bi :=
Ui

fi · (1− hi)
,

because it avoids that good fi and hi values decrease Ui. It follows that Bi ≥ Ui.

We assume that the candidate list is sorted by badness B1 < B2 < · · · < Bm. The
task is to select a set of M probes from the candidates. The following method takes
care of the remaining probe distribution considerations with a de-clustering approach.
The method maintains and dynamically updates a modified badness value B′

i for each
probe, which is initially set to Bi. Probes are successively removed from the initial
candidate list P and placed in the final selection S until M probes have been selected
or we run out of candidates. De-clustering of candidates is achieved by increasing the
modified badness value for all probes that begin close to probes that are already in
the selection.

Final Probe Set Selection by De-Clustering

0. S ← (); P = (pi); B′
i ← Bi for all i

1. while (|S| < M and |P | > 0)
2. Find the probe pi in P with minimal B′

i-value
3. Update B′

i:
4. Determine k ∈ S be such that |di − dk| → min
5. B′

i ← Bi + B(|di − dk|)
6. if B′

i changed then go back to step 2.

7. warn if B′
i exceeds a threshold B

′

8. Remove pi from P ; add pi to S.
9. Now S contains the selected probes ranked by their final B′

i.

The function B(δ) determines as how much worse a probe candidate is considered for
ranking purposes when a nearby probe (δ nt away) has already been selected. The
function values must be small in absolute magnitude in order not to prefer low-quality
probes too much and drop to zero quickly for increasing distances. An obvious choice
is B(δ) := 10−δ. Warnings are given when the modified badness exceeds a pre-defined

threshold B
′
, such as 10−1. It must then be decided whether these probes should be

used to obtain a full set of M probes or whether it is better to discard them and accept
a smaller set. This choice will depend on the intended application and the size of the
project.

For small-scale projects, users might want to hand-inspect examine all reasonable
candidates with their Bi values or individual Ui, hi and fi values anyway. In larger

89

Chapter 5 Unique Probe Selection

projects, picking the M probes with the lowest Bi values may suffice, even if some of
them overlap.

To estimate the affinity coefficient of pi ∈ S with respect to its intended target, we
may assume that ai ≈ βi · (1 − hi) ≈ 1 because of the selection criteria. Refined
estimation methods were discussed in Chapter 2.

5.3 Workflow

A typical session of probe selection for gene expression proceeds as enumerated below.
Note that, while steps 1. and 2. are essentially independent of the probe selection
algorithm, they are important and complex tasks themselves and may in fact take
more time than the rest of the process. The other steps are relatively specific to the
longest common factor approach and to the Promide software package.

1. Obtain the transcriptome of the organism, e.g., as a file in FASTA format where
each transcript has its unique identifier. Choose and specify transcript collections
if desired; these are additionally marked by unique collection identifiers.

2. Specify target sequences. Targets should be kept relatively short and restricted
to the vicinity of the 3’-end of transcripts (about 1000 nt). Not all transcripts
need to be targets, but each target is usually obtained from a single transcript
collection to which it is then associated. For example, a target might be a part
of the consensus sequence of a strongly homologous gene family. Heise (2003)
describes a way to generate targets containing only probe candidates that occur
in all members of a given sequence family.

3. Process target sequences for quality. Mask sequence parts of low complexity or
highly biased sequence composition to avoid extreme γ-factors in (2.2). Compute
the preference factor f(d) for each position that comprises a factor for the 3’-end
distance d and for the risk of intra-target basepair formation at this position.

4. Create the enhanced suffix array (Section 4.2) of the entire transcriptome. If
desired, the reversed complements of the target sequences can be included to
ensure that no probes at unavailable target bases are selected (see paragraph
“Avoiding unavailable target bases” in Section 5.1). Promide uses the external
program mkvtree, part of Stefan Kurtz’s vmatch software package, to build the
array.

5. Compute jump lists of matching statistics of all targets against all transcript
collections (Sections 4.3 and 4.4). This concludes the pre-processing steps. Note
that, up to this point, it was not necessary to specify any desired probe proper-
ties.

90

5.3 Workflow

6. Specify the experimental conditions (the “hybridization parameters” θ that en-
ter the calculations are the temperature and the sodium ion concentration) and
the desired probe properties, i.e., their length range and Gibbs energy range
under the given conditions). It requires some experimentation to find combina-
tions that work well. We suggest to obtain reasonable values from experimental
protocols. For the GeneChip r© arrays, the probe length is 25, the temperature
is 318 K, and the Na+-concentration in the washing phase is 0.1 M, such that
ln([Na+]) = −2.3. For average probes of average GC-content, typical ∆rG

◦ values
are around −23.2 kcal/mol. A program that computes the average Gibbs energy
of random probes with given length and GC-content under specified hybridiza-
tion conditions was developed by Gräfe (2003). It makes sense to allow variable
length probes, but to ensure a relatively tight range of stability.

7. For each target, compute the longest common factor statistics and unspecificity
values (Section 3.2) of all probe candidates that satisfy the specified criteria.

8. For each target, select a final probe set of desired size (Section 5.2). Spitzer
(2003) has written a program that selects a final probe set from candidates
generated by Promide.

If several probe sets with different properties are desired, only the last two steps need
to be repeated for each set. This is an advantage of separating the computation of
matching statistics from the computation of longest common factors in the Promide

implementation.

91

92

Chapter 6

Non-Unique Probe Selection and
Signal Decoding

6.1 Preliminaries

Experience shows that it is difficult to find sufficiently unique probes for transcripts
from families with many similar sequences. For example, for some of the yeast ORFs
(Section 4.7), we did not find unique probes because of their high similarity to other
ORFs. Kaderali and Schliep (2002) report similar problems on a different set of
sequences. Therefore, it is reasonable to allow non-unique probes, i.e., probes that
potentially hybridize to more than one target in a controlled way.

Intuitively, we expect that designing a chip with non-unique probes should be easier
than designing a chip with unique probes. However, we have to state clearly what we
mean by non-unique probes.

Definition 6.1 (Non-unique probe). Let T = (T1, . . . , TC) be a transcriptome
with transcript collections Tc (c = 1, . . . , C). Let S = (s1, . . . , sC) be the set of target
sequences, where sc is the (possibly empty) target sequence for collection c. It is
assumed that every substring of sc not containing wildcards or separators is also a
substring of Tc. Let θ denote hybridization conditions, and let a(p, t; θ) denote the
affinity coefficient between p and t under θ. A probe pi is called a non-unique probe
for (S, T) if there exist an index set1 T (i) ⊂ {1, . . . , C} with |T (i)| ≥ 1 (the intended
targets2) and an affinity threshold ε > 0 (say, ε ≈ 0.1), such that

• a(pi, sj) ≥ ε for all j ∈ T (i), and

• U(pi | T)� ε, where U(pi | T) was defined in Equation (3.5).

1The index set T (i) bears no relation to the transcript collection Tc.
2It follows that non-unique probes are in fact not necessarily unique probes and that unique probes

are included among non-unique probes with |T (i)| = 1.

93

Chapter 6 Non-Unique Probe Selection and Signal Decoding

Note the asymmetry in the definition: A non-unique probe must show a consistent
signal for a set of targets, but no signal for the remaining set of transcripts (or collec-
tions). This is a safety precaution: Suppose that there are two transcript collections
T1 and T2, each with a single transcript. Suppose further that probe p occurs near the
3’-end of T1, so it is part of target s1, but also occurs far away from the 3’-end of T2, so
it is not part of target s2. Depending on the parameters of the IVT labeling reaction,
T2 may or may not contribute a signal to p in this case. We would not know how to
interpret the signal of p: Should it be interpreted as a sum of expression levels of T1

and T2, or does it only represent the expression level of T1? The correct interpretation
may vary with the labeling protocol and cannot be determined in advance. However,
a consistent signal over all intended targets is required. Additionally, while the affinity
coefficients may differ for the same probe from target to target, we must be able to
separate the intended signal from the remaining noise. For these reasons, non-unique
probes are not much more frequently found than unique probes.

Experience shows that for quantitative expression analysis, non-unique probes are
useful mainly to discriminate between members of highly homologous gene-families
where not sufficiently many unique probes are found for each target. In particular,
non-unique probes are useful for inferring mixtures of splice variants of the same gene
(Wang et al., 2003).

Non-unique probes are more versatile for qualitative analyses, i.e., for detecting the
presence or absence of certain transcripts or genomic sequences. Possible applications
are SNP detection (Kozal et al., 1996; Cutler et al., 2001), species barcoding (Hebert
et al., 2003a), e.g., virus subtyping (Rash and Gusfield, 2002; Wang et al., 2002), and
detection and identification of pathogens in water samples (e.g., Loy et al., 2002).

In both quantitative and qualitative analysis, probe candidate selection proceeds in
the same way and needs only to be slightly modified from the selection process for
unique probes; it is summarized in the paragraph below. The final probe set selection,
however, becomes more complex and is differently motivated for quantitative and
qualitative analysis. The additional complexity arises from the fact that probe signals
do not correspond to single expression levels, but are mixtures of these. Therefore
probe set selection must ensure the decodability of the signals into expression levels.
Further details follow in Sections 6.2 and 6.3.

Probe candidate selection. As before, for each probe candidate pi, the longest com-
mon factor statistics LCFS(pi | T) are computed. Suppose it is found that LCFS =
(k, 0, 0, 0, 0, 0, 0, u, v, w, . . .) with k ≥ 1 and u, v, w, · · · ≥ 0. This indicates that the
probe candidate is relatively specific for a certain set of k transcripts (for unique
probes, we would require that k = 1). Now it additionally remains to check that
pi occurs indeed in k different targets (and that these targets are associated to the
same k collections Tj with lcf(pi, Tj) = |pi|). This could be accomplished with an

94

6.1 Preliminaries

additional suffix array for all targets, or by simpler methods such as a hash-table or a
Boyer-Moore search. Since LCFS-filtered non-unique probe candidates are much rarer
than all potential probe candidates, time efficiency is not primarily important in this
step.

Let σ(i) denote the number of different targets with an occurrence of pi. If the veri-
fication shows that σ(i) < k = LCFS(pi | T)0, this is an indication that pi should not
be chosen because it could potentially give a signal for k different transcripts, but is
not guaranteed to. Of course, this checking step can be skipped if S = T . Note that if
the target sequences are properly chosen, it should not happen that σ(i) > k because
it is assumed that each substring of a target also occurs in the associated transcript
collection.

Experience and the hybridization probability computations in Section 2.3.3 show that
a good signal is still obtained at probe pi with targets t for which lcf(p, t) = |p| − 1.
Therefore one can relax the above requirements slightly and use the following LCF-
statistics-based definition of non-unique probes.

Definition 6.2 (Non-unique probe, LCFS-based). Let T = (T1, . . . , TC) be a
transcriptome with collections tc (c = 1, . . . , C).3 Let S = (sc) be the set of target
sequences, where sc is the target sequence for collection c. A probe pi is called a
non-unique probe for (S, T) if

LCFS(pi | T) = (σ0(i), σ1(i),

µ
︷ ︸︸ ︷

0, . . . , 0, u, v, . . .)

LCFS(pi |S) = (σ0(i), σ1(i), 0, . . . , 0
︸ ︷︷ ︸

µ

, u′, v′, . . .)

with σ0(i) > 0, σ1(i) ≥ 0, u, u′, v, v′, · · · ≥ 0, and µ is sufficiently large (µ = 6 or µ = 7
is safe in practice). Note that it is required that σ0(i) and σ1(i) take the same value
in both LCF statistics.

The candidates determined in this way form an affinity matrix (Aij) with 0� Aij ≤ 1
for j ∈ T (i) and Aij ≈ 0 for j /∈ T (i). Here T (i) denotes the set of intended targets for
probe i (lcf(pi, Tj) ≥ |pi|−1). Similarly we write P (j) for the set of probes hybridizing
to target j.

As with unique probes, we find that good non-probe candidates frequently occur in
clusters in the target sequences; probes in the same cluster tend to have the same
properties. If this happens and enough candidates are available, only one candidate
from each cluster is selected using the de-clustering method described in Section 5.2
in order to prune the candidate matrix.

3In some applications, tc may in fact be a whole (virus) genome, so T is not a transcriptome but a
set of genomes. We will stick to the original terminology, however.

95

Chapter 6 Non-Unique Probe Selection and Signal Decoding

A final probe set is obtained by choosing rows of this matrix according to certain
optimality criteria. The exact criteria for quantitative and qualitative analysis are
discussed in Sections 6.2 and 6.3, respectively.

6.2 Design and Decoding for Quantitative Analysis

From the m probe candidates whose affinity values form the m rows of the affinity
matrix A, we would like to select at most µ ≤ m rows. We write H for the hybridization
matrix

Hij := I{Aij 6≈0} =

{

1 if j ∈ T (i),

0 otherwise.

In other words, H is a binary approximation of A.

We denote the index set of the chosen rows by D for design4. We have D ⊂ {1, 2, . . . , m}
and |D| ≤ µ. Let AD and HD denote the matrices obtained from A resp. H by re-
moving all rows whose index is not in D.

The requirements on D are that the equation y = AD · x must be stably and robustly
solvable for the n expression levels x, given the |D| probe signals y. More precisely,
we require the following properties.

• Each target is covered by a minimum number M≥ 1 of probes, i.e.,
∑

i HD
ij ≥

M for all j.

• On average, each target is covered by A probes, i.e.,
∑

i,j HD
ij ≥ n ·A. It follows

that in a valid design, on average each of the |D| probes hybridizes to at least
nA/|D| targets.

• The minimization problem ‖y −AD · x‖ → min has a unique solution, implying
that the matrix AD has full rank n and that necessarily |D| ≥ n.

• Small errors in A or in y do not strongly influence the solution x.

The last requirement is particularly important for a robust design; it is formalized by
the notion of the condition of a matrix. Often the condition is only considered for
square matrices; here we require a more general notion that also applies to rectangular
m × n matrices. It can be defined via the singular value decomposition and the
pseudoinverse A− of a matrix A.

4We are talking about chip designs, not combinatorial designs.

96

6.2 Design and Decoding for Quantitative Analysis

6.2.1 Matrix condition numbers

We denote the set of real-valued m× n matrices by R
m×n, the transpose of a matrix

A ∈ R
m×n is denoted by AT ∈ R

n×m, and the n×n identity matrix is written as In.

Definition 6.3 (Singular value decomposition). Suppose that A ∈ R
m×n has

rank r ≤ min{m, n}. A singular value decomposition (SVD) of A consists of a
triple (U, Σ, V) such that A = UΣV T, U ∈ R

m×m and V ∈ R
n×n are orthogonal

(UTU = UUT = Im; V TV = V V T = In), and Σ = diag(σ1, . . . , σmin{m,n}) ∈ R
m×n is

a rectangular diagonal matrix, where σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin{m,n} are
called the singular values of A.

One can show that the singular values are uniquely determined by A, and that they
are equal to the square roots of the eigenvalues of the positive semidefinite matrices
ATA or AAT (Golub and van Loan, 1996). The singular value decomposition provides
a convenient way to define the pseudo-inverse A− of A which can be used to directly
solve the over-determined system y = A · x as a least squares minimization problem
‖y −A · x‖22 =

∑

i (yi −
∑

j Aij · xj)
2 → min.

Definition 6.4 (Pseudo-inverse). Let A be an m×n matrix of rank r ≤ min{m, n}
with SVD A = UΣV T. Define the n × m matrix Σ− as the diagonal matrix Σ− :=
diag(1/σ1, . . . , 1/σr, 0, . . . , 0). Then A− := V Σ−UT ∈ R

n×m is called the pseudo-
inverse of A. It has the property that ‖y − A · x‖22 → min is solved by x = A− · y
(Golub and van Loan, 1996).

Apart from solving the least-squares minimization problem, the pseudo-inverse has
many useful properties. One can show, for example that if y ∈ R

m is not in the range
of A, then yA := AA−y is the orthogonal projection of y on the range of A.

Now we are ready to define the condition cond(A) of a rectangular matrix A ∈ R
m×n

of full rank n (see also Golub and van Loan, 1996, p.230). We assume that for vectors,
‖·‖ denotes the Euclidean norm and for matrices, it denotes the associated spectral
norm.

Definition 6.5 (Condition). Let A be an m × n matrix of full rank n ≤ m, and
let σ1 ≥ σ2 ≥ · · · ≥ σn > 0 be the singular values of A. Then the condition of A is
defined as

cond(A) := σ1/σn.

If A does not have full rank n, then σn = 0, and we set cond(A) := +∞.

The condition measures how strongly changes in the measurement y influence the
solution x of the minimization problem ‖y − A · x‖ → min, and even how changes in
A affect the solution. For example, the following results are known.

97

Chapter 6 Non-Unique Probe Selection and Signal Decoding

Lemma 6.6. Let A be an m × n matrix of full rank n ≤ m with singular values
σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Let y ' A · x denote that x solves ‖y − A · x‖ → min. Let x
and ∆x be such that y ' A · x and y + ∆y ' A · (x + ∆x). Then

‖∆x‖
‖x‖ ≤ cond(A) · ‖∆y‖

‖yA‖
,

where yA is the projection of y on the range of A as above. If A varies additionally,
such that y + ∆y ' (A + ∆A) · (x + ∆x) and ‖∆A‖ < σn, then

‖∆x‖
‖x‖ ≤

cond(A)

1− cond(A) ‖∆A‖/‖A‖ ·
[

‖∆A‖
‖A‖

(

1 + cond(A)
‖y − yA‖
‖yA‖

)

+
‖∆y‖
‖yA‖

]

.

More details and pointers to a proof of Lemma 6.6 can be found, for example, in
the book by Werner (1992). The definition of the condition of A was based on the
Euclidean norm mainly out of convenience because it can be derived from the largest
and smallest nonzero singular value of A. However, every pair of vector norms induces
a pair of matrix norms, which implicitly defines a condition number. Fortunately,
all these norms are equivalent, i.e., within constant factors of each other, in finite
dimensional spaces.

As defined, the condition of a matrix focuses on relative errors in the vector norms.
This can be problematic if the components of the observations range over several
orders of magnitude. Therefore we also consider the Skeel condition number of A,
which allows componentwise bounds.

Definition 6.7 (Skeel condition number). Let A be an m× n matrix of full rank
n ≤ m, and let A− be its pseudo-inverse. We denote by CA the n× n matrix given by
the product of the element-wise absolute values of A− and A: CA := |A−| · |A| ≥ 0.
The Skeel condition number of A is defined as conds(A) := maxi

∑

j CA;i,j (maximal
row sum of CA).

Lemma 6.8. Under the conditions of Lemma 6.6, we have

‖∆x‖∞
‖x‖∞

≤ conds(A) ·max
i

|∆yi|
|yA;i|

,

where ‖x‖∞ denotes the maximum norm ‖x‖∞ := maxj |xj|.

A development from first principles leading to Lemma 6.8 can be found, for example,
in the textbook by Deuflhard and Hohmann (2002).

The Skeel condition is invariant under row-wise rescaling: conds(RA) = conds(A) for
any non-singular diagonal matrix R. In particular, conds(R) = 1, whereas cond(R) =
maxi |Rii|/ mini |Rii|.

98

6.2 Design and Decoding for Quantitative Analysis

The bounds in Lemma 6.8 concern the components of y, but the norm of x. Unfor-
tunately there is no easily computable universal number C with maxj (|∆xj |/|xj|) ≤
C ·maxi (|∆yi|/|yi|) independently of x and y.

6.2.2 Condition optimization

Given the significance of the condition number of a matrix, it is desirable to select the
design D in such a way that cond(AD) or conds(A

D) is minimized, as this promises
that y can be reliably decoded even in the presence of errors in A and measurement
errors in y. It should be noted that we use either condition number (which is in both
cases based on the concept of the pseudo-inverse) only as a design principle. For
decoding the observed data y, we would not solve y = A · x in a least-squares sense,
but in a more robust way, e.g., by minimizing the sum of absolute errors.

Naturally, the choice of minimizing either cond(A) or conds(A) when selecting a design
makes a difference. Intuitively, minimizing conds(A) aims at a block diagonal matrix
with entries of possibly different magnitude, while minimizing cond(A) also aims at
entries of equal magnitude. Both objectives are reasonable; and we will follow them
in parallel in this section.

We assume that the affinity matrix that consists of all candidates has full rank n,
and that the associated hybridization matrix H satisfies the coverage constraints
minj

∑

i Hij ≥M and
∑

i,j Hij ≥ nA.

We let D := {D ⊂ {1, 2, . . . , m} : |D| ≤ µ, rank(AD) = n, minj

∑

i HD
ij ≥ M,

∑

i,j HD
ij ≥ nA} denote the set of admissible designs under the side conditions. It is

assumed that D is not empty; otherwise we have to increase µ or decrease M or A.
The combinatorial problem is to minimize cond(AD) or conds(A

D) among all D ∈ D.

A greedy heuristic. To our knowledge, the condition optimization problem by row
selection has not been posed in the mathematical literature before, although other
condition optimization problems have been examined by Elsner et al. (1994, 1995). It
is a difficult problem because the singular values of two matrices AD and AD−i, where
D − i := D \ {i}, are not related in an obvious way (although inequalities could be
derived from the Courant-Fischer min-max Theorem), and also because the landscape
of admissible designs potentially has many local minima. In spite of these difficulties,
we propose a greedy heuristic to obtain a good admissible design.

The procedure is shown in Figure 6.1. It starts with a full design (which is assumed to
satisfy the coverage constraints) and iteratively removes a single row from the design.
The row i∗ is chosen in such a way that the remaining design D − i∗ still satisfies
the coverage constraints and that cond(AD−i∗) is minimized among all cond(AD−i) for
i ∈ D (lines 5–6). If the resulting design is admissible (i.e, if it is small enough), it is

99

Chapter 6 Non-Unique Probe Selection and Signal Decoding

Greedy Condition-based Design

Input: An m× n affinity matrix A and hybridization matrix H
Note: Here cond can be either cond or conds.
1. D ← {1, 2, . . . , m}
2. B ← ∅, C ← +∞
3. while (|D| > n)
4. c← +∞, i∗ ← 0
5. for each i ∈ D
6. if (minj

∑

i′ H
D−i
i′j ≥M) and (

∑

i′,j HD−i
i′j ≥ nA)

and (cond(AD−i) < c) then c← cond(AD−i), i∗ ← i
7. if i∗ = 0 then break
8. D ← D − i∗

9. if (|D| ≤ µ) and (c < C) then B ← D, C ← c
10. if (B = ∅) then B ← D, C ← c
Output: Best found design B with condition C = cond(AB)

Figure 6.1: Greedy heuristic for condition-based design.

compared against the current best admissible design B (line 9). This is repeated until
the design size equals the number of targets (line 3) or no smaller design satisfying
the coverage constraints can be found (line 7). In line 10, if B 6= ∅, then B contains
an admissible approximation to the best design. If B = ∅, the current design D is
taken as a non-admissible approximation: D then contains more than µ probes, but
no further rows can be removed without violating the coverage constraints.

Example 6.9. Consider the affinity matrix A and the associated hybridization matrix
H in Table 6.1. The full matrix has conditions cond(A) = 2.2963 and conds(A) =
3.4664. Results of the search for designs of maximum size 12 resp. 6 with coverage 1
resp. 3 by exhaustive search and the greedy heuristic are also shown in Table 6.1.

• For M = A = 1, the freedom to choose only one probe per target leads to the
choice of unique probes because the identity matrix has the smallest possible
condition. The greedy heuristic is able to find this optimum only for the Skeel
condition.

• For µ = 6 and M = A = 3, the requirement to reduce the number of probes
from 12 to 6 but to keep the minimum coverage at 3 leads to a slight increase
in condition compared to the full matrix, and the greedy heuristic finds this op-
timum. The optimal Skeel condition drops slightly compared to the full matrix,
but the greedy heuristic does not find this solution.

Performance. For small affinity matrices (15×3 and 18×4), we can obtain optimal
solutions by exhaustive search and assess the performance of the greedy heuristic. The
following behavior is typical; see Figure 6.2.

100

6.2 Design and Decoding for Quantitative Analysis

Table 6.1: An affinity matrix A with 12 non-unique probes for 4 targets and the correspond-
ing hybridization matrix H. Below the matrices, the search results for certain designs by
both exhaustive search and the greedy heuristic are shown.

A =
























0.100066 0.200061 0.100017 0.000011
0.100046 0.000006 0.000048 0.000084
0.300092 0.000063 0.200016 0.100010
0.100063 0.100067 0.300100 0.000041
0.000059 0.000013 0.100052 0.000056
0.000031 0.000061 0.100096 0.100015
0.200093 0.200063 0.000034 0.000060
0.100046 0.000045 0.100068 0.200086
0.000025 0.100064 0.000097 0.000081
0.200009 0.000028 0.000080 0.100061
0.000064 0.000041 0.000076 0.100034
0.000006 0.100011 0.000061 0.300088
























, H =
























1 1 1 0
1 0 0 0
1 0 1 1
1 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0
1 0 1 1
0 1 0 0
1 0 0 1
0 0 0 1
0 1 0 1
























.

Design Full Optimal Greedy Optimal Greedy
Results µ = 12, M = A = 1 µ = 6, M = A = 3

D {1..12} {2, 5, 9, 11} {1..7, 9, 10, 12} {1, 3, 4, 7, 10, 12}
cond 2.2963 1.0026 2.1840 2.3864

D {1..12} {2, 5, 9, 11} {1, 4, 6, 9, 10, 12} {1, 2, 4, 6, 11, 12}
conds 3.4664 1.0041 3.1770 3.8347

• For both cond and conds, the optimal affinity matrix with m′ removed rows has
a smaller condition than the full design when m′ is small.

• Initially, i.e., for small m′, the greedy solution tends to follow the optimal solution
until the optimal solution becomes better. It may or may not happen that the
solutions coincide again for some larger m′. This may occur, for example, if the
optimal designs for m′ and m′ + 1 removed rows are disjoint.

• Removing many rows from A eventually leads to an increase in condition and
Skeel condition for both optimal and greedy solution.

• Selecting a random full-rank submatrix with m′ removed rows leads to an in-
crease in condition and Skeel condition.

• Optimal and greedy design need not be of the same size; i.e., the minima of the
condition curves can occur at different values of m′. However, the shape of the
curve (first decreasing condition, then increasing condition) is similar.

For 100 random 18× 4 affinity matrices generated according to the protocol shown in
Figure 6.3, mean and median condition numbers are shown in Table 6.2. In this setting,

101

Chapter 6 Non-Unique Probe Selection and Signal Decoding

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

Number of removed rows

C
on

di
tio

n
of

 r
ed

uc
ed

 m
at

rix

15 x 3 Affinity matrix condition optimization

Greedy heuristic
Optimal solution
Random full−rank submatrices (mean)

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

Number of removed rows

C
on

di
tio

n
of

 r
ed

uc
ed

 m
at

rix

15 x 3 Affinity matrix condition optimization

Greedy heuristic
Optimal solution
Random full−rank submatrices (mean)

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

Number of removed rows

C
on

di
tio

n
of

 r
ed

uc
ed

 m
at

rix

18 x 4 Affinity matrix condition optimization

Greedy heuristic
Optimal solution
Random full−rank submatrices (mean)

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

Number of removed rows

C
on

di
tio

n
of

 r
ed

uc
ed

 m
at

rix

18 x 4 Affinity matrix condition optimization

Greedy heuristic
Optimal solution
Random full−rank submatrices (mean)

Figure 6.2: Changes in condition (left) and Skeel condition (right) for typical random 15×3
(top) and 18 × 4 (bottom) affinity matrices with minimum and average coverage M =
A = 3 when probes are removed from the full design.

the greedy heuristic finds the optimal design in 29% of the cases when optimizing
cond(AD) and in 31% of the cases when optimizing conds(A

D).

We cannot assess the performance of the greedy heuristic compared to the optimum
for large matrices. However, we can see how much the condition is reduced by the
greedy heuristic compared to the full design: The lower part of Table 6.2 shows that
Skeel condition numbers are higher than classical condition numbers, but also that the
greedy heuristic is successful at reducing them by about 37%, whereas the classical
condition is only reduced by 16%.

Practical considerations. The approach to optimize the condition of the design is
based on the intuitive idea that signal decoding, i.e., solving the over-determined
linear system y = A ·x for x should be robust against small errors in A and should not
magnify measurement errors in the data y. As a consequence, (row permutations of)
block diagonal matrices B made out of 1-column blocks are optimal with conds(B) = 1.

102

6.2 Design and Decoding for Quantitative Analysis

function A = randommatrix(m,n,minc,lambda)

Create a random m · n affinity matrix with minimum coverage minc.
Random elements have an exponential(lambda) distribution.

Cover each target j = 1, . . . , n by minc probes.
A = zeros(m,n);

for j=1:n

i=randperm(m);

A(i(1:minc),j) = 1+floor(-log(rand(minc,1)));

end

Use each probe at least once.
j=floor(n*rand(m,1))+1;

for i=1:m

A(i,j(i))=A(i,j(i))+1;

end

Shoot random (floor(exponential(lambda))-distributed) elements into A.
B = (rand(m,n)<=0.3) .* floor(-log(rand(m,n))/lambda);

A = max(A, B);

Scale A and add noise:
Intended probe-target pairs have affinity coefficients 0.1 to 1.
Noise affinity coefficients are ≤ 10−4.
A = A/10 + (1E-4)*rand(m,n);

A = min(A,ones(m,n));

Figure 6.3: MATLAB code for generating m × n affinity matrices with given minimum
coverage for each target.

In practice, it is not sufficient to select a block-diagonal submatrix of A (if it exists),
because coverage constraints must be observed. Therefore we generally need to use
heuristics to select a design with small condition. Our simulations on small matrices
show that the greedy heuristic performs reasonably well. Additionally, it is easy to
implement and runs quickly.

Minimizing the condition requires that the full affinity matrix is known. This is usually
not the case before a chip with the corresponding probes has been produced and one
has had a chance to infer the relative coefficients from experimental data (see also
Section 2.4).

In practice, we can assume that probes are non-unique only within a small group of
targets, such as the splice variants of a single gene or within a gene family. The Skeel
condition minimization problem can be solved independently for each family, because
conds(diag(A1, A2)) = max{conds(A1), conds(A2)}. This allows to solve several small

103

Chapter 6 Non-Unique Probe Selection and Signal Decoding

Table 6.2: Top: Condition numbers for reduced random 18 × 4 affinity matrices. Bottom:
Condition numbers for 200× 20 matrices.

18× 4
M = A = 3, µ = 7 Full Greedy Optimal

Mean cond 3.26 2.66 (−18%) 2.26 (−30%)
Median cond 3.01 2.38 (−21%) 2.15 (−28%)
Mean conds 3.71 2.90 (−22%) 2.39 (−36%)

Median conds 3.67 2.57 (−30%) 2.30 (−37%)

200× 20
M = A = 5, µ = 50 Full Greedy

Mean cond 3.42 2.86 (−16%)
Median cond 3.39 2.85 (−16%)
Mean conds 8.31 5.25 (−37%)

Median conds 8.22 5.22 (−37%)

problems, potentially by exhaustive search for very small families, instead of one large
problem with thousands of targets and tens of thousands of probes.

In summary, condition minimization appears impractical to design a large scale chip
from scratch, but it provides a way to optimize existing chips for quantitative gene
expression analysis of target groups with high sequence similarity.

6.3 Design and Decoding for Qualitative Analysis

Within this section, we focus not on quantification, but on robust presence or absence
calls of targets with non-unique probes. Potential applications include qualitative
detection of expressed genes or gene variants from certain families (Wang et al., 2003),
species identification (Hebert et al., 2003a,b), and virus typing or subtyping (Rash
and Gusfield, 2002; Wang et al., 2002).

It is assumed that for each probe, a signal is either observed (1) or not observed (0);
there are no quantitative levels in between. In the absence of unique probes, we may
hope that each target sequence gives rise to a different combination of probe signals.
The vector of probe responses to a target sequence has also been called a target’s
barcode, and recently it has been proposed that all animal life can be barcoded with
probes from the mitochondrial cytochrome c oxidase subunit I gene (Hebert et al.,
2003a).

Theoretically, n probes give rise to 2n different barcodes and a million of different
targets should be identifiable using only 20 different probes. In practice, the problem

104

6.3 Design and Decoding for Qualitative Analysis

is more difficult:

• More than one target may be present in a complex sample subjected to the
identification procedure. In this case, we observe the logical or of the probe
signals we would obtain from the individual targets. Section 6.2

• False positive and false negative probe signals must be expected due to experi-
mental error and overall noise level.

Previous probe selection approaches have often neglected these issues and focused on
combinatorial and information theoretic methods that aim at minimizing the number
of probes required to identify a single target in the absence of errors (Herwig et al.,
2000; Borneman et al., 2001; Rash and Gusfield, 2002).

We take a different approach based on statistical group testing that avoids the above
shortcomings (Section 6.3.1). The overall procedure is as follows.

1. We assume that we have pre-selected suitable probe candidates, where the usual
constraints for oligo design apply (recall Section 6.1).

2. From these candidates, we generate a group testing design, i.e., we pick a subset
of probes that allows discrimination between as many (small-sized) target sets
as possible. Note that in theory, adding a probe to a design never decreases the
design’s ability to separate two target sets. Therefore, using all candidates guar-
antees the best possible separation properties of the design (the design quality
is naturally limited by the properties of the best candidate probes). In practice,
however, the number of candidate probes is very large, and several probes might
hybridize to the same target sets. Therefore adding a probe does not necessarily
contribute new information, and we would waste spots on the chip with unin-
formative oligos. Selecting a smaller design may allow use of a smaller chip and
considerable reduction of cost. Furthermore, in practice, candidates are ranked
according to quality (see the previous section), and we want to include lower-
quality probes only when absolutely necessary in order to keep the noise level
for the decoding procedure as low as possible. In short, while a small design is
preferable, it would be misleading to minimize the number of probes as the only
objective. Design strategies are described in Section 6.3.2.

3. The decoding procedure to infer the presence of target sequences uses a Bayesian
framework. It is based on Monte Carlo Markov chain sampling and explicitly
allows false positive and false negative experimental errors (Section 6.3.3).

An evaluation of the design and decoding steps on real and artificial datasets are
presented in Section 6.3.4.

The main difference between the quantitative design and decoding procedure in Sec-
tion 6.2 and the qualitative procedure in this section are thus as follows. In the
quantitative setting, signal decoding is equivalent to solving a linear system and a

105

Chapter 6 Non-Unique Probe Selection and Signal Decoding

good design is characterized by an affinity matrix with small (Skeel) condition num-
ber. In the qualitative setting, decoding involves disentangling an or-ed Boolean
signal; so a good design is characterized by the separability of many target sets (see
Section 6.3.2).

6.3.1 Group Testing

Group testing is a general procedure applicable whenever a large population of indi-
viduals has to be subjected to the same test. A general introduction to the field is
given by Du and Hwang (2000). The idea is to group objects and test groups instead of
individuals. A group tests positive when at least one individual within the group tests
positive. Every experiment involving group testing requires a design, i.e., a definition
of the groups (every individual can belong to many groups), and an corresponding de-
coding procedure to infer the status of individuals from the status of groups. When we
select the groups a priori we have a non-adaptive group test. In contrast, in adaptive
group testing the groups are chosen iteratively, using the results from previous tests to
guide selection of groups for the next iteration. When the test results are exact, that
is error-free, we speak about combinatorial group testing; in the presence of errors one
has the harder statistical variant of the problem.

Group testing is most successful in general, whenever only few individuals are expected
to test positive, because we can use large groups and hence need only a few tests to
infer the status of every individual. When the proportion of positive individuals is
large, nothing is to be gained in comparison to individual testing.

Successful applications are from medical diagnostics, including screening draftees for
syphilis during World War II, the first recorded application (Du and Hwang, 2000),
and from industrial quality assurance. In molecular biology, group testing has been
applied to the problem of screening DNA clone libraries for sequence tagged sites to
aid in the construction of physical maps (Barillot et al., 1991; Bruno et al., 1995; Knill
et al., 1996).

Group Testing Issues for Microarrays. In the microarray setting we propose to use
a statistical, non-adaptive group testing scheme. The target sequences we intend to
identify correspond to individuals. Potential groups, which can be freely chosen in
the general setting, are specified here by a non-unique probe which hybridizes to a set
of target sequences. The goal is to devise a group testing design which covers each
target with a certain number of probes and allows identification of several targets
simultaneously while using a reasonably small total number of probes. We encounter
several novelties that are not present in other group testing settings.

106

6.3 Design and Decoding for Qualitative Analysis

• Constrained assignment of individuals to groups. In contrast to a medical screen-
ing setting, we cannot arbitrarily assign individuals to groups. Groups (sets of
target sequences) are always defined by an oligo that occurs in all sequences of
the group. This restriction is the most important difference between DNA array
group testing and “classical” group testing designs.

• Cross-hybridization. Even though we allow non-unique probes, the cross-hybridi-
zation problem does not disappear. Assume that a probe pi occurs in all target
sequences of a set T (i), and also approximately (but not exactly) matches an-
other target j /∈ T (i). The hybridization behavior of j with respect to p depends
on many parameters and will vary from experiment to experiment. To keep error
rates as low as possible, it is preferable to discard probes whose hybridization
behavior is unclear, as stated in Section 6.1.

• Comparatively high error rates. Even if we avoid potential cross-hybridization
problems, false positive (a probe giving a signal when it should not) and false
negative errors (a probe not showing a signal when it should) with rates of up
to 5% must be anticipated.

• Moving targets. In reality, target sequences are not static objects. They undergo
mutations, recombine, or are altered in other ways. Covering a target with many
probes adds robustness to the target identification; allowing these probes to be
non-unique helps to keep the required probe number low.

6.3.2 Generating Designs

This section describes a fast heuristic to find a good group testing design D, i.e., to
select rows of the full m × n probe-target hybridization matrix H . We also present
an optimal design method based on integer linear programming (ILP). We use the
notation introduced in Section 6.1; however, T will also be used as a set of target
indices.

The primary design goal is to be able to distinguish between most (ideally all) target
sets whose size is not too large. The restriction to relatively small sets is both realistic
and required by the method. For example when identifying the HIV subtype(s) present
in a blood sample, it can be expected that the patient is only infected with one or
few subtypes. When detecting pathogens in water samples, it is hoped that none are
present; if more than one or a few are found, additional tests are requires in any case.
Because of the logical or-operation inherent in group testing, the whole procedure is
only effective if few positive individuals (targets) are present.

Definition 6.10 (d-separability of target sets). • Let S be a set of target se-
quence indices. We say that a probe p hybridizes to the set S when p hybridizes

107

Chapter 6 Non-Unique Probe Selection and Signal Decoding

to at least one target in S. By P (S) we denote the set of all probe indices
hybridizing to S, i.e., P (S) :=

⋃

j∈S P (j).

• Now let S and T be two different target sets. Probe pi separates S and T if
i ∈ P (S)∆P (T), i.e., if pi hybridizes to either S or T , but not to both (∆ denotes
symmetric set difference).

• The target sets S and T are d-separable if at least d probes separate them, i.e.,
if |P (S)∆P (T)| ≥ d.

Example 6.11. Suppose we have d unique probes for each target. Then two target
sets S and T with |S∆T | = c are (c · d)-separable, because the signal of d different
probes differs for each target in S∆T . Of course, we do not generally have unique
oligos to choose from and are restricted to the available candidate probes.

Example 6.12. Consider the hybridization matrix H in Table 6.1 with m = 12
probes and n = 4 targets. If targets 1 and 2 (but not targets 3 and 4) are present
in a sample, we see a signal at probes 1, 2, 3, 4, 7, 8, 9, 10, 12. If targets 2 and 3 are
present, we see a signal at probes 1, 3, 4, 5, 6, 7, 8, 9, 12. Thus there are 4 probes that
separate S = {1, 2} from T = {2, 3}; these are P (S)∆P (T) = {2, 5, 6, 10}. Note
that there is one more probe (number 7) that separates target 1 from target 3 alone:
P ({1})∆P ({3}) = {2, 5, 6, 7, 10}.

As mentioned earlier, the primary design goal is best achieved by choosing all available
probe candidates. However, the space on a DNA chip is limited and a chip with fewer
probes will be less expensive. Therefore we are interested in minimizing the number
of probes in a design for given lower bounds on target coverage γ and target set
separability σ for all targets sets of small cardinality. This problem is NP-complete,
as can be seen by a reduction from the set cover problem.

A greedy heuristic. We propose the following greedy design heuristic.

1. We add probes until every target is covered by at least γ probes, i.e., ev-
ery singleton target set {j} is γ-separated from the empty set {}, by calling
Separate({j}, {}, γ) for all j = 1, . . . , n (see Figure 6.4 for a description of
Separate).

2. We ensure that all pairs of targets are separated by at least σ oligos by calling
Separate({j}, {j′}, σ) for all 1 ≤ j < j′ ≤ n.

3. Since there can be several hundreds to thousands of targets, it would take too
much time to systematically ensure σ-separation for all larger target sets up to
a certain cardinality. Instead, we randomly pick a number N of additional pairs
of target sets S and T and σ-separate them by a calling Separate(S, T, σ).
The size distribution of the sets we pick follows the distribution of the number

108

6.3 Design and Decoding for Qualitative Analysis

Separate(S, T, d)
Add probes to the current partial design D to d-separate S and T .
1. C ← P (S)∆P (T) (all separating probes)
2. Partition C into C = CD ∪ C ′, where CD ← C ∩D, and C ′ ← D \ C.

(C ′ contains the separating probes not yet included in D)
3. if |CD| ≥ d then return (nothing to do)
4. if |C ′| < (d− |CD|) then warn “Can only (|CD|+ |C ′|)-separate S and T”
5. Add the d− |CD| most unique probes from C ′ to D

Figure 6.4: The Separate procedure ensures d-separation of target sets S and T by adding
probes to an existing partial design D.

of targets present in a typical sample (cf. the cardinality prior in Section6.3.3).
The parameter N can be chosen according to the time available to refine the
design. As an example, this step takes about 5 minutes for 600 targets and
14000 probe candidates with N = 500000.

A call to the procedure Separate(S, T, d) in Figure 6.4 ensures d-separation of S and
T by adding appropriate additional probes to the current partial design D or produces
a warning if the candidate set allows only d′-separation for some d′ < d.

The idea behind the heuristic is as follows. First the easy problem of covering each
target is solved by examining the targets in the given order and adding probes to the
design to cover the current target. Unique probes are preferred (followed by probes
that hybridize to 2, 3, . . . targets). Although this may lead to the inclusion of more
probes than necessary for target coverage, the hope is that choosing unique probes in
this step will lead to much fewer inclusions during the subsequent target and target
set separation steps.

Optimal designs by integer linear programming. The heuristic may choose too
many probes in the sense that the same target coverage and target set separability
might be achieved with fewer probes. As mentioned, the optimization problem is NP-
complete by reduction from Set-Cover, but is still feasible even for designs with several
hundreds of targets and thousands of probe candidates. We formulate it as a variation
of the Set-Cover integer linear program (ILP).

We represent the design D ⊂ {1, . . . , m} by a binary column vector δ = (δi) ∈ {0, 1}m
where δi = 1 is equivalent to i ∈ D. We also write Hδ for HD.

Let hj denote the j-th column of H , and define the column vector zS,T = (zS,T
i) by

zS,T
i := I{i∈P (S)∆P (T)} (S, T ⊂ {1, . . . , n}).

109

Chapter 6 Non-Unique Probe Selection and Signal Decoding

In other words, zS,T
i indicates whether probe candidate i separates target sets S and

T . The separability of S and T is thus given by
∑

i zS,T
i . Note that the j-th column

of H can be written as hj = z{},{j}. Further, let ≺ denote an arbitrary linear ordering
on the target sets that respects set cardinality, i.e., S � T ⇐⇒ |S| ≤ |T |.

The basic ILP now looks as follows.

Minimize
m∑

i=1

δi

such that δ ∈ {0, 1}m,

δT · hj ≥ γ for all j = 1, . . . , n, (6.1)

δT · zS,T ≥ σ for all S ≺ T ⊂ {1, . . . , n}, 1 ≤ |S| ≤ |T | ≤ B. (6.2)

The constant B denotes the maximal relevant target set size. If we only demand
σ-separation of all pairs of singleton targets (B = 1), then (6.2) can be written as
∑

i δi · |Hi,j −Hi,j′| ≥ σ for all
(

n
2

)
pairs (j, j′) with 1 ≤ j < j′ ≤ n. In other words,

the Hamming distance between any two columns of the design matrix Hδ must be at
least σ.

Depending on the probe candidate set and the magnitude of γ and σ, the ILP may
not have a feasible solution: There might only be d < σ probe candidates in the full
matrix H that separate targets j and j′. This problem can be addressed by adding a
sufficiently large number L := n ·max{γ, σ} of “virtual unique probes” that are chosen
only if it is impossible to achieve sufficient coverage or separation with the existing
candidates. This is achieved by setting their coefficient in the objective function to
a large number C > n. We denote the usage indicator of the L virtual probes by
δ+ = (δ+

`). The extensions of the vectors hj and zS,T are similarly denoted by h+
j and

z+,S,T . The ILP then becomes

Minimize
m∑

i=1

δi + C ·
L∑

`=1

δ+
`

such that

(
δ
δ+

)

∈ {0, 1}m+L,

(
δ
δ+

)T

·
(

hj

h+
j

)

≥ γ for all j = 1, . . . , n,

(
δ
δ+

)T

·
(

zS,T

z+,S,T

)

≥ σ for all S ≺ T ⊂ {1, . . . , n}, 1 ≤ |S| ≤ |T | ≤ B.

(6.3)

The number of inequalities in (6.2) or (6.3) is exponential in B: There are NB :=
∑B

k=1

(
n
k

)
= O(nB) target sets of cardinality between 1 and B, and

(
NB

2

)
such pairs of

110

6.3 Design and Decoding for Qualitative Analysis

target sets to be separated. For B = 1, this results in approximately n2/2 inequalities.
Comparisons between the greedy heuristic and the ILP approach are presented in
Section 6.3.4.

For B = 2, about (n4 + 2n3 + 2n2)/8 inequalities must be satisfied, which for n = 400
targets amounts to 3.216·109 inequalities. Thus it is hardly practical to even formulate
the ILP for B > 2 and moderately small n. However, if several probes are relatively
unique, that is, if they hybridize to only a few targets, many of the inequalities in
(6.3) may already be satisfied after target pair separation and need not be considered.
Therefore Gunnar Klau and Knut Reinert have proposed to start with an optimal
design that satisfies the target pair separation (|S| = |T | = 1) inequalities, and to
find violated separation inequalities for larger sets dynamically with a cutting plane
approach by solving a different ILP. If a violated inequality is detected, it is added
to the ILP, which is then solved for a new design δ. These steps are repeated until
no more violated inequalities for target sets of size at most B are found. This idea is
being pursued by Gunnar Klau (see Klau, Rahmann, Schliep, Vingron, and Reinert,
2004).

6.3.3 Decoding

We assume that a heuristic or optimal design D has been chosen and from now on only
consider the the design matrix HD. Thus in this section, m is the number of probes in
the design and smaller than the number of candidates. After observing probe signals,
we face the problem of inferring which targets are present in the sample.

We know HD and observe the probe signal vector y = (y1, . . . , ym) ∈ {0, 1}m for the
probes p1, . . . , pm.

We use a probabilistic model allowing false positive and false negative errors to describe
the dependencies between the unknown true target presence vector x = (xj) ∈ {0, 1}n
and the observations y. Somewhat abusing notation, we use P to denote both a
probability measure and a distribution: P(x | y) is the conditional distribution of x
given y, but also the probability that the random variable represented by x takes the
value x; and P(xj = 1) denotes the probability that xj = 1. We have

P(x | y) ∝ P(x, y) = P(x) · P(y | x).

P(x) denotes the prior probability of target set X = {j : xj = 1} before observing
the probe signals. We assume that it depends on the cardinality |X| =

∑

j xj and
independently also on the relative prevalence ρj > 0 of each target j ∈ X in the overall

111

Chapter 6 Non-Unique Probe Selection and Signal Decoding

target population:

P(x) ∝ c(|X|) ·
∏

j∈X

ρj = c(
∑

j xj) ·
n∏

j=1

ρ
xj

j .

Here c = (c(0), . . . , c(n)) ≥ 0 is a vector that contains the relative prior probabilities
of different target set sizes. It is assumed that most of the mass in concentrated at
low set cardinalities. Depending on the application, one could also use a prior that
includes correlations between targets. If no prior information is available, however, all
prevalences ρj can be taken to be equal and independent. We do not need to know
the normalizing constant for P(x), as will become evident shortly.

To compute the likelihood P(y | x), we assume that false negative and false positive
perturbations of the true observation associated to x act independently on each probe.
Let f0 be the false negative error rate per hybridization, and let f1 be the false positive
error rate per probe.

If probe pi hybridizes to no target in X, we have P(yi = 1 | x) = f1 (the false positive
rate) and P(yi = 0 | x) = 1 − f1. If probe pi hybridizes to k > 0 targets in X, i.e., if
|X ∩ T (i)| = k > 0, we only observe no signal if all k hybridizations fail and we do
not have a false positive probe: P(yi = 0 | x) = fk

0 · (1− f1). We set

ki(x) := |X ∩ T (i)| =
∑

j

xj · I{j∈T (i)}

and λi(x) := P(yi = 1 | x) = 1− f
ki(x)
0 · (1− f1),

and obtain

P(y | x) =

m∏

i=1

λi(x)yi · (1− λi(x))1−yi. (6.4)

There are alternative ways of specifying a likelihood model. For instance, we could
simply use a simple per-probe false negative rate instead of a per-hybridization rate.

This would lead to λi(x) := 1− f
I{ki(x) 6=0}

0 · (1− f1), which equals f1 if ki(x) = 0, and
1− f0 + f0f1 if ki(x) ≥ 1.

Putting everything together, we find the posterior probability

P(x | y) = Zy · c(
∑

j xj) ·
n∏

j=1

ρ
xj

j ·
m∏

i=1

λi(x)yi · (1− λi(x))1−yi , (6.5)

where Zy is the normalizing constant that turns P(x | y) into a proper probability
distribution for observation y.

We are interested in

112

6.3 Design and Decoding for Qualitative Analysis

1. the marginals P(xj = 1 | y) of the posterior for all j = 1, . . . , n,

2. the posterior target set size distribution P(|X| = k | y) for small k ≥ 0, and

3. the vector x maximizing P(x | y).

The first two problems can be solved by constructing an ergodic Markov chain with
P(· | y) as its stationary distribution and sampling instances of x from P(x | y), e.g., by
Gibbs sampling. Estimates of the marginal probabilities and the target set size are
then obtained as ergodic averages of the sample components and sample sizes. Details
are given below.

The second problem can be solved by a simulated annealing variation of the sampling
method (see below). However, finding the exact maximum can be both difficult and
uninformative, because several x ∈ {0, 1}n may explain the observations well. Also,
if a distinguished maximum exists, it becomes evident from the posterior marginal
probabilities. If there are several local maxima, there will be a difference between
the average posterior target set size |X| and the number of xj with relatively high
posterior probability of being present.

Sampling from the posterior. As the observation y is fixed, we set π(x) := P(x | y),
and we assume that π(x) > 0 for all x, even though it is reasonable that π(x) ≈ 0
for large cardinality target sets x. We use the Metropolis-Hastings framework (see
Hastings, 1970; Gilks et al., 1996, Chapter 1) to define a Markov chain with stationary
distribution π(x), taking x = (0, 0, . . . , 0) ∈ {0, 1}n as the start state.

Being in state x, a new state z is proposed from a proposal distribution q(z | x) and
then accepted with probability

α(x, z) = min

{

1,
π(z) · q(x | z)

π(x) · q(z | x)

}

.

The transition kernel of the Markov chain is thus defined by Px,z = q(z | x) · α(x, z)
for x 6= z and Px,x := 1−∑z 6=x Px,z. The states z for which Px,z > 0 are said to form
the neighborhood of x. For convenience, we require that the neighborhood relation is
symmetric. Now it can be seen why π needs only to be known up to a constant: it
only appears as a ratio in α(x, z).

The proposal distribution q must be chosen in such a way that in some number of
iterations t∗, every state z can be reached from any state x, i.e., we require that
there exists t∗ such that P t∗ > 0. It then follows that the constructed Markov chain
is irreducible and aperiodic and hence ergodic with a unique stationary distribution
that is equal to π. Independently of the start state, the state distribution converges
exponentially fast to π (e.g., Gilks et al., 1996, Chapters 3 and 4). The convergence
rate depends on the structure of π and q; it is related to the second largest absolute

113

Chapter 6 Non-Unique Probe Selection and Signal Decoding

eigenvalue λ < 1 of P . It can be shown that |(P t)xz−π(z)| ≤ const·λt (e.g. Billingsley,
1995). It is difficult to obtain a tight bound on λ in practice, however; recall that P is
a 2n×2n matrix in this setting. Experience shows that if the states are well connected,
if there exist no “bottlenecks” and if the start state is not extremely improbable under
π, then convergence can be expected to occur after a small multiple of n steps.

We define the neighborhood of x as N (x) := {z : 0 ≤ |∑j (zj − xj)| ≤ 1 and 0 ≤
∑

j |zj − xj | ≤ 2}. In other words, x ∈ N (x) and otherwise z ∈ N (x) if z differs
from x by exclusion of one target or inclusion of one additional target, or if z and
x have the same number total number of targets, but in both x and z at most one
target is present that is absent in the other state. In x, each neighbor is proposed with
the same probability 1/|N (x)|. It is easy to see that if

∑

j xj = k, then |N (x)| =

1 + k + (n − k) + k(n − k) = (k + 1)n − k2 + 1. With this choice of the proposal
distribution, every state is reachable from any state in n steps with positive probability,
and the chain is well connected.

An alternative is given by the Gibbs sampler, where each iteration consists of n steps,
and in step j, only the j-th component of x is updated; a new value from {0, 1} is pro-
posed according to the full conditional distribution P(xj | y, (x1, . . . , xj−1, xj+1, . . . , xn)).
For this step, the new components x1, . . . , xj−1 and the old components xj+1, . . . , xn

are used. The proposed value of xj is always accepted, but it can be equal to the old
value with high probability. In each step, x either does not change, or its number of
1-components changes by one. Alexander Schliep implemented Gibbs-sampling based
decoding in the Markov Chain Pool Decoder (MCPD; Schliep, 1998), which was suc-
cessfully used in several projects (Knill, Schliep, and Torney, 1996; Schliep, Torney,
and Rahmann, 2003).

In both the neighborhood-based Metropolis-Hastings algorithm and the Gibbs sam-
pler, the quantities of interest can be computed by averaging appropriate functions of
the sample x for M � 0 iterations after a sufficiently long burn-in time t0 to achieve
convergence of the chain to π. Let x(t) denote the sample at time t. The distribution
of the target set cardinality P(|X| = k | y) is estimated by

P̂(|X| = k | y) =
1

M
·

t0+M−1∑

t=t0

I
{

P

j x
(t)
j =k}

,

and π(xj = 1) is estimated by

P̂(xj = 1 | y) =
1

M
·

t0+M−1∑

t=t0

x
(t)
j .

Alternatively, π(xj = 1) can be estimated whenever xj is updated by using the full
conditional distribution P(xj = 1 | y, (xj′)j′ 6=j). Again, these estimates are averaged

114

6.3 Design and Decoding for Qualitative Analysis

over many sampling steps. The use of full conditional distributions usually leads to a
smaller variance in the estimation (see Gilks et al., 1996, Chapters 1 and 5).

Simulated annealing. As noted earlier, the best way to find target sets with high
posterior probability is to form combinations of the targets with high marginal pos-
terior. Usually there will be only few candidate sets, and these can be examined
exhaustively. In the case of several likely present targets, an alternative to find the
best set is given by simulated annealing (Kirkpatrick et al., 1983). Here the posterior
distribution π(x) = P(x | y) of the Markov chain is modified by a temperature param-
eter T . The probability πT (x) is interpreted as the function of the “energy” of state
x via πT (x) ∝ exp(−E(x)/k · T), where k is the Boltzmann constant. In contrast to
the molar energy considered in Section 2.3.3, the energy E(x) considered here is an
abstract quantity). We may as well change the scale of the temperature to units of
1/k and set E(x) := − log(π(x)), such that π ≡ π1, and

πT (x) =
1

Z(T)
· π(x)1/T ,

where Z(T) =
∑

z π(z)1/T is the normalization constant. High T lets πT (x)→ 1/Z(T)
for all x and hence flattens the distribution. Lowering T → 0 amplifies differences in
π such that in the limit only the state x∗ with maximal π(x∗) has nonzero probability:
πT→0(x

∗) → 1. The idea of simulated annealing is to start at a high temperature
where the chain can move freely and has a stationary distribution close to the uniform
distribution, and then to lower the temperature gradually in such a way that the chain
has sufficient time to adjust to its new equilibrium πT . If the cooling rate is chosen
properly, the chain will become restricted to x∗ as T → 0. The problem encountered
in practice is to determine the correct cooling rate to avoid ending up in local maxima
without a chance to escape again (Laarhoven and Aarts, 1987).

6.3.4 Evaluation

We evaluate the greedy design heuristic and the ILP design on two artificially evolved
sequence families and on a real test set of 679 28S rDNA sequences of organisms
present in the Meiobenthos5.

Meiobenthic test set. Markmann (2000) provides an initial set of 1230 28S rDNA
sequences from meiobenthic organisms. The set contains redundancies and many close
homologs. To reduce the level of redundancy we use the blastclust software from

5Meiobenthos : Benthic organisms (animals or plants) whose shortest dimension is less than 0.5 mm
but greater than or equal to 0.1 mm. Benthic: dwelling on, or relating to, the bottom of a body
of water.

115

Chapter 6 Non-Unique Probe Selection and Signal Decoding

NCBI6 to cluster sequences in the date set which share at least 99% sequence identity
over at least 99% of their length. Given the average sequence length of about 676
nucleotides this corresponds to about 7 mismatches between clustered sequences on
average. The 149 clusters containing two or more sequences represent about 56% of
all sequences. For each of those clusters we pick an arbitrary representative (the first
one in the blastclust output). This procedure results in a test set consisting of 679
sequences.

Artificial sequence families. To generate artificial data that closely models homol-
ogous sequence families, we use REFORM (Random Evolutionary FORests Model;
see Appendix A.2 and Rahmann, 2003c), which we developed as a general-purpose
tool for sequence evolution modeling. It allows to define arbitrary sets of evolutionary
trees (“evolutionary forests”) with either random or pre-defined root sequences. The
sequences are evolved from the root through internal nodes to the leaves along the
branches of the tree for a time proportional to the branch lengths, and may consist
of several segments. For each segment it is possible to specify a separate evolutionary
model or only separate relative speeds or speed distributions.

The nucleotide substitution model is specified as an evolutionary Markov process
(EMP), e.g., the simple Jukes-Cantor model (Jukes and Cantor, 1969) that assigns
equal probabilities to all mutation types. Alternatively it can be specified as any
valid rate matrix Q = (Qij) ≥ 0 with Qii = −∑j 6=i Qij generating an ergodic time-
continuous Markov process (e.g., Müller and Vingron, 2000). For i 6= j, Qij is the
instantaneous mutation rate i → j, where i and j are different nucleotides, and |Qii|
then measures the overall mutation rate away from i. Branch lengths are measured
as percent of expected mutations (PEM). If π is the unique stationary distribution
associated to Q, i.e., if π · Q = 0, and if

∑

i πi · |Qii| = 0.01, then Q is said to be
calibrated to 1 PEM and the transition kernel (conditional mutation probability ma-
trix) for a branch of length t is given by expm(tQ), where expm(·) denotes the matrix
exponential.

An indel model is placed on top of the substitution process by specifying a deletion
rate, an insertion rate, an indel length distribution, and a nucleotide distribution
of inserted residues. During sequence evolution along a branch, the probability of
deleting one or several characters at each position of the parent sequence is given
by the product of the branch length, the relative speed for the current segment, and
the deletion rate. The length of the gap is then drawn from the specified gap length
distribution. A similar rule is applied to inserts. Substitutions are only computed for
non-deleted positions, but inserts can follow immediately after deletions.

For our experiments, we use two different models (see Figure 6.5) and generate five
independent test sets from each model.

6http://www.ncbi.nlm.nih.gov/BLAST/

116

6.3 Design and Decoding for Qualitative Analysis

1

3

3

0.2

0.2

0.1

1

1

(a) (b)

256 leaves 400 leaves

Figure 6.5: The two evolutionary tree models used for sequence family generation. Branch
lengths are indicated next to sample branches. The 256 resp. 400 leaf sequences were
taken as family members. In (a), not all children of the nodes are shown.

(a) The first model produces a family of 256 sequences of average length 1000 nt.
The root consists of a random 1000 nt sequence with uniform nucleotide dis-
tribution and splits into 5 segments with relative evolutionary speeds of 0.9
0.95, 1, 1.05, and 1.1. Substitutions are generated according to the Jukes-
Cantor model. The global delete and insert rates are set to 0.005, and the
distribution of the gap lengths is given by the probability vector proportional to
(8, 1, 4, 2, 1, 0.5, 0.25, 0.125, . . .). Inserted residues are drawn from the uniform
distribution. The tree has three levels of internal nodes below the root for a
total of 4 + 16 + 64 = 84 internal nodes. Starting with the root, each inter-
nal node has 4 children. The distance between adjacent nodes corresponds to
t = 1 PEM. Each internal node on the third level has four leaf children at a
distance of t = 0.1 PEM for a total of 256 leaves with different distances to each
other (0.2, 2.2, 4.2, . . .). The leaf sequences are subsequently used for probe
candidate selection.

(b) In the second model, all global parameters are as in the first model, and the
sequences consist of a single segment of average length 1000 nt. The topology
differs considerably from the first model: The tree consists of a linear chain of
100 internal nodes (including the root) 3 time units apart; two “cherries” with
branch lengths of 0.2 are attached to each internal node (Figure 6.5b) for a total
of 400 leaves.

Probe candidates and designs. To generate probe candidates for each of the 10 fam-
ilies (5 instances of each model), we use our own software Promide (Appendix A.1).
Non-unique probe candidates are selected to be between 19 and 21 nt long with a
Gibbs free energy of −20 to −19.5 kcal/mol at 40◦C and [Na+] = 0.075 M according
to the Nearest Neighbor model with parameters from Table 2.1 (SantaLucia, 1998).

117

Chapter 6 Non-Unique Probe Selection and Signal Decoding

Table 6.3: For each artificial dataset (a)1 to (b)5 and for the Markmann (2000) meiobenthic
data (M), the table shows the number n of targets, the number #cand of probe candidates,
and the number of probes m chosen by the greedy design heuristic and the ILP approach,
using singleton pair separation only. Percentages represent the number of selected probes
in relation to the number of probe candidates. The probe ratio mGreedy/mILP and the
ratio tGreedy/tILP of the required design time are also shown.

Set n #cand Greedy m ILP m m ratio t ratio
(a) 1 256 2786 1163 (42%) 503 (18%) 2.31 0.23
(a) 2 256 2821 1137 (40%) 519 (18%) 2.19 0.21
(a) 3 256 2871 1175 (41%) 516 (18%) 2.28 0.25
(a) 4 256 2954 1169 (40%) 540 (18%) 2.17 0.17
(a) 5 256 2968 1175 (40%) 504 (17%) 2.33 0.24
(b) 1 400 6292 1908 (30%) 879 (14%) 2.17 0.02
(b) 2 400 6283 1885 (30%) 938 (15%) 2.01 0.02
(b) 3 400 6311 1895 (30%) 891 (14%) 2.13 0.06
(b) 4 400 6223 1888 (30%) 915 (15%) 2.06 0.02
(b) 5 400 6285 1876 (30%) 946 (15%) 1.98 0.07
(M) 679 15139 3851 (25%) 3158 (21%) 1.22 0.08

When filtering for specificity, we ensure that each candidate pi satisfies Definition 6.2
on page 95 with the assumption that the transcripts are equal to the targets, and
with the constraints that σ1(i) = 0 and µ = 2. This corresponds to a stringent
washing procedure (normally σ1 > 0 would be allowed at the price of a higher value
of µ in Definition 6.2). Probe candidates are de-clustered before the final probe set
selection.

Designs with minimum coverage 10 and minimum target pair separation 5 are gen-
erated with the greedy heuristic (a part of our Promide software package) and by
solving the ILP with CPLEX (ILOG, Inc., 1987–2004). The CPLEX ILP formulation
was implemented by Gunnar Klau (Vienna University of Technology). The results
are shown in Table 6.3. Naturally, the heuristic runs faster, but it also generates a
design that is often larger by a factor of more than 2 than the optimal design found
with the ILP approach. The difference between the designs is smaller for Markmann’s
dataset (M), because not all sequences in this set are close homologs. Since the ab-
solute running times are within the range of 50 to 1700 seconds, the ILP approach is
quite practical.

The heuristic attempts to “looks ahead”, i.e., it starts by choosing the most unique
probes when covering and separating targets. While this cannot result in a minimal
design for target pair separation, fewer probes need to be added for separating larger
of target sets. In contrast, if more inequalities are added to the ILP, i.e., if B is
increased in (6.3), it is likely that the optimal solution changes and grows with every
additional inequality (presently not implemented). This behavior is also reflected in

118

6.3 Design and Decoding for Qualitative Analysis

the fact that the greedy design, which guarantees only singleton target pair separation,
actually separates larger target sets quite well (see decoding results below). The ILP
design has difficulties in dealing with larger target sets because of its minimality. We
conjecture that the heuristic and the ILP design will approach each other in size and
performance as constraints for larger target set separation are added.

Simulated microarray experiments. To simulate noisy microarray probe signals, we
first choose a target set size k and then create a test set randomly according to the
relative prevalences ρj for each target j. We used uniform prevalences and created 100
test sets of each cardinality from 1 to 5 for each of the experiments listed in Table 6.3.
Noisy probe signals are generated according to (6.4) with per-probe false negative and
false positive rates of 0.01 for one evaluation run and of 0.05 for a second run. The
noisy signals are used as input for the decoder.

Decoder. Alexander Schliep adapted the Markov Chain Pooling Decoder (MCPD;
Schliep, 1998) that implements the Gibbs sampler to the problem at hand. We checked
the speed of convergence of the Markov chain by performing 100 runs each for 100
artificial inputs, and by computing the standard deviation of the marginal probabilities
for a number of time points. Inspection of the convergence data guided our choice of
using t0 = 5000 burn-in and 50000 total steps. On an AMD Athlon XP 2100 Linux
machine, a decoding run needs about 15 seconds CPU time. The target set cardinality
prior used for decoding purposes was set to the probability distribution proportional
to c = (c(k))k≥0 := (0.001, 0.5, 1, 1, 0.5, 0.25, 0.1, 0.05, 0.025, . . .), where subsequent
entries decrease exponentially fast.

Results. The result of the decoding is a sorted list of the most probable true positive
targets. For the decoded noisy microarray results of each experiment in Table 6.3, the
ranks of the true positives were, and it was noted how many of the k true positives
are found among the top 1, 2, 3, 4, 5, 10, and 20 ranking targets. Tables 6.4–6.6
show the results for each of the three models (M), (a), and (b), averaged over the 5
sequence sets for models (a) and (b) and the above mentioned 100 repetitions of each
experiment. A design is ideal if the proportion of the k true positive targets among
the k targets with highest posterior probability is approximately equal to 1.

Clearly the success rate degrades as k grows since the designs only guarantee that
pairs of singleton target sets are separable. Even for small k, maximal performance
cannot be expected for two reasons. First, in the the number of true positive probes
is vastly outnumbered by the number of false positive ones even in the presence of
only small error rates. Second, the decoding procedure is stochastic and hence not
guaranteed to give a perfect result. The simulations were carried out by Gunnar Klau
and Dietmar Ebner (Vienna University of Technology).

119

Chapter 6 Non-Unique Probe Selection and Signal Decoding

The ILP design, which for models (a) and (b) contains less than half as many probes
as the heuristic design, still has excellent decoding capabilities; sometimes it even
appears to be slightly better than the heuristic because of stochastic fluctuations.
For sets with five true positive targets, the decoding capability of the ILP design is
significantly worse than that of the heuristic. This can be explained by the fact that
only pairs of singleton target sets are guaranteed to be separable. The ILP produces
a minimal solution with this property, while the heuristic includes more probes, and
especially more “unique” probes, i.e., probes that hybridize to fewer targets on average,
and hence have better overall separation capabilities.

Interestingly, for 4 or 5 true positive targets, decoding results are better with error
levels of 5% than with 1%. This is not an error; it is explained by the cardinality
prior c that favors sets with 2 and 3 targets. The higher error rates allow the Markov
chain to explore larger sets more often, and generally lead to a higher mixing rate of
the chain.

120

6.3 Design and Decoding for Qualitative Analysis

Table 6.4: Decoding results for model (M). The numbers have the same meaning as in
Table 6.5 on page 122.

Model (M), Heuristic Design, 1% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 0.96 0.98 1.00 1.00 1.00 1.00 1.00
2 — 0.95 0.98 0.99 1.00 1.00 1.00
3 — — 0.96 0.98 0.99 1.00 1.00
4 — — — 0.88 0.92 0.96 0.96
5 — — — — 0.83 0.93 0.93

Model (M), ILP Design, 1% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 0.89 0.96 0.98 0.99 1.00 1.00 1.00
2 — 0.92 0.97 0.99 0.99 1.00 1.00
3 — — 0.91 0.97 0.98 0.99 0.99
4 — — — 0.88 0.93 0.97 0.97
5 — — — — 0.75 0.89 0.90

Model (M), Heuristic Design, 5% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 0.96 0.99 0.99 0.99 0.99 1.00 1.00
2 — 0.95 0.98 0.98 0.99 0.99 0.99
3 — — 0.94 0.97 0.99 0.99 0.99
4 — — — 0.92 0.97 0.99 0.99
5 — — — — 0.87 0.95 0.95

Model (M), ILP Design, 5% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 0.92 0.95 0.98 1.00 1.00 1.00 1.00
2 — 0.87 0.94 0.97 0.98 0.99 0.99
3 — — 0.89 0.95 0.98 1.00 1.00
4 — — — 0.89 0.96 0.99 0.99
5 — — — — 0.85 0.95 0.95

121

Chapter 6 Non-Unique Probe Selection and Signal Decoding

Table 6.5: Decoding results for model (a), averaged over the 5 sequence families (a)1 through
(a)5. Row k refers to sets with k true positives. Column “top T” refers to the fraction of
true positives found among the T targets with highest posterior probabilities. All fractions
are averaged over 100 simulations. Example: In target sets with k = 5 true positives, on
average 63% of these true positives are found among the 5 most probable targets, and
88% of them are found among the 10 or 20 most probable targets. (with false positive
and false negative error rates of 1%).

Model (a), Heuristic Design, 1% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 0.99 0.99 1.00 1.00 1.00 1.00
3 — — 0.98 0.98 0.99 0.99 0.99
4 — — — 0.91 0.92 0.98 0.98
5 — — — — 0.68 0.88 0.88

Model (a), ILP Design, 1% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 0.99 1.00 1.00 1.00 1.00 1.00
3 — — 0.91 0.93 0.93 0.97 0.97
4 — — — 0.71 0.74 0.86 0.86
5 — — — — 0.45 0.64 0.64

Model (a), Heuristic Design, 5% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 0.99 1.00 1.00 1.00 1.00 1.00
3 — — 0.99 0.99 0.99 1.00 1.00
4 — — — 0.95 0.96 0.98 0.98
5 — — — — 0.78 0.91 0.91

Model (a), ILP Design, 5% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 0.98 0.99 0.99 0.99 1.00 1.00
3 — — 0.96 0.97 0.98 0.99 0.99
4 — — — 0.84 0.87 0.92 0.92
5 — — — — 0.62 0.77 0.77

122

6.3 Design and Decoding for Qualitative Analysis

Table 6.6: Decoding results for model (b), averaged over the 5 sequence families (b)1 through
(b)5. The numbers have the same meaning as in Table 6.5.

Model (b), Heuristic Design, 1% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 1.00 1.00 1.00 1.00 1.00 1.00
3 — — 0.99 0.99 0.99 1.00 1.00
4 — — — 0.91 0.93 0.98 0.98
5 — — — — 0.66 0.88 0.88

Model (b), ILP Design, 1% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 0.99 1.00 1.00 1.00 1.00 1.00
3 — — 0.96 0.97 0.98 0.98 0.98
4 — — — 0.80 0.82 0.91 0.91
5 — — — — 0.51 0.70 0.70

Model (b), Heuristic Design, 5% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 0.99 1.00 1.00 1.00 1.00 1.00
3 — — 0.99 0.99 0.99 0.99 0.99
4 — — — 0.96 0.97 0.98 0.98
5 — — — — 0.81 0.92 0.92

Model (b), ILP Design, 5% Error Rate
k top 1 top 2 top 3 top 4 top 5 top 10 top 20
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 — 0.99 1.00 1.00 1.00 1.00 1.00
3 — — 0.97 0.98 0.99 0.99 0.99
4 — — — 0.93 0.94 0.97 0.97
5 — — — — 0.75 0.85 0.85

123

124

Chapter 7

Design and Analysis of Genome Tiling
Chips

In this chapter, we show how the LCF approach and MCMC-based decoding can be
adapted to genome tiling chips, which are useful for determining the transcriptome of
an organism (Problem 8 in Chapter 1).

With genome-tiling chips, a whole genome’s euchromatin (technically speaking, a
repeat-masked version of the genome) is covered with probes at relatively regular
intervals; so there is considerably less freedom in choosing specific probes. There is
also no a-priori concept of target or transcript, since the transcriptome is considered as
unknown. Nevertheless, we can evaluate the quality of all possible probes1 by comput-
ing approximate LCF lengths against all 25-mers within the genome and consequently
move probes a few nucleotide positions upstream or downstream to obtain higher av-
erage specificity. Section 7.1 describes how to adapt the LCF approach to genome
tiling chips.

The objectives of genome tiling chips are large-scale transcript identification and gene
finding, including both non-coding transcripts (e.g., tRNA and rRNA genes) and
protein-coding genes. Recall from Figure 1.3 that eukaryotic protein-coding genes
consist of several exons, interrupted by introns. Therefore a transcript does not neces-
sarily occupy a contiguous region in the genome, but breaks up into several transcript
fragments or transfrags. Section 7.2 shows how experiments with genome tiling chips
can be decoded to discover previously unknown transfrags.

Using genome-tiling chips, Kapranov et al. (2002) discovered new transcriptional ac-
tivity in chromosomes 21 and 22 of the human genome, but their analysis did not
explicitly take possible cross-hybridization into account; so some of their observations
might be “explained away” in this manner. Our purpose is to provide a framework
for choosing good probes for genome tiling chips and to explore the limits of the
decodability of these experiments.

1Referring to Affymetrix GeneChip r©technology, we restrict the discussion in this chapter to 25-mers.

125

Chapter 7 Design and Analysis of Genome Tiling Chips

7.1 Probe Evaluation and Selection

Since we have no a-priori definition of targets and transcripts and must deal with
large amounts of data, we modify the longest common factor approach to find rel-
atively specific probes. Our intention is to compare all 25-mers in the euchromatin
sequence s of the human genome (technically, we take one repeat-masked strand of
each chromosome; approximately 1.5 ·109 nt) against all 25-mers in the whole genomic
sequence t (both strands; about 6 ·109 nt). As a first proposal, suppose that we would
like to compute longest common factor statistics of width ∆ = 14 at single nucleotide
resolution, i.e.,

LCFS(i)δ := |{j : lcf(si..i+24, tj..j+24) = 25− δ}| (δ = 0, . . . , 13)

for all starting positions i in s such that si..i+24 is a 25-mer probe candidate. However,
the structure of this problem is different from the one studied in Chapter 4; we now
have billions of “transcript collections” (all 25-mers in t), which additionally overlap.
This has two consequences. First, since every probe candidate of s is also a 25-mer
of t, we already expect δ + 1 “transcripts” with LCF length 25− δ. Second, it would
be wasteful to process all “transcripts” separately. Therefore, we propose a modified
specificity measure for this application; it is based on cumulative statistics of matching
statistics (CSMS).

Definition 7.1 (Cumulative statistics of matching statistics). For two strings

s, t define the matrix of cumulative statistics of matching statistics csmss|t = (csms
s|t
i,µ)

of s against t by

csms
s|t
i,µ := |{j : lcp(s(i), t(j)) ≥ µ}| (i = 0, . . . , |s| − 1, µ ∈ [R0

min, Rmax], Rmax ≥ 25).

Recall that lcp(s(i), t(j)) denotes the longest common prefix of the suffix of s starting at

position i and the suffix of t starting at position j. Thus, csms
s|t
i,µ denotes the number

of times that si..i+µ−1 occurs in t.

A bucket scan algorithm for CSMS. For genome tiling chips, the bounds of interest
for µ are [R0

min, Rmax] = [12, 25] (these are ∆ = 14 values). For µ in this range and

fixed i, all csms
s|t
i,µ are easily computed by a modification of the bucket scan algorithm

in Figure 4.3.

To initialize the computation for position i, we set CSMS[i][µ] ← 0 for all µ. Lines 2,
6, and 10 of the bucket scan algorithm are replaced by

CSMS[i][µ]← CSMS[i][µ] + 1.

126

7.1 Probe Evaluation and Selection

The cl array is then no longer required for the algorithm (nor does it exist for genome
tilting chips). From the discussion of the algorithm in Section 4.3.2, it is evident that
upon termination of the bucket scan, we have CSMS[i][µ] = |{j : lcp(s(i), t(j)) = µ}|.
To obtain cumulative statistics, we need to form cumulative sums:

for µ = Rmax − 1 downto R0
min

CSMS[i][µ]← CSMS[i][µ] + CSMS[i][µ + 1]

Thereafter we have CSMS[i][µ] = csms
s|t
i,µ for µ ∈ [R0

min, Rmax], as desired.

Unspecificity evaluation. For the specificity of the probe candidate starting at po-
sition i, only the vectors csms

s|t
i , . . . , csms

s|t
i+24 are of interest. By the suffix property

of matching statistics, we have

csms
s|t
i,µ ≥ csms

s|t
i−1,µ+1.

In other words, there are at least as many matches of length ≥ µ starting at position i
as there are matches of length ≥ µ + 1 starting at position i− 1. If we find more than
this minimum number of matches, we know that these must be due to jumps. Let us
call them unexpected.

Definition 7.2 (Unexpected CSMS). For the probe candidate starting at position
i, the unexpected CSMS σi := (σi

k,µ) are defined by

σi
k,µ :=







csmsi,µ if k = 0 and µ ∈ [R0
min, 25],

csmsi+k,µ − csmsi+k−1,µ+1 if 0 < k ≤ 25 and µ ∈ [R0
min, 25− k],

0 if 0 < k ≤ 25 and µ > 25− k.

Note that σi
k is the null vector for k > 25− R0

min.

To obtain a surrogate Li,δ for longest common factor statistics, we first sum the unex-
pected CSMS over all positions k; this corresponds to the total number of unexpected
matches of length ≥ µ in si..i+24,

Si,µ :=

25−R0
min∑

k=0

σi
k,µ.

Now S is still a cumulative quantity; so we take first-order differences. Additionally.
we express the quantity Li as a function of δ = 25− µ.

Li,δ :=

{

Si,25 if δ = 0,

Si,25−δ − Si,25−(δ−1) if δ > 0.

127

Chapter 7 Design and Analysis of Genome Tiling Chips

10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Maximal LCF length

F
ra

ct
io

n
of

 2
5−

m
er

s

Per−chromosome fraction of 25−mers with maximal LCF values between 11 and 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
X

10 15 20 25
0

0.1

0.2

0.3

0.4

Maximal LCF length

F
ra

ct
io

n
of

 2
5−

m
er

s

Fraction of 25−mers with maximal LCF values between 11 and 25 on chr. 1−X vs. Y and M

Average 1−X
Y
M

Figure 7.1: The distribution of the maximal LCF length is almost constant across all human
chromosomes, except the Y chromosome and the mitochondrial DNA (possibly due to
small size effects).

It should be noted that Li,0 ≥ 1 because of si..i+24 itself; this match must be subtracted
when computing the unspecificity according to (3.5), for example. We will assume that
this has been done.

Results. Using the method as described above, we computed Li = (Li,δ) for all 25-
mers in the repeat-masked human genome. On a Compaq AlphaServer ES45 with
four 64-bit 1 GHz processors (only one processor was in fact used) and 27 GB of
main memory, the whole computation, including building the suffix arrays for all
chromosomes, took approximately two days.

To visualize the obtained information, we consider M = (Mi) with Mi := 25−min{δ :
Li,δ > 0}, i.e., the maximal LCF length of si..i+24 with other (non-overlapping) 25-
mers in the genome. Interestingly, the distribution of M is relatively constant across
all chromosomes (except the Y chromosome), with a peak at 17 and 18 nt, as shown
in Figure 7.1. The distribution differs for the Y chromosome with almost 35% of the
probe candidates having full-length matches elsewhere in the genome. We do not have
an explanation for this effect. The distribution for the mitochondrial “chromosome”
is also shown but is hardly comparable because of its relatively small size.

Figure 7.2 shows the cumulative distribution function of M , averaged over Chromo-
somes 1 through X. For example, About 15% of all 25-mers have a maximal LCF
length of at most 16. Such probes, however, tend to occur in clusters, and not the
whole genome can be tiled with them. As a consequence, we should expect a con-
siderable level of cross-hybridization for genome tiling chips and be prepared to use
non-unique probes.

128

7.2 Decoding

10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 2
5−

m
er

s

Maximal LCF length m

Fraction of 25−mers with maximal LCF value <= m

Average 1−X

Figure 7.2: Cumulative distribution function of the maximal LCF length in the human
genome. About 15% of all 25-mer probe candidates have a maximal LCF length of at
most 16.

7.2 Decoding

Consider the illustration in Figure 7.3. The location of the true transfrags is unknown;
thus we tile the genome with several (partially overlapping) hypothetical transfrags of
constant length L and distances D, in such a way that each hypothetical transcript
spans several probes. Intuitively, if (almost) all probes belonging to one of the hypo-
thetical transfrags show a signal, we infer that the corresponding transfrag is a true
one, unless the probe signals can be explained otherwise, i.e., by cross-hybridization
or as false positive signals.

The more probe locations are spanned by hypothetical transfrags, the higher is our con-
fidence in the predicted transfrags for constant error rates. To increase the confidence,
we can thus either use a dense probe tiling or restrict the prediction to relatively long
transfrags. For efficient decoding, it is desirable to keep the number of hypothetical
transfrags as low as possible, but doing so also decreases the resolution. For example,
in Figure 7.3 the left true transfrag is hard to detect because it spans only three probes
and additionally occurs between two hypothetical transfrags, which have only a small
overlap. Choosing a larger overlap would lead to many more (non-independent) hy-
pothetical transfrags, increasing the problem size and the modeling complexity. On
the experimental side, it is of course desirable to increase the probe number as far as
possible for maximal resolution (i.e., use every 25-mer as a probe so that two consec-
utive probes overlap by 24 nt). On the other hand, longest common factor analysis

129

Chapter 7 Design and Analysis of Genome Tiling Chips

V V V V V VW W W W W W

X X X X
X X X X
Y Y Y Y
Y Y Y Y

Z Z Z Z[[[[

False positives

False negative

(experimental error,

cross−hybridization)

Positive probe

Negative probe

Transfrag

Hypothetical transfrag

LD

Figure 7.3: Transfrag discovery with genome tiling chips. Observed probe signals are to
be explained with the presence or absence of hypothetical transfrags of length L. The
distance between the start position of two consecutive transfrags is D.

may reveal that some probes are uninformative, because they have a high probability
of cross-hybridization with other hypothetical transfrags. Additionally, the budget
of such a large-scale project will only allow a limited number of chips and feature
locations per chip, which dictates the probe spacing.

Studies on the human genome (Lander et al., 2001) have shown that the length distri-
bution of internal exons of protein-coding genes peaks between 50 and 200 nt; therefore
we may choose L = 100 and D = 80, say. It should be noted that the decoding can
be repeated with arbitrary parameters of D and L once the experimental results are
available. The size of one strand of the repeat-masked human genome is approximately
1.5 · 109 nt, resulting in 18.74 · 106 hypothetical transfrags and in 75 · 106 probes for
a probe distance of 20 nt (so consecutive probes overlap by 5 nt). These numbers
have to be doubled to account for the second strand. In this section we present a
feasibility study of transfrag detection on a slightly smaller scale (1 · 106 probes for
250000 transfrags).

Formally, we assume that the microarray experiments result in binary probe observa-
tions y = (yi)i=1,...,m. For each of the n hypothetical transfrags j = 1, . . . , n, we know
which probes show a signal if the transfrag is expressed; let P (j) ⊂ {1, . . . , m} be this
probe set for hypothetical transfrag j. Note that P (j) typically contains more than
the few probes spanned by tj : it contains all probes i with high LCF value lcf(pi, tj).
Our goal is to infer the status x = (xj) ∈ {0, 1}n of each hypothetical transfrag
j = 1, . . . , n.

In principle, the decoding proceeds according to the Gibbs sampling procedure de-
scribed in Section 6.3. We can exploit additional prior knowledge in this situation,
however: We know some (but possibly not all) true transcripts and their locations
by mapping known EST sequences to the genome (e.g., Mott, 1997). This knowledge
allows to estimate the false negative rate f0 of the probe signals, it enables us to fix

130

7.2 Decoding

some xj = 1 that can then be removed from the sampling procedure, and it helps to
define the prior distribution on all possible solutions x.

We need to agree on a way to map the known true transfrags to present hypothetical
transfrags; this can be difficult, e.g., for the left true transfrag in Figure 7.3. A
reasonable strategy is to declare a hypothetical transfrag as present if more than half
of its range is spanned by a true transfrag. Probes that are inconsistent with this
decision are then treated as false positives or false negatives.

We thus assume that xj = 1 for j ∈ K ⊂ {1, . . . , n}, where K is the index set of
hypothetical transfrags known to be present. Let P1 :=

⋃

j∈K P (j) be the probes
whose signal is expected and explained by the presence of the known transcripts.
Then we estimate the false negative rate f0 by |{i ∈ P1 : yi = 0}|/|P1|. The false
positive rate is harder to estimate because we do not know the additionally present
transfrags. It depends strongly on how we define P (j) based on LCF statistics. If
for example, P (j) = {i : lcf(pi, tj) = |pi|}, the probe sets are relatively small, but
a considerable fraction of observed probe signals will be false positives because of
unspecific hybridization. If on the other hand, we set P (j) = {i : lcf(pi, tj) ≥ |pi|−1},
the false positive rate is lower at the price of generally increased decoding complexity
and a larger false negative rate.

Let us set M := {1, . . . , n} \K; so M contains the indices of transfrags whose status
is unknown. For the prior distribution of a configuration x, we use a distribution that
slowly decaying with the number of additional transfrags,

P(x) ∝ qe(x) (q < 1; e(x) :=
∑

j∈M xj).

The parameter q is chosen from the observation that the total prior probability of a
solution x with e ones among the |M | unknown components is proportional to

(
|M |
e

)
·qe,

which takes its maximum at e∗ ≈ (q|M | − 1)/(q + 1). If e∗ � |M |/2 additional
transfrags are expected, we thus set q := (e∗ + 1)/(|M | − e∗).

For simplicity, we work with a basic per-probe error model. Let Y := {i : yi = 1}
denote the probes where a signal is observed, and let P (x) :=

⋃

j:xj=1 P (j) denote the
probes where a signal is expected for solution x.

Using the notation of Section 6.2, we have the posterior probability

π(x) ≡ P(x | y) ∝ qe(x) · (1− f0)
|Y ∩P (x)| · f |P (x)\Y |

0 · (1− f1)
m−|Y ∪P (x)| · f |Y \P (x)|

1 ,

where e(x) :=
∑

j∈M xj . Note that P (x) is always a superset of P1. The Markov
chain moves as described in Section 6.2, paragraph “Sampling from the posterior
(Gibbs sampler)”.

Sampling efficiency is improved by noting that the likelihood of a solution x, in which
hypothetical transfrags with no or very few positive probes are present, will be low

131

Chapter 7 Design and Analysis of Genome Tiling Chips

because of the f
|P (x)\Y |
0 term and because the prior prefers sparse solutions. We may

thus fix xj := 0 for j ∈ N , where N is the set of absent transfrags determined by
this filtering step. Sampling is now restricted to coordinates from J := M \ N =
{1, . . . , n} \ (K ∪N).

Simulations. To assess the feasibility of genome-wide decoding in the presence of
high error rates, we performed large scale simulations with n = 250000 hypothetical
transfrags and m = 106 probes; we assume that each transfrag is covered by 5 probes
on average and that there is an overlap of one probe between two consecutive trans-
frags. Further we assume that on average χ = 3% of the transfrags also hybridize
to probes intended to cover a different transfrag; unspecific-cross hybridization is ad-
ditionally modeled by a large false positive error rate (see below). This setting is
devised to simulate on a smaller scale (total “genome” size 20 million nt) the prob-
lems that are expected to occur during decoding of experiments on the human genome.
Transfrags (multi-exon genes) are distributed randomly in the genome; because of the
small genome size, we arranged a relatively high transcript density of about 7% of the
genome. A random 50% of the transcriptome is assumed to be known beforehand; the
goal is to correctly infer the remaining 50% from noisy probe signals with realistically
high and per-probe error rates (f0 = 10%, f1 = 15%).

Of the 250000 hypothetical transfrags, on average 8750 (half of 7%) are known to
be present; on these, we are able to estimate the false negative probe rate reliably.
Pre-filtering (at most one of the five consecutive probes spanning a transfrag shows a
signal) results in about 188000 transfrags to be declared as absent; this step consider-
ably reduces the problem complexity and leads only to a small fraction of erroneous
decisions: For 5-fold covered transfrags, it is improbable that at most one probe shows
a signal if the transfrag is truly present (the probability is (f0)

5 +
(
5
1

)
· (f0)

4 ≈ 1/2000).
On the filtered transfrags, we estimate the false positive rate f1, but it is clear that
this estimate is biased and that the true rate needs to be higher. Our simulations
show that good results are obtained when the estimated rate is multiplied by 1.5.

Pre-filtering leaves the status of about |J | ≈ 53000 transfrags to be sampled; their
indices are denoted by the set J . We initially estimate the number of present transfrags
by the number of transfrags e∗ for which at least three covering probes show a signal,
thus overestimating the true number. We set the prior parameter q := (e∗ +1)/(|M |−
e∗) ≈ 0.45, as described above. This decision biases the samples towards containing
too many transfrags, but it can be compensated later by a strict posterior threshold.

For Gibbs sampling, we choose 100 burn-in iterations (each consists of |J | single-
coordinate steps) and 4100 iterations in total; we observed that even reducing these
parameters to 50 burn-in steps and 1000 total steps did not lead to differences in
the results. During each iteration after the burn-in phase, the |J | full conditional

132

7.2 Decoding

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.85

0.9

0.95

1

Posterior cutoff value c

S
en

si
tiv

ity
 a

nd
 P

P
V

Sensitivity and PPV as a function of posterior cut−off

Sensitivity
PPV

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.85

0.9

0.95

1

Posterior cutoff value c

S
pe

ci
fic

ity
 a

nd
 N

P
V

Specificity and NPV as a function of posterior cut−off

Specificity
NPV

0.85 0.9 0.95 1
0.85

0.9

0.95

1

PPV

S
en

si
tiv

ity

Sensitivity as a function of Positive Predictive Value

0.85 0.9 0.95 1
0.85

0.9

0.95

1

Specificity

N
P

V

Negative Predictive Value as a function of Specificity

Figure 7.4: Decoding results for genome tiling chips when 3% of all transfrags have probes
that hybridize to other transfrags as well. Results of one representative simulation are
shown; they are virtually identical across repetitions with the same parameters.

probabilities P(xj = 1 | y, (x′
j)j′ 6=j) are estimated for j ∈ J and averaged over all

iterations to estimate the marginals π(xj = 1).

Transfrags with high marginal estimates π(xj = 1) ≥ c are declared as present and
called positives ; the remaining transfrags are called negatives. These terms and the
following discussion only refer to the transfrags j ∈M of unknown status. A positive
transfrag is a true positive (TP) if it represents a real transfrag; otherwise it is a false
positive (FP). A negative transfrag is a true negative (TN) if it represents no real
transfrag; a real transfrag that is not recognized is a false negative (FN). As we are
working with simulated data, we can determine all of the following characteristics as
a function of the threshold c.

• The sensitivity is defined as the fraction of true positives among all real transfrags
(TP/(TP+FN)).

• The positive predictive value (PPV) is the fraction of true positives among all
declared positives (TP/(TP+FP)).

133

Chapter 7 Design and Analysis of Genome Tiling Chips

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.85

0.9

0.95

1

Posterior cutoff value c

S
en

si
tiv

ity
 a

nd
 P

P
V

Sensitivity and PPV as a function of posterior cut−off

Sensitivity
PPV

0.85 0.9 0.95 1
0.85

0.9

0.95

1

PPV

S
en

si
tiv

ity

Sensitivity as a function of Positive Predictive Value

Figure 7.5: Decoding results for genome tiling chips when 20% of all transfrags have probes
that hybridize to other transfrags as well.

• The specificity is the fraction of true negatives among all declared negatives
(TN/(TN+FP)).

• The negative predictive value (NPV) is the fraction of true negatives among all
declared negatives (TN/(TN+FN)).

Figure 7.4 shows that in the setting we described, a posterior cut-off of about 0.9 plays
a critical role with a pronounced drop in sensitivity for larger thresholds. Choosing
the threshold at about c ≈ 0.64 leads to a specificity of 94% and a PPV of 91%, but
there are drops in sensitivity for slightly larger c and in PPV for slightly smaller c. In
practice, one does not know the optimal threshold. For cut-offs between 0.65 and 0.85,
results are relatively stable and achieve a sensitivity and PPV of about 90% at the
same time (i.e., 90% of the true transfrags are found and 90% of the found transfrags
are correct). This is a very good result for the high error rates we consider. Naturally,
the problem of finding the true negative transfrags is easier because of their larger
number. Over the whole range of thresholds, we achieve a specificity and PPV above
96%.

We repeated the same analysis in a more difficult situation where χ = 20% (instead of
3%) of the transfrags hybridize to one or several additional probes beyond those that
are intended to cover them. Figure 7.5 shows that the results change only marginally;
the false positive errors are still dominating the non-unique probe effect. Therefore
no problem is expected for decoding the human transcriptome, even if many probes
hybridize to multiple transfrags in the human genome.

In the previous experiments, we estimated the true false positive and false negative
rates f1 and f0 rather well, but what happens, for example, if f1 is not heuristically
corrected by a factor of 1.5, as described above? Figure 7.6 shows that the range
of posterior cutoff values that result in both 90% sensitivity and PPV has moved to
between 0.8 and 0.95.

134

7.3 Summary

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.85

0.9

0.95

1

Posterior cutoff value c

S
en

si
tiv

ity
 a

nd
 P

P
V

Sensitivity and PPV as a function of posterior cut−off

Sensitivity
PPV

0.85 0.9 0.95 1
0.85

0.9

0.95

1

PPV

S
en

si
tiv

ity

Sensitivity as a function of Positive Predictive Value

Figure 7.6: Decoding results for genome tiling chips when the false positive error rate is
underestimated: An estimate of 10% instead of the true 15% is assumed.

In practice, we do not know the true error rates, and we also do not know the optimal
threshold. However, our simulations indicate that a threshold of c ≈ 0.85 is a robust
choice.

7.3 Summary

The design and analysis of genome tiling chips poses many challenges, such as finding
a balance between the experimental costs and high resolution, or between the probe
coverage of transfrags and the decoding complexity. Many overlapping hypothetical
transfrags would require a model that additionally takes correlations between consec-
utive transfrags into account. For our simulation studies, decoding runs were in the
range of hours, but even without model refinement, we estimate that the required time
for one decoding run on the human genome would be about one week.

Our studies also show that, if there are unknown transcribed regions hidden in the
genome, we have a good chance to detect them with well designed genome tiling
chips. Additionally, what we detect has a good chance of being correct, even with
the (realistically) high and unknown error levels that we assumed. Our results are
encouraging for large scale projects such as the ENCODE project; and we expect that
it will lead to many new insights concerning the human transcriptome.

135

136

Chapter 8

Optimization of the Deposition
Sequence for Chip Production

After treating probe selection and signal decoding in various frameworks in the previ-
ous chapters, we now take a look back at the chip production phase.

Recall the photolithographic probe synthesis process described in Section 1.3.1. All
probes are synthesized on the chip in parallel on a nucleotide-by-nucleotide basis. In
each synthesis step, the same nucleotide is appended to all probes that have been
selectively activated to receive it. Activation occurs by exposure to light, enabling the
chemical synthesis reaction. Thus each synthesis step is succinctly described by

1. a nucleotide (a character from {A,C,G,T})

2. a mask, that is, an index set of probes that do not grow during this step, or
alternatively, the complementary index set indicating the activated probes to
which the nucleotide is appended.

The sequence of nucleotides used in the chip synthesis process is called the deposition
sequence. Each probe is a subsequence of the deposition sequence, so the deposition
sequence is a common supersequence of all probes. In the introduction, we have given
several reasons why the deposition sequence should be kept as short as possible. There-
fore the aim of this chapter is to solve Problem 9, the shortest common supersequence
problem (SCSP) in a microarray production setting, where the SCSP has several char-
acteristics which distinguish it from previously studied SCSPs in other settings: We
have many short sequences (10000 to 100000, recently up to a million sequences of
20 to 30 base pairs), and the alphabet is small (four nucleotides). Previous studies
considered the problem with reversed dimensions, i.e., with fewer but much longer
sequences.

137

Chapter 8 Optimization of the Deposition Sequence for Chip Production

8.1 Previous Work and our Approach

Known heuristics for the SCSP (see Irving and Fraser, 1995; Jiang and Li, 1995) are

• Alphabet, the obvious factor-|Σ| approximation: Let π be a permutation of the
characters in Σ and let L be the length of the longest input sequence. Let s be
the sequence obtained by L-fold repetition of π. Clearly s is a supersequence of
every sequence of length ≤ L over Σ. Also, the SCS must have length at least L;
therefore s is within a factor of |Σ| of the optimum. As our statistical analysis will
show, this method is hard to beat for many input sequences of constant length.
Therefore and because it is easily implemented, it is the current standard for
microarray production.

• Clustering approaches that replace a pair of sequences by one of their shortest
common supersequences in every step until only one sequence remains. Irving
and Fraser (1995) describe, for example, heuristics called Tournament and
Greedy that fall into this category. These algorithms do not have a guaranteed
performance ratio.

• Algorithms that move a front through all sequences from left to right. In each
step, the method picks the next character of the supersequence based on the
partial sequences to the right of the front. Then the front advances in those
sequences that can use the picked character. A classical example is Mm, the
Majority Merge algorithm, that appends the most frequent symbol at the current
front position.

More recently, several publications on the SCSP have appeared proposing new heuris-
tics. For example, character selection in Majority Merge can be improved by con-
sidering the remaining string length in each step. Combining heuristics with genetic
algorithms has been shown to give good performance (Branke et al., 1998).

None of the above methods has been designed for or applied to the microarray pro-
duction setting with thousands of sequences. The running time of clustering methods
depends at least quadratically on the number of input sequences, which is prohibitive.
Therefore we use Alphabet to obtain an initial supersequence, and develop refine-
ment methods that improve an existing supersequence by local modifications. We
begin by stating the required definitions. Then we examine the efficiency of the so-
called Alphabet-Leftmost heuristic in the microarray setting, which defines the
baseline for potential improvements. We continue by describing our refinement meth-
ods for supersequences, and conclude with computational experiments and a summary
of our findings.

138

8.2 Definitions

8.2 Definitions

Let Σ be a finite alphabet of size σ = |Σ| (in the microarray production setting, σ = 4).
In the following, we consider strings over Σ. When s is a string, we write |s| for its
length and use subscripts to refer to the individual characters: s = (s1, . . . , s|s|).

Definition 8.1 (Subsequence; Supersequence). A string s′ is a subsequence of
s when s′ can be obtained by deleting some (possibly zero or all) characters from
s without changing the order of the remaining characters. We also say that s is a
supersequence of s′ in this case. When I is a subset of {1, . . . , |s|}, we write sI for the
subsequence s′ = (si)i∈I .

Definition 8.2 (Common Supersequence). A string s is a common supersequence
of a set S of strings if each string in S is a subsequence of s.

We use the term step to refer to a position within a supersequence, while we reserve
the term position for positions within sequences from S.

Definition 8.3 (Embedding). Let S be a set of m strings, t ∈ S, and let s be a
common supersequence of S of length n.

An embedding of t in s is a binary vector et = (et,1, . . . , et,n) ∈ {0, 1}n or equivalently
the index set It := {j | et,j = 1} ⊂ {1, . . . , n}, such that sIt

= t. Note that for any
embedding It we have |It| = |t|.
An embedding matrix of the set S in s is a binary m× n-matrix E whose i-th row is
an embedding of the i-th string of S in s.

Definition 8.4 (Leftmost Embedding). An embedding et of t in s is called the
leftmost embedding, when

∑

j′≤j et,j′ ≥
∑

j′≤j e′t,j′ for all other embeddings e′t and all
steps j. Intuitively, t uses the characters of s as soon as possible from left to right.

An embedding matrix E is called the leftmost embedding matrix, when every row is
the leftmost embedding of its associated string.

Definition 8.5 (Productivity of Steps). Let E be an embedding matrix of the
sequence set S = {t1, . . . , tm} in the supersequence s. We say that sequence ti is masked
in step j and that step j is unproductive for sequence ti when eti,j = 0. Sequence ti is
unmasked in step j and step j is productive for sequence ti when eti,j = 1.

Sequence ti is complete in step j when
∑

j′<j eti,j′ = |ti|; otherwise it is incomplete (it
might be completed in step j; then it is complete in step j + 1). The completion step
of sequence ti is the largest j where ti is incomplete.

The productivity of step j is the number of sequences for which step j is productive
in relation to the number of incomplete sequences in this step. A step with produc-
tivity zero is called unproductive. An unproductive step can be safely removed from a
supersequence.

139

Chapter 8 Optimization of the Deposition Sequence for Chip Production

Let us illustrate these definitions with an example.

Example 8.6. We consider a set S = {t1, t2, t3} of three probes of length 7.

• t1 = ACGTTAG

• t2 = CGAGTCA

• t3 = AGAGCAG

One possible deposition sequence (supersequence) for S is obtained by cycling through
the alphabet as long as necessary: s = ACGTACGTACGTACG suffices, as shown by the
following embedding matrix.

s A C G T A C G T A C G T A C G

et1 1 1 1 1 1 1 1

et2 1 1 1 1 1 1 1

et3 1 1 1 1 1 1 1

1 1 1 1 1 1

Step 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Sequence t1 completes in step 11; thus it is complete in all steps ≥ 12. It is masked
in steps 5, 6, 7, 10, 12, 13, 14, and 15. There are three unproductive steps for each
sequence. Overall, there are three unproductive steps; these are 6, 12, and 14 and can
be removed from s. The embedding of t3 in s can be either described by the binary
vector et3 in the third row of the given binary matrix, or equivalently by the index set
of the seven unmasked steps It3 = {1, 3, 5, 7, 10, 13, 15}.

8.3 Alphabet-Leftmost and its Stochastic Properties

The following method, called Alphabet-Leftmost, will be used as a baseline to
compare other methods against. The input set S consists of m strings over Σ, the i-th
string having length Li.

Alphabet-Leftmost

1. Let π be any fixed permutation of the letters in Σ; let L be the length of the
longest input string in S.

2. Set s′ := πL. Compute the leftmost embedding matrix E of S in s′.

3. Remove all unproductive steps from s′ to obtain the result s, and let U := |s|.

140

8.3 Alphabet-Leftmost and its Stochastic Properties

50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

SCS Bounds for 10000 DNA Sequences of length 25

Length

P
ro

ba
bi

lit
y

M
as

s

Theoretical Lower
Empirical Lower
Theoretical Upper
Empirical Upper

50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

SCS Bounds for 50000 DNA Sequences of length 25

Length

P
ro

ba
bi

lit
y

M
as

s

Theoretical Lower
Empirical Lower
Theoretical Upper
Empirical Upper

50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

SCS Bounds for 100000 DNA Sequences of length 25

Length

P
ro

ba
bi

lit
y

M
as

s

Theoretical Lower
Empirical Lower
Theoretical Upper
Empirical Upper

50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

SCS Bounds for 500000 DNA Sequences of length 25

Length

P
ro

ba
bi

lit
y

M
as

s

Theoretical Lower
Empirical Lower
Theoretical Upper
Empirical Upper

Figure 8.1: Empirical distribution of the lower and upper bounds L and U as found by
random simulations (“Empirical Lower”, “Empirical Upper”), and theoretically computed
distribution of L and C; the latter serves as an approximation to U (“Theoretical Lower”,
“Theoretical Upper”). The four panels show the distributions for 10K, 50K, 100K, and
500K DNA 25-mers, respectively.

Running Alphabet-Leftmost gives us an upper bound U on the length of the SCS.
When the alphabet is small, we may run Alphabet-Leftmost on every permutation
of Σ and pick the best bound.

A lower bound is also easily obtained. For i = 1, . . . , m and x ∈ Σ, let Ni(x) denote
the number of occurrences of character x in the i-th sequence, and define N(x) :=
maxi=1,...,n Ni(x). Clearly, every common supersequence must contain at least N(x)
occurrences of x. Thus a lower bound on its length is given by L :=

∑

x N(x). The
typical range of L and U for π =(A,C,G,T) and 10000 to 500000 uniformly drawn
25-mers is shown in Figure 8.1.

The rest of this section contains an analysis of the distribution of L and U under a
uniform random input model. This model is appropriate for the microarray production
SCSP because the oligo selection process will usually force a uniform distribution on
the nucleotides because departures from uniformity increase the average similarity
between oligos and hence the risk of cross-hybridization.

141

Chapter 8 Optimization of the Deposition Sequence for Chip Production

Distribution of the Lower Bound L. Since Ni(x) is the number of occurrences of
character x in the i-th sequence, Ni(x) has a Binomial distribution with parameters
Li and 1/σ. Furthermore, for fixed x, the Ni are independent. It follows that

P(Ni(x) ≤ k) =

k∑

j=0

(
Li

j

)

· σ−j · (1− 1/σ)Li−j ,

P(N(x) ≤ k) =
m∏

i=1

P(Ni(x) ≤ k).

Recall that L :=
∑

x N(x). While the random variables N(x) are not completely
independent, they can be treated as such in good approximation when the alphabet
size is small compared to the number of oligos. Intuitively, the value of N(x) has
little influence on the other values N(y) for y 6= x (unless N(x) is small), because the
maxima over i of Ni(x) and Ni(y) can stem from many different sequences. Thus we
may well approximate the distribution of L by the convolution of the distributions of
(N(x))x∈Σ. Note the exact agreement of this theoretical distribution with the empirical
distribution in Figure 8.1.

Approximate Distribution of the Upper Bound U . For k = 1, . . . , Li, let Wi,k

be the number of consecutive unproductive steps between the (k − 1)-st and k-th
productive step for sequence i. Since the sequence characters are independent and
uniformly distributed and the deposition sequence is periodic, the Wi,k are independent
and uniformly distributed on {0, 1, 2, 3}. We write the completion step of sequence ti
as

Ci = Li +

Li∑

k=1

Wi,k.

From this representation, we may compute the distribution of Ci explicitly by Li-
fold convolution of the uniform distribution on {0, 1, 2, 3}, or approximate it by a
Gaussian distribution with mean 2.5 Li and Variance 1.25 Li with the Central Limit
Theorem. We set C := maxi Ci and compute its distribution with the product formula
P(C ≤ c) =

∏m
i=1 P(Ci ≤ c). For m probes of the same length L, using the normal

approximation results in

P(C ≤ c) ≈
[

Φ

(
c + 0.5− 2.5 L√

1.25 L

)]m

,

where Φ denotes the cumulative distribution function of the standard Normal distri-
bution, and adding 0.5 to c represents a continuity correction.

Note that U ≤ C. Both C and U do not count removed unproductive steps at the
end of the periodic deposition sequence, but C does count internal unproductive steps

142

8.4 Refining Supersequences

that are removed by Alphabet-Leftmost and hence not counted in U . When
the number of sequences is large, internal unproductive steps are rare, and will only
occur near the end of the deposition sequence when only few incomplete sequences
are left. The plots in Figure 8.1 show the discrepancy in the right tail between the
distribution of U obtained by simulations and the distribution of C, which we use as
an approximation to U .

8.4 Refining Supersequences

The results of the previous section show that there is only a limited potential for
improvement in comparison to Alphabet-Leftmost. Additionally, we cannot allow
the search to take more than a few minutes if we want the method to be practical
in custom microarray production where each chip has its unique design. Therefore
we are considering methods that refine existing supersequences and whose execution
time is easily controlled. Their aim is to increase overall productivity and reduce the
number of low-productivity steps.

8.4.1 Supersequence Editing

First, we consider three edit operations on the supersequence s = (s1, . . . , s|s|).

• Delete(k): We shorten the supersequence by removing sk. Every sequence
whose embedding uses step k must be re-embedded, and its new embedding may
not complete in the shorter supersequence. In such a case we have to append
characters to the supersequence until each sequence is properly embedded. A
Delete-operation may thus shorten the supersequence by one character (when
all sequences can be embedded without appending characters), leave the length
of the supersequence unchanged (when exactly one character is appended), or
even lengthen the supersequence. In the latter case, using the delete operation
may not be advisable.

• Insert(k, a): We insert character a before step k (assuming sk 6= a; otherwise we
may equivalently insert before step k+1) and compute a new leftmost-embedding
of all sequences whose first productive step after k− 1 appends an a. While the
Insert-operation lengthens the supersequence at first, it may result in one or
more unproductive steps near the end of the supersequence. These steps are
then removed, potentially shortening the supersequence by several characters.

• Twiddle(k) for k = 1, . . . , |s| − 1: We switch the characters sk and sk+1 (as-
suming they are not equal) and re-embed every sequence that was unmasked in
step k+1. This reduces the completion time of some sequences, while increasing

143

Chapter 8 Optimization of the Deposition Sequence for Chip Production

s A C G T A G T A C G A G

et1 1 1 1 1 1 1 1

et2 1 1 1 1 1 1 1

et3 1 1 1 1 1 1 1

1 1 1

Step 1 2 3 4 5 6 7 8 9 0 1 2

(a) ⇓

s+ A C G T A G T C G A G

e+
t1 1 1 1 1 1 1 1

e+
t2 1 1 1 1 1 1 1

e+
t3 1 1 1 1 1 1 1

Original supersequence and embedding

(b) ⇓

s+ A C G T A G T A C A G G

e+
t1 1 1 1 1 1 1 1

e+
t2 1 1 1 1 1 1 1

e+
t3 1 1 1 1 1 1 1

Figure 8.2: Effects of supersequence edit operations on the sequences of Example 8.6, with
non-productive steps in the supersequence s already removed. The Insert operation is
not illustrated. (a) Effect of the Delete operation at step 8: Sequence t1, which was
unmasked in this step must be re-embedded, making step 10 unproductive. Thus two
characters (A and G) can be removed from the supersequence. (b) Effect of the Twiddle

operation at step 10: All three sequences must be re-embedded to the right of step 10,
making step 12 unproductive, which can then be removed.

the completion time of others. A Twiddle-operation may shorten or lengthen
the supersequence by several characters, depending on the circumstances.

The edit operations are visualized in Figure 8.2. They can be applied with different
strategies. Two immediate examples for a strategy are the following ones.

• Mcmc: We define a quality function for every supersequence. This can be a
function that increases exponentially with decreasing sequence length, and that is
otherwise high when the minimum productivity among all steps is small, as such
a step may potentially be removed. Given such a quality function, we propose
an edit operation randomly and accept it with a probability that corresponds to

144

8.4 Refining Supersequences

the quality ratio of new and old supersequence (if the quality improves, the edit
operation is always accepted). This procedure is repeated several times.

• Best: We evaluate all 5|s| − 1 possible edit operations and pick one that leads
to the best quality. This procedure is iterated until no further improvement is
possible.

Our experiments showed that the second strategy finds a local quality maximum after
only a few iterations. The Mcmc strategy explores the sequence space more thor-
oughly, but does not usually find shorter supersequences in a reasonable amount of
time.

8.4.2 Suffix Enumeration

Once we find that edit operations do not improve the supersequence further, we switch
to a branch-and-bound method that enumerates additional sequences for a given given
amount of time. Assume that the shortest currently known supersequence s∗ has
length `. We want to find out whether there are supersequences of length ` − 1 or
shorter. In principle, we could enumerate every sequence of length ` − 1, but this is
computationally prohibitive.

Consider any k-prefix (k ≤ ` − 1) of a potential supersequence. We can partially
leftmost-embed all sequences into this prefix and obtain the lower bound L (see above)
on the remaining supersequence length by adding the maximal letter counts for the
remaining partial sequences. Whenever k + L ≥ `, we can immediately move to the
next k-prefix, or (k−1)-prefix if all k-prefixes have been evaluated. Only if k +L < `,
we must consider all possible extensions of the current prefix, as they may still lead
to a supersequence of length less than `. Two modifications make this approach more
efficient in practice.

First, we can sometimes improve the lower bound as follows. We find the remaining
partial sequence tA with the highest count of As N ′(A), and similarly partial sequences
tC, tG, tT with C-, G-, and T-counts N ′(C), N ′(G), and N ′(T). Instead of simply computing
L =

∑

x N ′(x), we compute the length L′ of a shortest common supersequence of
tA, tC, tG, tT by four-dimensional dynamic programming. This is possible because the
partial oligo sequences are short. Clearly L′ ≥ L, and generally the bound is improved
by one or two characters.

Second, we do not enumerate the sequences alphabetically. We begin with the `− 1-
prefix of s∗, and change the character at step k only after all suffixes of length `−k−1
have been explored. The sequences we can explore in this way all share a common
prefix whose length depends on the permitted running time. In practice, we feel
that 5 to 10 minutes are a reasonable time; sometimes this suffices to shorten the
supersequence by one additional character.

145

Chapter 8 Optimization of the Deposition Sequence for Chip Production

80 85 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Supersequence Refinement for 50000 oligos

Supersequence Length
F

re
qu

en
cy

Alphabet−Leftmost
After Refinement

80 85 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Supersequence Refinement for 10000 oligos

Supersequence Length

F
re

qu
en

cy

Alphabet−Leftmost
After Refinement

Figure 8.3: Effects of supersequence refinement for 10000 and 50000 random uniformly
distributed 25-mers, respectively.

8.5 Computational Experiments

To measure the impact of our heuristics in a practically relevant setting, we created
several sets of 10000 and 50000 uniformly distributed 25-mers. For each of the 24
permutations of the alphabet’s characters, we construct a supersequence by running
Alphabet-Leftmost, and attempt to shorten it using the edit-strategy Best.

With one of the shortest sequences found in this process, we run the branch-and-
bound suffix enumeration for 5 minutes. The results are as follows: On average,
the supersequence is shortened from 82.7 by 2.4 to 80.3 characters for 10000 oligos,
and from 84.8 by 2.3 to 82.5 characters for 50000 oligos. The distribution of the
supersequence length after Alphabet-Leftmost and after supersequence refinement
are shown in Figure 8.3.

8.6 Summary

The stochastic analysis of Alphabet-Leftmost shows that the supersequence opti-
mization potential is small in the microarray production setting, especially since the

146

8.6 Summary

lower bound is generally not tight. We have shown that it is possible to shorten the
supersequence on average by 2.4 characters for 10000 sequences and 2.3 characters for
50000 sequences using simple edit operations and a branch-and-bound suffix enumera-
tion method. Even this seemingly small improvement is important for error reduction
during oligo synthesis. For chips with 10000 25-mers, the number of masked steps,
and hence the potential number of erroneous synthesis steps due to stray light, is
reduced from 57.7 to 55.3 (by 4.2%), which is a respectable result for a few minutes
of computation time. Further error reduction techniques (such as synthesizing oligos
with similar embeddings next to each other, as described by Kahng et al. (2002), for
example) will be easier to apply after shortening the deposition sequence.

Other approaches like Greedy or Tournament that do not attempt to refine an ex-
isting supersequence but build one from the individual sequences fail in the microarray
production setting, generally leading to supersequences much longer than the lower
bound (data not shown). This is not surprising because these heuristics were designed
with the idea in mind that we need to integrate relatively few but longer and rather
similar sequences into one supersequence.

An interesting variation of the SCSP for microarrays was recently suggested by Alain
Guénoche (personal communication; submitted work): Assume that we would like to
have each probe represented at two spots for safety and repeatability reasons. To
guard against failure of certain synthesis steps, it would be best if the two instances of
each probe are synthesized by disjoint sequences of steps. Therefore we are interested
in an algorithm that decides whether a probe is 2-embeddable, i.e., can be embedded
twice into a given supersequence with disjoint sets of steps, and in a method to find
the shortest common supersequence of a set of probes such that each probe is 2-
embeddable. Guénoche provides a dynamic programming algorithm to solve the first
problem.

147

148

Chapter 9

Discussion and Outlook

This thesis makes several contributions to the field of probe selection and microarray
design. We classify them into conceptual contributions, algorithms, stochastic results,
and software packages.

Conceptual contributions. We introduce the longest common factor (LCF) approach
for short oligonucleotide probe selection. It is based on the assumption that the affinity
coefficient Aij between probe i and target j can be approximated as a function of the
length of the longest common substring of probe i and target j.

It is clear that the LCF length cannot predict the true affinity coefficients exactly. In
Chapter 2 we present a factorization of the affinity coefficient into different components
and discuss methods for avoiding extreme cases. Although the exact factors depend
on the technology platform, in principle the same issues arise for all high-density
oligonucleotide arrays. We have not found a systematic discussion of affinity coefficient
modeling in the existing literature, and we believe that our contribution about the
nature of affinity coefficients in Section 2.1 can be serve as a general basis for both
refined probe selection methods and microarray data analysis.

The LCF approach is compared to other methods in Section 3.3, and we shall not
repeat this discussion here. We point out, however, that the LCF approach is ap-
propriate for short oligonucleotides because any stable hybridization needs a stable
core and it is unlikely that there are several strong stable cores in oligonucleotides
shorter than 30 nt in length. With longer polynucleotides, the probability that a
probe has several stable hybridization possibilities increases, and there is less reason
to believe in the validity of the LCF approach. Therefore the focus of this thesis
is on short probes, such as 25-mers on the GeneChip r© arrays. In contrast to other
sequence-based quantities, such as the minimal edit distance between a probe and
any substring of a target, the LCF length has the advantage of being efficiently com-
putable, which allows genome-wide chip designs in large genomes, such as the genome
tiling chips described in Chapter 7. Compared to the method published by Li and

149

Chapter 9 Discussion and Outlook

Stormo (2001), the LCF approach is faster by two orders of magnitude even on small
genomes (baker’s yeast; see Section 4.7).

We are not aware of any previous work that distinguishes conceptually between targets,
transcripts, and target collections, even though this distinction has obvious benefits, as
discussed in Section 4.1. Most other approaches also do not consider probe similarity
statistics with respect to all transcript collections, such as longest common factor
statistics. Instead, other methods reduce the similarity information to the maximal
value, which is misleading when many nearly equivalent high values exist.

Efficient computation of LCF lengths is based on vectors of matching statistics (Chap-
ter 4). To store and process these efficiently, we introduce the concept of jumps in
matching statistics (Section 4.4) and analyze their properties. We prove relationships
between jump sets and LCF lengths. The utility of jumps extends beyond reduced
memory requirements for storing matching statistics and the benefit of fast LCF com-
putation: Let p and t be strings, and suppose that f : Σ∗×Σ∗ → R is any real-valued
function of two strings of the form

f(p, t) = max
p′�p; p′�t

g(p′).

Examples used in this thesis are f(p, t) := lcf(p, t) with g(p′) := |p′| and f(p, t) :=
maxp′�p; p′�t (−∆rG

◦(p′)), where ∆rG
◦(p′) is the standard Gibbs energy of duplex

formation of p′ according to a Nearest Neighbor Model with zero or low initiation
terms (e.g., those from Tables 2.1 and 2.2 in Section 2.3.2). For all f of the mentioned
form, it suffices to evaluate g(p′) for substrings p′ that begin at jumps in msp|t (see
also Section 4.6); this leads to considerable savings in the evaluation of f(p, t).

In the existing literature, little has been said about using non-unique probes for gene
expression analysis or species identification. Recall that we define non-unique probes
in a way that still enforces specificity, but allows the set of intended targets to contain
more than one element (Definition 6.2). Allowing non-unique probes complicates both
the design of a chip and the analysis of probe signals; a decoding step is required to
obtain expression values or presence/absence calls from the measured signal intensities.
In fact, a simple form of decoding is also required with unique probes; it consists of
the normalization and robust averaging steps described in Section 2.2. Quantitative
analysis with non-unique probes requires robustly solving a linear system; this leads to
the design objective of minimizing the condition of the affinity matrix. For qualitative
analysis (de-or-ing), we have adapted and modified an MCMC-based decoding method
previously used in clone library screening and proposed (joint work with Alexander
Schliep). A good chip design is characterized by the probes’ ability to separate many
target sets, as formalized in Definition 6.10, and a small number of probes. Both
objectives proposed in this thesis, condition minimization under coverage constraints
and probe number minimization under separation constraints, are similar in spirit, but
formally very different: Condition minimization is a highly non-linear problem, while

150

minimizing the number of probes can formulated as an integer linear program (joint
work with Gunnar Klau and Knut Reinert).

We have shown by a simulation study that a simple Markov chain Monte Carlo based
decoding algorithm can be used to infer the presence of previously unknown transfrags
in the human genome quite reliably, even in the presence of high error rates and cross-
hybridization (Section 7.2). To decode real genome tiling microarray experiments
efficiently, the method may still need some tweaking and algorithm engineering, or
simply more computational resources.

This thesis, especially Chapter 6, also shows that microarray design and analysis are
more closely related than one generally believes, because the availability of unique
probes hides most of the problems. Today’s commercial microarrays are certainly
designed with probe uniqueness in mind, but low-level data analysis turns out to be
very complicated, as indicated by the wealth of papers published on this subject over
the last few years (see Section 1.3.4 for a selection). If the nature of affinity coefficients
was better understood — and we hope that Section 2.1 will be helpful in this respect
— and all probes for a target could be selected to have the same affinity coefficient,
analysis of microarray experiments would be greatly simplified. There are still many
sources of variation and possibilities for errors, but one major reason for different probe
signals would be eliminated (cf. Example 2.2). At present, we cannot predict affinity
coefficients directly from the sequence, but the analysis of existing experimental data
helps to build stochastic models. In Section 2.4, we propose a procedure that estimates
both the affinity coefficients and the expression levels using both experimental data
and sequence information. We expect that combined models of this kind will become
increasingly useful in the near future, but their value has yet to be established.

Summarizing, the effort spent on chip design has considerable implications for the
process of low-level data analysis. This is obvious for chips with non-unique probes,
but also true for current commercial designs with unique probes.

Algorithms. We present an efficient algorithm to compute all-against-all matching
statistics of two set of strings (targets vs. transcript collections) with upper and lower
bounds in Chapter 4. This problem has not been specifically considered before, and
the obvious generalizations of Chang and Lawler’s matching statistics algorithm using
either many suffix trees or one large generalized suffix tree would be less efficient, espe-
cially in terms of memory requirements, but also as as far as running time is concerned
(see also Section 4.3.4). The recently developed enhanced suffix array data structure
(Abouelhoda et al., 2002a) is crucial for the efficiency of our algorithm, whose core is
the bucket scan from Figure 4.3. The concept of jumps that we introduce in Section 4.4
is also instrumental for efficient later processing of matching statistics. Interestingly,
Abouelhoda et al. (2002a) bet that for any algorithm based on suffix trees, there exists
an algorithm based on enhanced suffix arrays that runs as efficiently (or even more so

151

Chapter 9 Discussion and Outlook

in practice because of better cache performance), even though enhanced suffix arrays
lack some features of suffix trees, such as the suffix links. Although this statement
has yet to be proved or disproved, our all-against-all matching statistics algorithm
provides a (rare?) example of a method that works much better in practice and is
also more easily implemented with suffix arrays than with suffix trees, even though
the tree’s suffix links were an important component of the original method by Chang
and Lawler. Bucket scans are so fast that (bounded) longest common factors with one
mismatch can be found with a brute-force method, enumerating all possibilities. To
our knowledge, the bucket-scan-based LCF approach is at present the only method
fast enough to be used in whole genome applications, such as for the optimization of
genome tiling chips presented in Chapter 7.

In Chapter 6, we present two heuristic methods. The first one aims to minimize
the condition of a submatrix of an affinity matrix obtained by row removal. Our
analysis on small matrices shows that the heuristic finds the optimal solution in 30%
of the cases and generally performs very well, even if the global optimum is not found.
The second heuristic aims at selecting a minimal set of probes for target coverage and
target set separation. The key idea of the heuristic is to “look ahead” and use the most
unique probes first, as they will have the best separation properties for large target
sets. Optimally small probe sets can be selected by an integer linear programming
formulation, which suffers from the potentially exponential number of constraining
inequalities, however; see the discussion in Section 6.3.4. If only pairs of singleton
target sets are separated, the heuristic designs contains twice as many probes as the
optimal designs, but also show better decoding performance for larger target sets
(Tables 6.4 to 6.6).

In chapter 8, we consider the shortest common supersequence problem for many short
DNA sequences (i.e., strings over a small alphabet). Whenever this problem was con-
sidered previously, the dimensions were reversed, and experimental results show that
the known heuristics developed for relatively few, but longer, strings over potentially
large alphabet work poorly in this setting. We have therefore developed a new al-
gorithm that refines an existing supersequence by edit operations; an initial guess is
obtained by the Alphabet-Leftmost heuristic, which turns out to be difficult to
beat by more than 3 characters for large scale designs.

Stochastic results. We obtain the probability distribution of upper and lower bounds
on the length of the shortest common supersequence in typical microarray production
settings. There is a gap of approximately 20 nt between the considered upper and lower
bound. Computational experiments suggest that the upper bound is tighter than than
the lower bound, which is only based on the number of occurrences of each letter in
every sequence, and we expect that the lower bound can be improved by considering
longer subsequences. Very recent work by Salomaa (2003), the Cauchy inequality for
subsequences, may provide a way to strengthen the lower bound considerably.

152

In Section 4.4, we present a statistical analysis of the frequency of jumps in random
strings and derive a result about the expected length of the longest common factor of
two random strings. While our approach does not yield precise concentration inequal-
ities as the work of Waterman (1995) and Abbasi (1997), it provides a generalization
of their results to strings of unequal length and with non-uniform character distribu-
tion.

Software packages. The LCF approach is implemented in the Promide software
package, which academic users may obtain free of charge by signing a license agree-
ment. Promide consists of several programs written in C and PERL; Appendix A.1
describes them in more detail.

To generate artificial families of similar sequences that can serve as test data for non-
unique probe design methodologies, the Reform software packages was developed. It
also serves as a general-purpose tool for modeling sequence evolution and can be used
for teaching phylogeny and evolution classes. In comparison to the existing software
Rose (Stoye et al., 1998), specifying a sequence family requires a little less work
with Rose, but Reform offers much more flexibility. More information is given in
Appendix A.2.

Outlook. To conclude this discussion, we shall attempt to predict some future de-
velopments in microarray design.

As microarray technology becomes more and more common, costs will further drop,
increasing the possibilities for custom designed arrays to answer specific questions.
There will be an increasing need for efficient and reliable custom chip design software.
Promide certainly is efficient, but to make it more widely available, it would certainly
need a graphical user interface.

We hope that the design and analysis of microarrays will soon merge in such a way
that custom designed arrays will make data analysis as simple as possible and that
the analysis can in fact be based on the design methodology. Until better models
to predict affinity coefficients from sequence similarity are developed, our proposal to
estimate affinity coefficients and expression levels simultaneously by combining LCF
information and experimental results (Section 2.4) may prove useful. Work aiming to
improve affinity modeling has been recently published (Zhang et al., 2003), but it is
mainly phenomenological and does not incorporate the various factors that make up
the measurable signal strength, such as those described in Section 2.1. Interestingly,
Affymetrix r© (Mei et al., 2003) has also begun to base new chip designs on estimates
of probe affinity coefficients from existing arrays. We expect increasing interest in this
topic in the future.

153

Chapter 9 Discussion and Outlook

As mentioned in the introduction, measuring the abundance of mRNA transcripts if
often only a makeshift solution when one is really interested in the activity of certain
proteins. Factors such as RNA degradation and translation rate can heavily distort the
relationship between gene expression and corresponding protein activity. We expect
that we will see increasingly more technologies that focus directly on the protein level
in the future.

Some of the methods in this thesis may be applicable to proteomics as well. Today,
the presence of certain peptides can be sensitively detected via their masses using
mass spectrometry technology. In complex samples, several proteins may be present
whose enzymatic digestion results in several peptide fragments with approximately
the same mass. To infer the set of present proteins in a sample, decoding techniques
similar to those described in Section 6.3 may prove useful. In other words, while single
fragment masses are not a sufficiently unique description to identify a single protein,
combinations of mass peaks may be usable to infer the presence of a combination of
proteins.

We are certain that the refinement of DNA microarray technology and the development
of new technologies for functional genomics and proteomics will continue to pose new
computational challenges.

154

Bibliography

S. Abbasi. Longest common consecutive substring in two random strings. DIMACS
Technical Report, DIMACS, October 1997.

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its
applications to genome analysis. In Proceedings of the Second International Work-
shop on Algorithms in Bioinformatics (WABI 2002), volume 2452 of LNCS, pages
449–463. Springer, 2002a.

M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based
on suffix arrays. In Proceedings of the 9th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE), volume 2476 of LNCS, pages 31–43.
Springer, 2002b.

Affymetrix, Inc. Microarray Suite (MAS) Version 5.0 User’s Guide. Santa Clara, CA,
U.S.A., 2002. Document #701088, Rev. 1.

Affymetrix, Inc. GeneChip r© Expression Analysis Technical Manual. Santa Clara, CA,
U.S.A., 2003. Document #701021, Rev. 4.

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular
Biology of the Cell. Garland Publishing, New York, 3rd edition, 1994.

H. T. Allawi and J. SantaLucia. Thermodynamics and NMR of internal G-T mis-
matches in DNA. Biochemistry, 36:10581–10594, 1997.

H. T. Allawi and J. SantaLucia. Nearest neighbor parameters for internal G-A mis-
matches in DNA. Biochemistry, 37:2170–2179, 1998a.

H. T. Allawi and J. SantaLucia. Nearest neighbor parameters of internal A-C mis-
matches in DNA. Biochemistry, 37:9435–9444, 1998b.

H. T. Allawi and J. SantaLucia. Thermodynamics and NMR of internal C-T mis-
matches in DNA. Nucleic Acids Research, 26(11):2694–2701, 1998c.

P. Atkins and J. de Paula. Physical Chemistry. Oxford University Press, 7th edition,
2002.

155

Bibliography

E. Barillot, B. Lacroix, and D. Cohen. Theoretical analysis of library screening using
a N -dimensional pooling strategy. Nucleic Acids Research, 19(22):6241–6247, 1991.

M. Baum, S. Bielau, N. Rittner, K. Schmid, K. Eggelbusch, M. Dahms, A. Schlauers-
bach, H. Tahedl, M. Beier, R. Guimil, M. Scheffler, C. Hermann, J. M. Funk,
A. Wixmerten, H. Rebscher, M. Honig, C. Andreae, D. Buchner, E. Moschel,
A. Glathe, E. Jager, M. Thom, A. Greil, F. Bestvater, F. Obermeier, J. Burgmaier,
K. Thome, S. Weichert, S. Hein, T. Binnewies, V. Foitzik, M. Muller, C. F. Stähler,
and P. F. Stähler. Validation of a novel, fully integrated and flexible microarray
benchtop facility for gene expression profiling. Nucleic Acids Research, 31(23):e151,
2003.

M. Beier, M. Hausch, M. Müller, C. Stähler, F. Stähler, and P. F. Stähler. An in-
tegrated approach to gene analysis. Innovations in Pharmaceutical Technology,
December 2001.

T. Beißbarth, K. Fellenberg, B. Brors, R. Arribas-Prat, J. M. Boer, N. C. Hauser,
M. Schneideler, J. D. Hoheisel, G. Schütz, A. Poustka, and M. Vingron. Processing
and quality control of DNA array hybridization data. Bioinformatics, 16(11):1014–
1022, 2000.

P. Billingsley. Probability and Measure. John Wiley & Sons, New York, 3rd edition,
1995.

J. Borneman, M. Chrobak, G. D. Vedova, A. Figueroa, and T. Jiang. Probe selection
algorithms with applications in the analysis of microbial communities. Bioinformat-
ics, 17(Suppl. 1):S39–S48, 2001.

J. Branke, M. Middendorf, and F. Schneider. Improved heuristics and a genetic algo-
rithm for finding short supersequences. OR Spektrum, 20:39–45, 1998.

W. J. Bruno, D. J. Balding, E. H. Knill, D. Bruce, C. Whittaker, N. Doggett,
R. Stallings, and D. C. Torney. Design of efficient pooling experiments. Genomics,
26:21–30, 1995.

W. Chang and E. L. Lawler. Sublinear expected time approximate string matching
and biological applications. Algorithmica, 12:327–344, 1994.

Y. Chen, E. R. Dougherty, and M. L. Bittner. Ratio-based decisions and the quantitia-
tive analysis of cDNA microarray images. Journal of Biomedical Optics, 2:364–374,
1997.

E. Coward, S. A. Haas, and M. Vingron. SpliceNest: visualization of gene structure
and alternative splicing based on EST clusters. Trends in Genetics, 18(1):53–55,
2002.

156

Bibliography

D. J. Cutler, M. E. Zwick, M. M. Carrasquillo, C. T. Yohn, K. P. Tobin, C. Kashuk,
D. J. Mathews, N. A. Shah, E. E. Eichler, J. A. Warrington, and A. Chakravarti.
High-throughput variation detection and genotyping using microarrays. Genome
Research, 11(11):1913–1925, 2001.

P. Deuflhard and A. Hohmann. Numerische Mathematik I. Walter de Gruyter, 3rd
edition, 2002.

C. Dieterich, R. Herwig, and M. Vingron. Exploring potential target genes of signaling
pathways by predicting conserved transcription factor binding sites. Bioinformatics,
19(Suppl. 2):ii50–ii56, 2003.

D. Du and F. K. Hwang. Combinatorial Group Testing and Applications. World
Scientific, 2nd edition, 2000.

B. P. Durbin, J. S. Hardin, D. M. Hawkins, and D. M. Rocke. A variance-stabilizing
transformation for gene-expression microarray data. Bioinformatics, 18(Suppl. 1):
S105–S110, 2002. Proceedings of ISMB 2002.

L. Elsner, C. He, and V. Mehrmann. Minimizing the condition number of a positive
definite matrix by completion. Numerische Mathematik, 69(1):17–24, 1994.

L. Elsner, C. He, and V. Mehrmann. Minimizing the norm, the norm of the inverse
and the condition number of a matrix by completion. Numerical Linear Algebra
with Applications, 2(2):155–171, 1995.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte
Carlo in Practice. Chapman & Hall, 1996.

G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopskins University
Press, 3rd edition, 1996.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
et al. Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 286(5439):531–537, 1999.

C. Gräfe. Computersimulation von Energie-Eigenschaften von Oligonukleotiden unter
verschiedenen Rahmanbedingungen. Bachelor’s Thesis, Bioinformatics Program,
Freie Universität Berlin, July 2003.

A. J. F. Griffiths, W. M. Gelbart, R. C. Lewontin, and J. H. Miller. Modern Genetic
Analysis – Integrating Genes and Genomes. W. H. Freeman and Company, 2nd
edition, 2002.

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press,
Cambridge, 1997.

157

Bibliography

S. A. Haas, T. Beißbarth, E. Rivals, A. Krause, and M. Vingron. GeneNest: automated
generation and visualization of gene indices. Trends in Genetics, 16(11):521–523,
2000.

S. A. Haas, M. Vingron, A. Poustka, and S. Wiemann. Primer design for large scale
sequencing. Nucleic Acids Research, 26:3006–3012, 1998.

J. G. Hacia, L. C. Brody, M. S. Chee, S. Fodor, and F. S. Collins. Detection of
heterozygous mutations in BRCA1 using high density oligonucleotide arrays and
two-colour fluorescence analysis. Nature Genetics, 14(4):441–447, 1996.

S. Hannenhalli, E. Hubbell, R. Lipshutz, and P. A. Pevzner. Combinatorial algorithms
for design of DNA arrays. In J. Hoheisel, editor, Chip Technology. Springer, 2002.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their ap-
plications. Biometrika, 57:97–109, 1970.

P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. deWaard. Biological identifications
through DNA barcodes. Proceedings of the Royal Society of London B, 270:313–321,
2003a.

P. D. N. Hebert, S. Ratnasingham, and J. R. deWaard. Barcoding animal life: cy-
tochrome c oxidase subunit 1 divergences among closely related species. Proceedings
of the Royal Society of London B (Suppl.), 270:S96–S99, 2003b.

J. Heise. Selection of family-specific probes for microarrays. Bachelor’s Thesis, Bioin-
formatics Program, Freie Universität Berlin, October 2003.

R. Herwig, A. O. Schmitt, M. Steinfath, J. O’Brien, H. Seidel, S. Meier-Ewert,
H. Lehrach, and U. Radelof. Information theoretical probe selection for hybridi-
sation experiments. Bioinformatics, 16(10):890–898, 2000.

P. Hieter and M. Boguski. Functional genomics: it’s all how you read it. Science, 278:
601–602, 1997.

W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance
stabilization applied to microarray data calibration and to the quantification of
differenatial expression. Bioinformatics, 18(Suppl. 1):S96–S104, 2002. Proceedings
of ISMB 2002.

W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Param-
eter estimation for the calibration and variance stabilization of microarray data.
Statistical Applications in Genetics and Molecular Biology, 2(1):Article 3, 2003.
http://www.bepress.com/sagmb/vol2/iss1/art3.

T. R. Hughes, M. Mao, A. R. Jones, J. Burchard, M. J. Marton, K. W. Shannon, S. M.
Lefkowitz, M. Ziman, J. M. Schelter, M. R. Meyer, S. Kobayashi, C. Davis, H. Dai,
Y. D. He, S. B. Stephaniants, G. Cavet, W. L. Walker, A. West, E. Coffey, D. D.

158

Bibliography

Shoemaker, R. Stoughton, A. P. Blanchard, S. H. Friend, and P. S. Linsley. Expres-
sion profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer.
Nature Biotechnology, 19(4):342–347, 2001.

T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, et al. Functional
discovery via a compendium of expression profiles. Cell, 102(1):109–126, 2000.

T. Ideker, V. Thorsson, A. F. Siegel, and L. E. Hood. Testing for differentially ex-
pressed genes by maximum-likelihood analysis of microarray data. Journal of Com-
putational Biology, 7:805–818, 2000.

ILOG, Inc. CPLEX. http://www.ilog.com/products/cplex, 1987–2004.

R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed.
Summaries of Affymetrix GeneChip r© expression measures. Nucleic Acids Research,
31(4):Article e15, 2003a.

R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Anntonellis, U. Scherf,
and T. P. Speed. Exploration, normalization, and summaries of high-density oligonu-
cleotide array probe level data. Biostatistics, 4(2):249–264, 2003b.

R. W. Irving and C. B. Fraser. Approximation algorithms for the shortest common
supersequence. Nordic Journal of Computing, 2:303–325, 1995.

J. A. Jaeger, D. H. Turner, and M. Zuker. Improved predictions of secondary structures
for RNA. Proceedings of the National Academy of Sciences of the U.S.A., 86:7706–
7710, 1989.

J. A. Jaeger, D. H. Turner, and M. Zuker. Predicting optimal and suboptimal sec-
ondary structure for RNA. Methods in Enzymology, 183:281–306, 1990.

T. Jiang and M. Li. On the approximation of shortest common supersequences and
longest common subsequences. SIAM Journal of Computing, 24(5):1122–1139, 1995.

T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor,
Mammalian Protein Metabolism, pages 21–132. Academic Press, New York, 1969.

L. Kaderali and A. Schliep. Selecting signature oligonucleotides to identify organisms
using DNA arrays. Bioinformatics, 18(10):1340–1349, 2002.

A. B. Kahng, I. I. Mandoiu, P. A. Pevzner, S. Reda, and A. Z. Zelikovsky. Border
length minimization in DNA array design. In R. Guigó and D. Gusfield, editors,
Proceedings of WABI 2002, volume 2452 of LNCS, pages 435–448. Springer, 2002.

P. Kapranov, S. E. Cawley, J. Drenkow, S. Bekiranov, R. L. Strausberg, S. P. A.
Fodor, and T. R. Gingeras. Large-scale transcriptional activity in chromosomes 21
and 22. Science, 296(5569):916–919, 2002.

159

Bibliography

J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Pro-
ceedings of the 13th International Conference on Automata, Languages and Pro-
gramming (ICALP), volume 2719 of LNCS, pages 943–955. Springer, 2003.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In A. Amir and G. M.
Landau, editors, Proceedings of the 12th Symposium con Combinatorial Pattern
Matching (CPM), volume 2089 of LNCS, pages 181–192. Springer, 2001.

M. K. Kerr, M. Martin, and G. A. Churchill. Analysis of variance for gene expression
microarray data. Journal of Computational Biology, 7(6):819–837, 2000.

D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays.
In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching
(CPM), volume 2676 of LNCS, pages 186–199. Springer, 2003.

S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

G. W. Klau, S. Rahmann, A. Schliep, M. Vingron, and K. Reinert. Optimal robust non-
unique probe selection using integer linear programming. Submitted manuscript,
2004.

E. H. Knill, A. Schliep, and D. C. Torney. Interpretation of pooling experiments using
the Markov chain Monte Carlo method. Journal of Computational Biology, 3(3):
395–406, 1996.

P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In Pro-
ceedings of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM),
volume 2676 of LNCS, pages 200–210. Springer, 2003.

W. Köppelle. Produktübersicht Microarrays: Geschmacklose Chips. Laborjournal, 10,
November 2003.

M. Kozal, N. Shah, N. Shen, R. Yang, R. Fucini, T. C. Merigan, D. D. Richman,
D. Morris, E. Hubbell, M. Chee, and T. R. Gingeras. Extensive polymorphisms
observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays.
Nature Medicine, 2(7):753–759, 1996.

S. Kurtz. Reducing the space requirement of suffix trees. Software - Practice and
Experience, 29(13):1149–1171, 1999.

S. Kurtz. Construction and Application of Virtrual Suffix Trees. Technische Fakultät,
Universität Bielefeld, 2002. Technical Manual. Available at http://www.vmatch,de.

P. J. M. V. Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Appli-
cations. Number 37 in Mathematics and Its Applications. Kluwer, 1987.

160

Bibliography

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001. Errata in Nature
411(6838):720 and Nature 412(6846):565.

N. Le Novère. MELTING, computing the melting temperature of nucleic acid du-
plex [sic]. Bioinformatics, 17(21):1226–1227, 2001. WWW server available at
http://bioweb.pasteur.fr/seqanal/interfaces/melting.html.

G. G. Lennon and H. Lehrach. Hybridization analyses of arrayed cDNA libraries.
Trends in Genetics, 7(10):314–317, 1991.

S. Levy, L. Compagnoni, E. W. Myers, and G. D. Stormo. Xlandscape: the graphical
display of word frequencies in sequences. Bioinformatics, 14:74–80, 1998.

C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: Expression
index computation and outlier detection. Proceedings of the National Academy of
Sciences of the U.S.A., 98(1):31–36, 2001.

F. Li and G. Stormo. Selection of optimal DNA oligos for gene expression analysis.
Bioinformatics, 17(11):1067–1076, 2001.

R. J. Lipshutz et al. Advanced DNA sequencing technologies. Current Opinion in
Structural Biology, 4:376–380, 1994.

R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart. High density synthetic
oligonucleotide arrays. Nature Genetics, 21:20–24, 1999.

D. Lipson, P. Webb, and Z. Yakhini. Designing specific oligonucleotide probes for the
entire S. cerevisiae transcripome. In Proceedings of WABI 2002, volume 2452 of
LNCS, pages 491–505. Springer, 2002.

G. Liu, A. E. Loraine, R. Shigeta, M. Cline, J. Cheng, V. Valmeekam, S. Sun, D. Kulp,
and M. A. Sinai-Rose. NetAffx: Affymetrix probesets and annotations. Nucleic
Acids Research, 31(1):82–86, 2003.

C. Lock, G. Hermans, R. Pedotti, A. Brendolan, et al. Gene-microarray analy-
sis of multiple sclerosis lesions yields new targets validated in autoimmune en-
cephalomyelitis. Nature Medicine, 8(5):500–508, 2002.

D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee,
M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. Expression
monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotech-
nology, 14(13):1675–1680, 1996.

F. Lottspeich and H. Zorbas, editors. Bioanalytik. Spektrum Akademischer Verlag,
1998.

161

Bibliography

A. Loy, A. Lehner, N. Lee, J. Adamczyk, H. Meier, J. Ernst, K.-H. Schleifer, and
M. Wagner. Oligonucleotide microarray for 16S rRNA gene-based detection of all
recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and
Environmental Microbiology, 68(10):5064–5081, 2002.

U. Manber and G. W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

M. Markmann. Entwicklung und Anwendung einer 28S rDNA-Sequenzdatenbank zur
Aufschlüsselung der Artenvielfalt limnischer Meiobenthosfauna im Hinblick auf den
Einsatz moderner Chiptechnologie. PhD thesis, University of Munich, 2000.

R. Mei, E. Hubbell, S. Bekiranov, M. Mittmann, F. C. Christians, M. M. Shen, G. Lu,
J. Fang, W. M. Liu, T. Ryder, P. Kaplan, D. Kulp, and T. A. Webster. Probe se-
lection for high-density oligonucleotide arrays. Proceedings of the National Academy
of Sciences of the U.S.A., 100(20):11237–11242, 2003.

R. Mott. EST GENOME: a program to align spliced DNA sequences to unspliced
genomic DNA. Computer Applications in the Biosciences, 13(4):477–478, 1997.

T. Müller and M. Vingron. Modeling amino acid replacement. Journal of Computa-
tional Biology, 7(6):761–776, 2000.

E. W. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM, 46(3):395–415, 1999.

F. Naef and M. O. Magnasco. Solving the riddle of the bright mismatches: Labeling
and effective binding in oligonucleotide arrays. Physical Review E, 68:Article 011906,
2003.

Neurospora Sequencing Project Version 3. Neurospora sequencing project ver-
sion 3. Whitehead Institute / MIT Center for Genome Research, 2002.
http://www-genome.wi.mit.edu.

J. L. Oestreicher, I. B. Walters, T. Kikuchi, P. Gilleaudeau, J. Surette, U. Schw-
ertschlag, A. J. Dorner, J. G. Krueger, and W. L. Trepicchio. Molecular classi-
fication of psoriasis disease-associated genes through pharmacogenomic expression
profiling. The Pharmacogenomics Journal, 1(4):272–287, 2001.

N. Peyret, P. A. Seneviratne, H. T. Allawi, and J. SantaLucia. Nearest neighbor
thermodynamics and NMR of DNA sequences with internal A-A, C-C, G-G, and
T-T mismatches. Biochemistry, 38:3468–3477, 1999.

A. E. Pozhitkov and D. Tautz. An algorithm and program for finding sequence specific
oligo-nucleotide probes for species identification. BMC Bioinformatics, 3(9), 2002.
http://www.biomedcentral.com/1471-2105/3/9.

162

Bibliography

S. Rahmann. Rapid large-scale oligonucleotide selection for microarrays. In Proceedings
of the First IEEE Computer Society Bioinformatics Conference (CSB’02), pages 54–
63. IEEE, 2002. An abstract of this work also appeared in Proceedings of WABI
2002, LNCS vol. 2452, p. 434. Springer, 2002.

S. Rahmann. Fast and sensitive probe selection for DNA chips using jumps in matching
statistics. In Proceedings of the 2nd IEEE Computational Systems Bioinformatics
(CSB’03) Conference, pages 57–64. IEEE, 2003a.

S. Rahmann. Fast large scale oligonucleotide selection using the longest common
factor approach. Journal of Bioinformatics and Computational Biology, 1(2):343–
361, 2003b.

S. Rahmann. REFORM (Random Evolutionary FORests Modeling software). Avail-
able at http://www.molgen.mpg.de/∼rahmann, 2003c.

S. Rahmann. The shortest common supersequence problem in a microarray production
setting. In Proceedings of the 2nd European Conference in Computational Biology
(ECCB 2003), volume 19 Suppl. 2 of Bioinformatics, pages ii156–ii161, 2003d.

S. Rahmann and E. Rivals. On the distribution of the number of missing words in
random texts. Combinatorics, Probability and Computing, 12:73–87, 2003.

S. Rash and D. Gusfield. String barcoding: Uncovering optimal virus signatures. In
Proceedings of RECOMB 2002, pages 254–261. ACM Press, 2002.

E. Rivals and S. Rahmann. Combinatorics of periods in strings. In P. Orejas, P. G.
Spirakis, and J. van Leuween, editors, Proceedings of the 28th International Collo-
quium on Automata, Languages, and Programming (ICALP 2001), volume 2076 of
LNCS, pages 615–626. Springer, 2001.

D. M. Rocke and B. Durbin. A model for measurement error for gene expression
analysis. Journal of Computational Biology, 8(6):557–567, 2001.

J.-M. Rouillard, C. J. Herbert, and M. Zuker. OligoArray: Genome-scale oligonu-
cleotide design for microarrays. Bioinformatics, 18(3):486–487, 2002.

P. J. Rousseuw and A. M. Leroy. Robust Regression and Outlier Detection. Wiley,
1987.

A. Salomaa. The formal language theory column: Counting (scattered) subwords.
In Bulletin of the European Association for Theoretical Computer Science No. 81.
EATCS, October 2003.

J. SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proceedings of the National Academy of Sciences of the
U.S.A., 95:1460–1465, 1998.

M. Schena. Microarray Analysis. Wiley-Liss, 2002.

163

Bibliography

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of
gene expression patterns with a complementary DNA microarray. Science, 1995.

A. Schliep. The markov chain pooling decoder. Los Alamos National Laboratories;
now available at http://algorithmics.molgen.mpg.de/MCPD/, 1998.

A. Schliep, D. C. Torney, and S. Rahmann. Group testing with DNA chips: Generating
designs and decoding experiments. In Proceedings of the 2nd IEEE Computer Society
Bioinformatics Conference (CSB 2003), pages 84–93. IEEE, 2003.

J. S. Sim, D. K. Kim, H. Park, and K. Park. Linear-time search in suffix arrays. In
Proceedings of the 14th Australasian Workshop on Combinatorial Algorithms, pages
139–146, 2003.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and
F. Cerrina. Maskless fabrication of light-directed oligonucleotide microarrays using
a digital micromirror array. Nature Biotechnology, 17:922–926, 1999.

E. M. Southern. Detection of specific sequences among DNA fragments separated by
gel electrophoresis. Journal of Molecular Biology, 98(3):503–517, 1975.

M. Spitzer. Post-processing of selected oligos ordered by their specificity. Bachelor’s
Thesis, Bioinformatics Program, Freie Universität Berlin, July 2003.

J. Stoye, D. Evers, and F. Meyer. Rose: generating sequence families. Bioinformatics,
14(2):157–163, 1998.

T. Strachan and A. P. Read. Human Molecular Genetics. Garland Science Publishers,
3rd edition, 2003.

N. Sugimoto, S. ich Nakano, M. Yoneyama, and K. ich Honda. Improved thermody-
namic parameters and helix initiation factor to predict stability of DNA duplexes.
Nucleic Acids Research, 24(22):4501–4505, 1996.

N. Sugimoto, S. Nakano, M. Katoh, A. Matsumura, et al. Thermodynamic parameters
to predict stability of RNA/DNA hybrid duplexes. Biochemistry, 34:11211–11216,
1995.

W.-K. Sun and W.-H. Lee. Fast and accurate probe selection algorithm for large
genomes. In Proceedings of the 2nd IEEE Computational Systems Bioinformatics
(CSB’03) Conference, pages 65–74. IEEE, 2003.

J. Theilhaber, S. Bushnell, A. Jackson, and R. Fuchs. Bayesian estimation of fold-
changes in the analysis of gene expression: The PFOLD algorithm. Journal of
Computational Biology, 8:585–614, 2001.

E. Ukkonnen. On-line construction of suffix trees. Algorithmica, 14:249–60, 1995.

164

Bibliography

R. Van Gelder, M. von Zastrow, A. Yool, W. Dement, J. Barchas, and J. Eberwine.
Amplified RNA synthesized from limited quantities of heterogenous cDNA. Pro-
ceedings of the National Academy of Sciences of the U.S.A., 87:1663–1667, 1990.

V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler. Serial analysis of gene
expression. Science, 270(5235):484–487, 1995.

J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, et al. The sequence of the human
genome. Science, 291(5507):1304–1351, 2001. Erratum in Science 292(5523):1838.

D. Wang, L. Coscoy, M. Zylberberg, P. C. Avila, H. A. Bousheym, D. Ganem, and J. L.
DeRisi. Microarray-based detection and genotyping of viral pathogens. Proceedings
of the National Academy of Sciences of the U.S.A., 99:15687–15692, 2002.

H. Wang, E. Hubbell, J. shan Hu, G. Mei, M. Cline, G. Lu, T. Clark, M. A. Siani-
Rose, M. Ares, D. C. Kulp, and D. Haussler. Gene structure-based splice variant
deconvolution using a microarry platform. Bioinformatics, 19(Suppl. 1):i315–i322,
2003. Proceedings of ISMB 2003.

X. Wang and B. Seed. Selection of oligonucleotide probes for protein coding sequences.
Bioinformatics, 19(7):796–802, 2003.

M. S. Waterman. Introduction to Computational Biology. Chapman and Hall, London,
1995.

J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids. A structure for
deoxyribose nucleic acid. Nature, 171(4356):737–738, 1953.

P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pages 1–11. IEEE, 1973.

J. Werner. Numerische Mathematik 1. Vieweg, 1992.

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A.
Olson, J. R. Marks, and J. R. Nevins. Predicting the clinical status of human breast
cancer by using gene expression profiles. Proceedings of the National Academy of
Sciences of the U.S.A., 98(20):11462–11467, 2001.

Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed. Nor-
malization for cDNA microarray data: a robust composite method addressing single
and multiple slide systematic variation. Nucleic Acids Research, 30(4):Article e15,
2002.

R. A. Young. Biomedical discovery with DNA arrays. Cell, 102:9–15, 2000.

L. Zhang, M. F. Miles, and K. D. Aldape. A model of molecular interactions on short
oligonucleotide arrays. Nature Biotechnology, 21(7):818–821, 2003.

M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Research, 31(13):3406–3415, 2003.

165

Bibliography

M. Zuker, D. H. Matthews, and D. H. Turner. Algorithms and Thermodynamics for
RNA Secondary Structure Prediction: A practical guide. NATO ASI Series, Kluwer,
Dordrecht, 1999.

166

Appendix

167

Appendix A

Software

This appendix summarizes the software that has been developed for probe selec-
tion and microarray design. It is available free of charge for academic users from
http://oligos.molgen.mpg.de. This software is distributed in the hope that it
will be useful, but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. For the exact license and
warranty conditions, see http://oligos.molgen.mpg.de.

A.1 Promide

Promide is a collection of command-line tools for PRObe selection and MIcroar-
ray DEsign. Promide is currently in beta stage. When you obtain any version of
Promide, you do so entirely at your own risk.

To use Promide, you need a working installation of PERL, which can be obtained from
http://www.cpan.org. At present, you also need a tool to build enhanced suffix ar-
rays, mkvtree, written by Stefan Kurtz at University of Hamburg. You have to obtain
a separate license for mkvtree; like Promide, it is provided at no cost to academic
users. Please contact the author Stefan Kurtz at kurtz@zbh.uni-hamburg.de.

The following tools are part of Promide.

Sequence manipulation: ReverseComplement.pl This tool reads one or several
file(s) in multiple FASTA format given on the command line (or from stdin) and either
replaces each sequence by its reversed complement or adds the reversed complement
after each sequence. The output, a new FASTA file, is sent to stdout, but can be
redirected to an arbitrary file.

169

Appendix A Software

ReverseComplement.pl [mode] [options] [infile(s)]

Valid Modes
-r (default) Replace original sequences by reversed complements
-a Add complements instead of replacing original sequences
-f Don’t reverse-complement; reFormat only

Options
-c Convert all sequences to upper case
-p ’pattern’ Scan FASTA header for a valid PERL pattern and add ’-RC’ after the

first occurrence of the pattern in the reverse-complemented sequence.
Default is /^>\S+/, i.e., the beginning of the header until the first
whitespace character.

-w Warn on strange characters, which cannot be complemented. Don’t
warn on N or X, which will be left Nresp. X. Also warn on empty
sequences and sequences shorter than 20.

When more than one option of -r, -a, -f is given, -f overrides the other two, and -r

overrides -a. The -p ’pattern’ option is only relevant in Replace (-r) and add (-a)
mode. The output will have 70 characters per sequence line, but the headers can be
of arbitrary length. The program is designed to be used as a filter.

Index Creation: PrepareIndex.pl The index is created from one or several FASTA
files, and consists of several tables; each table is stored in its own file.

PrepareIndex.pl [options] fastafile(s)

Options
-p ’pattern’ PERL pattern for collection ID
-q ’pattern’ Secondary pattern for collection ID
-i indexname Basename of all index tables
-b length Explicitly specify bucket prefix length

While each specified input FASTA file is read, the sequence headers are scanned for
the -p pattern (or, if that fails, for the -q pattern) to determine the collection ID of
a sequence. Sequences with the same collection ID are assumed to belong together
logically. Specificity of a probe candidate is checked against each collection, not against
each sequence. If no patterns are given, the collection ID is assumed to be the first
whitespace-terminated string after the FASTA header symbol (>). If no indexname is

170

A.1 Promide

given, the name of the first FASTA file is used. If no bucket prefix length is given, a
reasonable default, growing logarithmically with the total sequence length, is used.

The index consists of the following tables.

Descriptor Tables. These are text files and contain information about the index and
the collections IDs.

• al1: Alphabet table

• des: Sequence descriptions from FASTA headers

• cid: Collection ID for each collection

• cos: Internal collection number for each sequence

• prj: Human-readable information about the index

Suffix Array Tables. These are binary files and comprise the enhanced suffix array.

• tis: Encoded concatenated sequences

• suf: The suffix array (pos within this thesis)

• bck: bucket start and end points

• cl: Collection numbers

• lcp, llv: Longest common prefix lengths

Auxiliary Tables. These tables are built during index construction but are not needed
for the further probe selection process.

• ssp: Sequence separator positions

• sds: Sequence description start positions

The PERL Script PrepareIndex.pl calls two external programs to build the index.
These are mkvtree by Stefan Kurtz to build the enhanced suffix array without the cl

table, and build cl to add the cl table to the suffix array.

171

Appendix A Software

Target Preparation: PrepareTargets.pl This tool prepares one or several FASTA
files for processing as target sequences (sequences from which probes shall be selected).
Its main purposes are to

• Extract a sequence-specific ID from each header that is used as a name for the
sequence during the probe selection process

• Extract a (possibly different) collection-specific ID from each header that allows
to group one or more of the sequences into a collection. During probe selection,
each probe candidate from a target is checked for specificity against all transcript
collections, except its own collection.

• Remove sequences that are too short for meaningful probe design.

• Replace all runs of wildcard characters by a single “don’t know” character X.

• Determine the length of the condensed sequences.

The output consists of two files:

1. the target file in FASTA format, whose extension is .targets.

2. the target ID file with extension .tid, containing the extracted IDs. The first
line contains the keyword TARGETS, followed by a space, followed by the number
of targets, followed by another space and the length of the longest target. Then
there is one line per target. Each line contains three space-separated entries: the
sequence ID, the collection-ID, and the sequence length.

The calling syntax is as follows.

PrepareTargets.pl [options] fastafile(s)

Options
-s ’pattern’ PERL pattern for sequence ID
-p ’pattern’ PERL pattern for collection ID
-q ’pattern’ Secondary pattern for collection ID
-t targetname Basename of .targets and .tid files
-c cidname Basename of collection ID (.cid) file
-d len Discard targets shorter than len [200]
-i Case insensitive: Treat agct as ACGT, default: as X
-n NoCondense: Do not condense runs of Xinto a single X

This program is not intended as a filter. If no sequence or collection pattern is given,
the string after the FASTA header symbol (>) until the first whitespace character is
taken as the sequence resp. collection ID. If no targetname is given, the name of the
first input file is taken. By default, the program is case sensitive, and the nucleotides

172

A.1 Promide

acgt are treated as if they were masked (i.e., as X), and no probes containing lowercase
characters will be selected. By default, runs of Xes are condensed into a single X, but
this behavior may be turned off by the -n option.

Target-Index Matching Statistics: tims To find specific probes, the matching
statistics of each target against each sequence in the index are computed. This is a
time consuming part of the probe selection process. The tool tims will do the work.

tims [options] targetname [indexname]

Options
-r min0 : min1 : max Range of relevant matching statistics
-s statfile Basename of the .ms output file [targetname]
-0 Compute exact matching statistics only; no ms1

When called, the program looks for the target files targetname.targets and target-
name.tid and the required index tables. If indexname is omitted, targetname is used.
If no range (-r) for the matching statistics is given, the lower bound for exact match-
ing statistics (ms0) is set to the detectable minimum, i.e., the bucket prefix length of
the index, the lower bound for the one-mismatch-matching-statistics (ms1) is set to
that value plus three, and the upper bound is set to 32. In any case, the ranges must
be subintervals of these default values. The name of the output file can be set with the
-s option, but its extension is always .ms for “matching statistics”. By default, the
program computes both mismatch-free matching statistics (ms0) and matching statis-
tics allowing one mismatch (ms1). The latter computation can take up to 100 times
longer than the ms0 computation. Therefore it can be disabled with the -0 option (a
zero, not a capital O). For a more sensitive specificity computation, one should avoid
using this option, however.

The matching statistics are written into the .ms file, which has a format that depends
on the given options.

Probe Candidate Selection: probecand When the target-index matching statistics
have been computed, probes can be selected from each target using the program
probecand. Here, the user can specify a length range for the probes (the length cannot
exceed 32), reaction conditions (temperature and salt concentration), and stability
properties of the desired probes.

173

Appendix A Software

probecand [options] targetname

Options

-t temperature Temperature (Celsius) [50]
-l Lmin:Lmax Length range [20:30]
-N lnsalt ln of [Na+] concentration [0]
-g Gmin:Gmax Desired Gibbs free energy range of probes
-p Parameters Select parameter set for Gibbs free energy [SL0]

-m method Selection method (LCF, LCFS, dG, dGS) [dG]
-n nmin:nmax Desired number of candidates per Target [20:200]
-c cmin:cmax Desired candidate coverage of target [0:1]
-0 Ignore matching statistics with 1 mismatch
-F free Number of unpenalized full matches [0]
-u nonunique Allowable degree of probe non-uniqueness [1]
-L Enumerate all collections with perfect matches
-b badshift (Positive numbers accept more probes) [0]

-s statfile Basename of matching statistics file [targetname]
-o outputfile Basename of probe candidate files [targetname]
-x Write additional verbose output file

If no name for the statfile or outfile is explicitly given, then targetname is used.

The format of the output file .oligos is as follows. It contains one block of lines for
every Target sequence. A block starts with a header line (recognizable by the ’>’-sign
as its initial character), and ends with an empty line.

The header starts with the sequence identifier, a colon (’:’), its internal number,
and another colon. This is followed by a tabulator and the following tab-separated
information: (target length; number of probes that match the reaction conditions;
number of high-quality probes [does not necessarily equal the number of unique probes
if the -u option was specified]; number of unique probes), e.g.,

>YAL001C:0: 3483 572 545 545

The probe list follows with one line per probe. The number of probes lies between
the limits given by the -n or -c option, unless not enough probes match the reaction
conditions in the first place. Naturally, if you request 20 probes when only 10 high-
quality probes exist, the remaining 10 probes will be of low quality.

174

A.2 REFORM

Each probe line starts with the probe sequence and then contains the following tab-
separated information:

• Probe start position in the Target sequence

• Gibbs free energy of the perfect probe duplex (is within specified range)

• Estimated energy difference to the most stable secondary binding site (larger
difference means higher specificity)

• Longest common factor length of probe candidate and secondary binding sites

• Number of transcript collections containing the full oligo (when designing unique
oligos, this is 1)

• Badness value between 10−6 and 106. Values below 1 indicate a relatively specific
oligo; oligos with badness values above 1 should be avoided. These badness values
are a re-scaled version of the unspecificity values in Eq. (3.5).

A.2 REFORM

REFORM is a language that allows you to specify the topology of evolutionary trees
and let sequences evolve along their edges according to a continuous-time Evolution-
ary Markov Process (EMP). It is written in PERL v5.6.0 and requires the CPAN
Parse::RecDescent module by Damian Conway.

REFORM offers the following features:

• Free specification of the tree topology

• Shortcuts (SUBTREE macro) for quickly specifying complete subtrees

• Sequences in the tree nodes consist of several segments. Each segment evolves
according to its own EMP. This is useful for modeling coding and non-coding
DNA, for example.

• Rate variation over sites (e.g. using Gamma-distributed rate factors)

• Arbitrary Indel length distributions

We expect that REFORM can be useful in the following situations.

• Evaluation of sequence analysis algorithms and methods for phylogenetic tree
reconstruction: REFORM is a good generator for controlled test data.

– Watch how long branch attraction makes Maximum Parsimony fail

– Assess the difficulty of maximum likelihood tree reconstruction with the
wrong model.

175

Appendix A Software

– Generate artificial gene families or virus strains, and try to find gene- or
strain-specific oligonucleotide probes for these

• Classroom instruction: Generate sequence data for examples or exercises in a
controlled fashion, so you know the ”true”solution.

• Playing with evolution in a sandbox. No animals were harmed during the pro-
duction of this software.

Using REFORM is simple, as it consists of a single PERL script Reform.pl. Run a
.reform model such as Model-a.reform by typing

> Reform.pl Model-a.reform

to obtain several FASTA sequences as output on stdout, according to the specifica-
tions of the model.

Example. We provide a part of the source code of Model (a) used in Section 6.3.4
to generate an artificial family of related target sequences.

Alphabet DNA "AGCT"

Distribution uniform [1 1 1 1]

RateMatrix QJC [[0 1 1 1][1 0 1 1][1 1 0 1][1 1 1 0]]

EvolutionaryModel JCI

{

SubstitutionRates QJC

RelativeGapProb [8 1 4 2 1 ...20]

DeleteRate 0.005

InsertRate 0.005

InsertDistribution uniform

}

Root TestSequence1 DNA

{

Segment first

{

Sequence 200 * uniform

Model JCI

Speeds constant 0.9

}

Segment second

{

Sequence 200 * uniform

Model JCI

176

A.2 REFORM

Speeds constant 0.95

}

Segment third

{

Sequence 200 * uniform

Model JCI

Speeds constant 1

}

Segment fourth

{

Sequence 200 * uniform

Model JCI

Speeds constant 1.05

}

Segment fifth

{

Sequence 200 * uniform

Model JCI

Speeds constant 1.1

}

}

Subtree TestSequence1 { 1 4 3 }

Subtree TestSequence1_1_1_1 { 0.1 4 1 }

Output FASTALEAVES { TestSequence1_1_1_1 }

Subtree TestSequence1_1_1_2 { 0.1 4 1 }

Output FASTALEAVES { TestSequence1_1_1_2 }

Subtree TestSequence1_1_1_3 { 0.1 4 1 }

Output FASTALEAVES { TestSequence1_1_1_3 }

Subtree TestSequence1_1_1_4 { 0.1 4 1 }

Output FASTALEAVES { TestSequence1_1_1_4 }

Subtree TestSequence1_1_2_1 { 0.1 4 1 }

Output FASTALEAVES { TestSequence1_1_2_1 }

...

Subtree TestSequence1_4_4_4 { 0.1 4 1 }

Output FASTALEAVES { TestSequence1_4_4_4 }

177

Appendix A Software

License and Acknowledgments. REFORM is copyright (C) 2003, Sven Rahmann.
All rights reserved. Permission to use this software is granted under the same restric-
tions as for Perl itself.

The matrix routines used in REFORM were adapted from CPAN package Math::Matrix.
Copyright (C) 2001, Brian J. Watson [bjbrew@power.net]. Copyright (C) 2001, Ulrich
Pfeifer [pfeifer@wait.de]. Copyright (C) 1995, Universität Dortmund. Copyright
(C) 2001, Matthew Brett [matthew.brettmrc-cbu.cam.ac.uk]. All rights reserved.

REFORM would not have been possible without the Parse::RecDescent module writ-
ten by Damian Conway, which is available from CPAN. Incidentally, Damian called
the tutorial for that module ”The man(1) of Descent”, and it seems that finally here
we’ve put the module to its intended use...

178

Appendix B

Probe Selection Projects

The performance of selected probe sets in biological experiments cannot be evaluated
in silico. It would be best to run controlled spike-in experiments for each target
and measure the response of each probe; this would immediately show the extent
of cross-hybridization and allow to measure all affinity coefficients (cf. Section 2.4).
These experiments would require considerable financial resources and time, however,
because many chips and test samples would have be produced and analyzed.

A more practical solution is to run several “real” chip experiments with the generated
probes. Then one can use data analysis methods that infer both the affinity coefficients
and the expression values, such as the one described in Section 2.4, to evaluate the
quality of the probe sets. Comparison of probe sets generated by different methods
could also be incorporated in such a study.

We have therefore formed collaborations with other research groups and generated
probe sets for their projects. Preliminary experiments have shown that the probes
work reasonably well, i.e., in the majority of cases, they show a signal where they
should, and signal strength is relatively consistent across different probes for the same
target. We give a short list of projects in which Promide is being used.

Neurospora crassa: The orange bread mold Neurospora crassa has been used as a model or-
ganism for genetic and biomedical studies for more than 50 years. Like yeast, N. crassa

is a filamentous ascomycete. Its genomic sequence and the set of predicted genes were
obtained from the Neurospora sequencing project (Neurospora Sequencing Project
Version 3). From the 10082 known and predicted genes, those 9707 of at least 150 bp
were used as target sequences (total length 15 Mb). Specificity was checked against
all predicted genes and their reversed complements (10082 collections) and, as an
additional safety measure, against the whole genomic sequence and its reversed com-
plement (divided into 821 contigs), for a total of 10903 collections (105 Mb). Probe
selection with bucket prefix length q = 10, R0

min = 11, R1
min = 14, Rmax = 30 took less

than 4 hours, including construction of the index. In contrast, probe selection with
the method of Li and Stormo (2001) took several days. Verena Beier at the Func-
tional Genome Analysis department at the German Cancer Research Center (DKFZ)
created a chip with probes for selected genes using febit’s geniom r© one system and

179

Appendix B Probe Selection Projects

compared the results obtained with our probes to the results obtained with probes
from febit AG and from Li and Stormo’s software. Preliminary results indicate that
signal intensities of probes from the same gene vary considerably in the Li and Stormo
probe set, whereas our set and the proprietary febit set show more consistent signals.

Alternatively spliced human transcripts: In collaboration with febit AG, Mannheim, Ste-
fan Haas used Promide and the SpliceNest database (Coward et al., 2002) to se-
lect probes for alternative splice isoforms of several human genes. Preliminary re-
sults indicate that in comparison to probe sets selected by febit AG and Deutsches
Ressourcenzentrum für Genomforschung GmbH, Berlin, the Promide probes often
show a slightly lower but more constant signal than the other probe sets.

Candida albicans is a commonly encountered human pathogen fungus that causes a vari-
ety of infections ranging from mucosal infections in generally healthy persons to life-
threatening systemic infections in individuals with impaired immunity. Few classes
of drugs are effective against these fungal infections, and all of them have limitations
with regard to efficacy and side-effects. Nicole Hauser’s group (Fraunhofer-Institut für
Grenzflächen- und Bioverfahrenstechnik (IGB), Stuttgart) has created a cDNA chip
for all of the approximately 7000 C. albicans genes, but found three gene families
(ALS, CDR/MDR, and SAP) whose members were difficult to distinguish between,
because of high sequence homology. Therefore we are designing non-unique probes
with Promidefor these gene families.

Human transcriptome project: This project is a part of project ENCODE (ENCyclopedia
Of Dna Elements) that aims to identify all functional elements within the human
genomic DNA. To support probe selection for transcript detection, we have computed
the lcf-values of each 25-mer within the non-repeat-masked part of the human genome
against all other non-overlapping 25-mers individually. These results can be used in
two ways: (1) If we allow some freedom in probe positions for genome tiling chips,
probe locations can be moved for a few bp to obtain more specific probes than if a
strictly regular probe spacing is enforced. The LCF statistics of each 25-mer have been
made available to Affymetrix, Inc., who will decide on the chip design. (2) Individual
high lcf-values are crucial in decoding the transfrag detection experiments described
in Chapter 7.

Besides these projects, the Promide software has been licensed to other research
groups, including

• Dr. Volker Brendel’s group at Iowa State University

• Dr. Alex Zelikovsky, CS Department, Georgia State University

• Dr. Amar Mukherjee’s lab, University of Central Florida

• Benjamin Horsman, Brinkman Laboratory, Department of Molecular Biology
and Biochemistry, Simon Fraser University, Burnaby, B.C., Canada

180

Appendix C

Anhang laut Promotionsordnung

C.1 Zusammenfassung

DNA Microarrays oder DNA-Chips haben sich in den letzten Jahren zu einem wichti-
gen Werkzeug in der funktionalen Genomanalyse entwickelt. Verschiedene Technologie-
Plattformen existieren; in dieser Arbeit betrachten wir ausschließlich Oligonukleotid-
Arrays hoher Dichte.

Diese bestehen aus einer Glas- oder Quartzplatte, die an mehreren Tausend bis zu
einer Million wohldefinierten und regelmäßig angeordneten Stellen (sog. Spots) mit
einsträngigen DNA-Oligonukleotiden aus 8 bis 30 Nukleotiden beladen ist; auf einem
Spot befinden sich bis zu 109 Moleküle derselben DNA-Sequenz. Die Sequenz der
Oligonukleotide ist so gewählt, dass sie als Signatur eines Gen-Transkripts dient, d.h.
jeder Spot auf dem Chip repräsentiert durch seine Sequenz ein bestimmtes Transkript
des zu untersuchenden Organismus oder mehrerer zu untersuchender Organismen.

In einem typischen Experiment werden aus einer Zell- oder Gewebeprobe die mRNA-
Transkripte der exprimierten Gene extrahiert und gegebenenfalls amplifiziert. Die zu
den mRNA-Transkripten komplementären cDNAs oder cRNAs, die mit Fluoreszenz-
Farbsoffen markiert sind, werden mit den Oligonukleotiden auf dem Chip hybridisiert;
hierbei wird ausgenutzt, dass sich komplementäre DNA- und RNA-Basen spezifisch
stabil aneinander binden. Nicht hybridisierte Moleküle werden von der Chipoberfläche
heruntergewaschen. Anschließend kann an jedem Spot die Fluoreszenz-Intensität ge-
messen werden, die um so größer ist, je mehr mRNA von dem ensprechenden Gen
vorlag, d.h., je stärker das Gen in der Zellprobe exprimiert war.

Auf diese Weise lassen sich relativ schnell Genexpressionsprofile von verschiedenen
Zell- oder Gewebetypen erstellen und vergleichen. Beispielsweise erhofft man sich
durch Betrachten der Unterschiede von gesunden Zellen und Tumorzellen, verschie-
dene Krebserkrankungen besser zu verstehen und gegebenenfalls den Therapieerfolg
zu verbessern.

181

Appendix C Anhang laut Promotionsordnung

Die Genexpressionsanalyse mit DNA-Chips ist eine Technik, die Daten in großer Men-
ge und mit hohem Durchsatz liefert; sie ist allerdings nicht frei von Fehlerquellen: Jeder
Schritt muss sorgfältig durchgeführt werden, damit die gemessenen Daten tatsächlich
mit der Genaktivität korrelieren. Insbesondere muss der DNA-Chip sorgfältig entwor-
fen und produziert werden. Mit den dabei auftretenden algorithmischen Problemen
befasst sich diese Arbeit. Im einzelnen werden folgende Aspekte untersucht (genauere
Problemstellungen sind in Kapitel 1 ausformuliert).

• Damit ein Spot genau ein bestimmtes Gen repräsentiert, müssen die dort auf-
gebrachten Oligonukleotide genspezifisch sein, d.h., unter den Hybridisierungs-
bedingungen ausschließlich an das Zieltranskript binden. Das Hauptproblem be-
steht darin, eine geeignete Menge von Oligonukleotiden für jedes Transkript aus-
zuwählen.

• Ein grundsätzliches Problem dabei ist, den Zusammenhang zwischen dem Ex-
pressionsniveau eines Gens und der gemessenen Signalintensität an den Spots
zu verstehen, insbesondere zunächst für ideal-spezifische Oligonukleotide. Von
Sättigungseffekten abgesehen ist dieser Zusammenhang annähernd linear; die
Proportionalitätskonstante, auch Affinitätskoeffizient genannt, hängt von vielen
Faktoren ab, die in Kapitel 2 detailliert beschrieben werden. Ein wichtiger Faktor
ist dabei die Bindungsstärke der Hybdridisierung, die mit Hilfe sogenannter nea-
rest neighbor Modelle geschätzt wird. Weiterhin geben wir eine Übersicht über
Methoden zur Schätzung der Expressionsniveaus und der Affinitätskoeffizienten.

• Während der Chipentwurfsphase sind die Affinitätskoeffizienten in der Regel
unbekannt, da keine experimentellen Daten vorliegen, aus denen sie geschätzt
werden könnten. Man muss daher auf Ersatzmaße zurückgreifen, die sich schnell
durch Vergleich der Oligonukleotidsequenz mit den Transkriptsequenzen gewin-
nen lassen. Letzten Endes interessiert dabei nur die Entscheidung, ob ein Tran-
skript an ein Oligonukleotid bindet oder nicht. Wir treffen diese Entscheidung
anhand des längsten gemeinsamen Substrings (longest common factor; LCF)
von Oligonukleotid und Transkript. Diese Wahl wird in Kapitel 3 motiviert und
mit anderen Ansätzen verglichen. Durch den Vektor der LCF-Längen eines Oli-
gonukleotids mit allen Transkripten lässt sich das Kreuzhybridisierungs-Risiko
approximieren.

• Kapitel 4 bildet den algortihmischen Kern dieser Arbeit. Hier stellen wir einen
effizienten Algorithmus zur Berechnung sogenannter matching statistics von al-
len Transkriptpaaren vor, der auf erweiterten Suffixarrays beruht. Aus diesen
matching statistics lassen sich die gewünschten LCF-Vektoren für beliebige Oli-
gonukleotide bestimmen. Da die Anzahl der zu berechnenden matching statistics
in der Regel sehr groß ist, stellt sich das Problem der effizienten Repräsentierung
dieser Werte. Wir nutzen die Struktur der Werte aus und führen den Begriff des
Sprungs (jump) in matching statistics ein. Es genügt dann, die Position und

182

C.1 Zusammenfassung

Höhe der Sprünge zu betrachten. Wir untersuchen die statistische Häufigkeit
von Sprüngen und geben ein Verfahren an, um aus den Sprüngen das Kreuz-
hybridisierungsrisiko von Oligonukleotiden zu schätzen. Weiterhin stellen wir
Varianten der Algorithmen vor, die es erlauben, unterschiedliche Gewichting auf
schnellere Laufzeit oder genauere Ergebnisse zu legen. Wir illustrieren die Lei-
stungsfähigkeit der entwickelten Verfahren am Beispiel der Oligonukleotidaus-
wahl für Saccharomyces cerevisiae (Backhefe).

• Das LCF-Konzept aus Kapitel 3 und die Algorithmen aus Kapitel 4 erlauben
es, einzelne Oligonukleotide effizient gemäß ihrer Spezifität zu klassifizieren. In
Kapitel 5 kommen wir zurück auf das eingangs gestellte Problem, eine pas-
sende Menge an Oligonukleotiden für jedes Transkript zu wählen. Dabei sind
zusätzliche Bedingungen einzuhalten. Beispielsweise möchte man ein Transkript
gleichmäßig mit Oligonukleotiden abdecken; jedoch treten hochspezifische Oli-
gonukleotide oft in Clustern auf, so dass man hier eine Wahl treffen muss. Das
Kapitel schließt mit einer Übersicht über den gesamten Auswahlprozess.

• Betrachtet man Gruppen von Transkripten (oder auch ganze Genome) mit hoher
Sequenzähnlichkeit (z.B. alternative Spleißvarianten von Genen oder Subtypen
desselben Virustyps), so stellt man fest, dass sich oft nicht genügend sequenzspe-
zifische Oligonukleotide finden lassen. In diesem Fall lässt man zu, dass die Oli-
gonukleotide mit mehreren der Sequenzen hybridisieren. Man beobachtet dann
bei quantitativer Analyse die Summe der einzelnen Expressionswerte, oder bei
qualitativer Anaylse mit binären Signalen das logische Oder der Einzelsignale.
Die beobachteten Signale müssen also zunächst “dekodiert” werden. In Kapitel 6
werden Dekodierungsmethoden für sowohl das quantitative als auch das qualita-
tive Szenario vorgestellt. Auch das Oligonukleotid-Auswahlverfahren wird sehr
viel komplexer: Die Auswahl muss so erfolgen, dass robustes und effizientes De-
kodieren möglich wird; andererseits sollte die Anzahl an Oligonukleotiden aus
Wirtschaftilchkeitsgründen möglichst gering sein. Diese Forderungen werden im
quantitativen Szenario als Konditionsminimierungsproblem einer (Sub-)Matrix
formuliert, und im qualitativen Szenario als ein ganzzahliges lineares Programm.
Zusätzlich werden schnelle Lösungsheuristiken angegeben.

• Die diskutierten Oligonukleotid-Auswahlmethoden für die Genexpressionsanaly-
se setzen voraus, dass man das Transkriptom des zu untersuchenden Organis-
mus kennt. Dieses ist im allgemeinen jedoch schwieriger zu bestimmen als das
komplette Genom zu sequenzieren. Im Rahmen des Projekts ENCODE (EN-
Cyclopedia Of Dna Elements1) wird versucht, die noch unbekannten Transkrip-
te des Humangenoms innerhalb der genomischen Sequenz zu lokalisieren. Dazu
wird das gesamte Genom mit Oligonukleotiden in geringem Abstand zueinan-
der “gekachelt”. Ein neues Transkript-Fragment ist entdeckt, wenn man für eine
durchgehende Folge von Oligonukleotiden ein Signal sieht und dieses nicht durch

1http://www.genome.gov/10005107

183

Appendix C Anhang laut Promotionsordnung

bekannte Transkripte oder Kreuzhybridisierungen erklärt werden kann. Kapitel 7
zeigt, wie die Methoden aus den vorangehenden Kapiteln effizient für diese Auf-
gabe eingesetzt werden können. Dabei ist insbesondere zu beachten, dass man
die Oligonukleotide im allgemeinen nicht spezifisch ausgewählen kann.

• In Kapitel 8 betrachten wir ein Problem aus der Chipproduktion. Sind die Oli-
gonukleotidsequenzen ausgewählt, so müssen sie auf dem Chip synthetisiert wer-
den. Dies geschieht mit Hilfe photolithographischer Techniken und kombinatori-
scher Chemie. In einem Syntheseschritt werden ausgewählte Oligonukleotide um
dasselbe eine Nukleotid verlängert. Aus Wirtschaftlichkeitsgründen und um die
Fehlerzahl zu minimieren, soll die Anzahl der Syntheseschritte minimiert werden.
Dies führt auf das Problem, die kürzeste gemeinsame Supersequenz von Tausen-
den sehr kurzer Sequenzen zu bestimmen. Wir stellen eine Heuristik für dieses
Problem vor und berechnen die Verteilung von oberen und unteren Schranken
für die Supersequenzlänge zufällig gezogener Oligonukleotide.

Die abschließende Diskussion in Kapitel 9 fasst die Ergebnisse der Arbeit zusammen
und wagt einen Ausblick in die Zukunft dieses sich sehr schnell entwickelnden For-
schungsgebietes.

184

C.2 Erklärung

C.2 Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass diese Dissertation bei keinem anderen Fachbereich zur
Begutachtung eingereicht wurde.

Sven Rahmann Berlin, im Februar 2004

185

Appendix C Anhang laut Promotionsordnung

C.3 Lebenslauf

Dipl.-Math. Sven Rahmann
Schlossstraße 31
12163 Berlin

Tel.: (030) 79 70 95 17
E-mail: Sven.Rahmann @ molgen.mpg.de

Geburtsdatum: 1. August 1974
Geburtsort: Hamburg
Staatsangehörigkeit: Deutsch
Familienstand: ledig

Akademischer Grad

Diplom-Mathematiker 13. Dezember 2000

• Diplomarbeit: “Word Statistics in Random Texts and Applications to Com-
putational Molecular Biology”

• Betreuer: Prof. Dr. Enno Mammen und Prof. Dr. D.W. Müller (Universität
Heidelberg), Dr. Eric Rivals (DKFZ; jetzt LIRMM Montpellier, France),
und Prof. Dr. Martin Vingron (DKFZ; jetzt MPI für molekulare Genetik,
Berlin).

Ausbildung

Seit April 2002 Wissenschaftlicher Mitarbeiter am Fachbereich Mathematik und In-
formatik, speziell im Studiengang Bioinformatik, der Freien Universität Berlin

Seit Januar 2001 Doktorand in der Abteilung Bioinformatik am Max-Planck-Institut
für Moleulare Genetik, Berlin

September 1994 – Dezember 2000 Universitätsstudium der Mathematik und In-
formatik an folgenden Orten:

• Georg-August-Universität, Göttingen (09/1994 – 09/1997)

• University of California Santa Cruz (09/1997 – 08/1998)

• Ruprecht-Karls-Universität Heidelberg (09/1998 – 12/2000)

• Diplomarbeit in der Arbeitsgruppe Theoretische Bioinformatik am Deut-
schen Krebsforschungszentrum (DKFZ), Heidelberg (10/1998 – 12/2000)

186

C.3 Lebenslauf

August 1981 – Juni 1994 Schulausbildung:

• Grundschule in Rellingen

• Wolfgang-Borchert-Gymnasium in Halstenbek

• Deutsche Schule Toulouse in Colomiers bei Toulouse, Frankreich

• Abschluss: Reifeprüfung an der Deutschen Schule Toulouse

Sven Rahmann Berlin, im Februar 2004

187

188

