

Today's and Tomorrow's Sequencing Technologies and their Bioinformatic Challenges

Sven Rahmann

Genome Informatics, Institute of Human Genetics Faculty of Medicine, University of Duisburg-Essen

and

Bioinformatics for High-Throughput Technologies Computer Science XI, TU Dortmund

Essen, 11.+12.10.2011

Overview

- Sequencing Technologies
- 2 Biomedical Questions Addressed
- 3 Basic Bioinformatics: Read Mapping
- 4 Specific Bioinformatics: Case Studies
- **5** Summary and Discussion

Part 1

Sequencing Technologies

S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges

"New" Sequencing Technologies...

...produce a flood of short DNA reads from pepared samples.

Technology Selection

- Roche: 454
- Illumina: Illumina
- Applied Biosystems: SOLiD
- Life Technologies: Ion Torrent
- Pacific Biosciences: SMRT
- Helicos HeliScope

Roche 454

UNIVERSITÄT

GS FLX with Titanium reagents

- 1 M reads
- 400 bp read length
- run needs 10 h
- 16 regions, 16 barcodes: 256 samples

Roche 454

UNIVERSITÄT

GS FLX with Titanium reagents

- 1 M reads
- 400 bp read length
- run needs 10 h
- 16 regions, 16 barcodes: 256 samples

GS FLX+ with Titanitum XL+ reagents

- 1 M reads
- 700 bp read length, up to 1000
- run needs 20 h (?)

Roche 454

UNIVERSITÄT

GS FLX with Titanium reagents

- 1 M reads
- 400 bp read length
- run needs 10 h
- 16 regions, 16 barcodes: 256 samples

GS FLX+ with Titanitum XL+ reagents

- 1 M reads
- 700 bp read length, up to 1000
- run needs 20 h (?)

long reads, but few. Throughput $< 1~\mbox{Gbp}$ / day.

S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges

Roche 454 Output

Flowgrams, not sequences!

repeatedly attempt T,A,C,G,... measure light intensity.

Roche 454 Output

Flowgrams, not sequences!

repeatedly attempt T,A,C,G,... measure light intensity.

1 base \approx intensity 100, proportional for homopolymers.

Roche 454 Output

Flowgrams, not sequences!

repeatedly attempt T,A,C,G,... measure light intensity.

1 base \approx intensity 100, proportional for homopolymers.

Output for sequence TCAG... could be: (105,3,99,7,0,112,9,103,...)

Illumina

Illumina HiSeq 2000

- HiSeq Control Software (HCS) 1.4, Flow cell v3
- up to 3 G reads or read pairs
- up to 2x 100 bp
- run needs up to 11 days
- 8 lanes, 12 barcodes (up to 96 samples)

Illumina

Illumina HiSeq 2000

- HiSeq Control Software (HCS) 1.4, Flow cell v3
- up to 3 G reads or read pairs
- up to 2x 100 bp
- run needs up to 11 days
- 8 lanes, 12 barcodes (up to 96 samples)

short reads, but many. Throughput 50 Gbp / day.

LifeTechnologies (ABI) SOLiD

Current 5500xl System

- number of reads not given
- MP: 60 + 60 bp; PE: 75 + 35 bp; F: 75 bp
- run needs up to 3 weeks (12 lanes parallel)
- 2 slides à 6 lanes

short reads, but many. Throughput up to 20 Gbp / day.

Mate Pairs vs. Paired End Reads

SOLiD Output

UNIVERSITÄT

No nucleotides, but "colors" encoding di-nucleotides. Colors represented as numbers 0,1,2,3. Symmetries: reverse and complement has same color. Example: T02301 = TTCGGT

LifeTechnologies' IonTorrent PGM

- Personal Genome Machine (PGM) 314, 316, 318
- only a few million reads, but high accuracy
- read length: 250; up to 400 in 2012?
- fastest workflow (prep in 6h, sequence in 2h)
- throughput: < 1 Gbp per day, may scale up
- inexpensive: no fluorescent chemistry;

detects hydrogen ions on semiconductor chips.

Quality Values

Idea: interpret like phred scores (Ewing & Green, 1998)

quality	error rate	percent ok
Q 10	1 / 10	90 %
Q 20	1 / 100	99 %
Q 30	1 / 1000	99.9 %
Q 40	1 / 10000	99.99 %
Q 50	1 / 100 000	99.999 %

Quality Values

Idea: interpret like phred scores (Ewing & Green, 1998)

quality	error rate	percent ok
Q 10	1 / 10	90 %
Q 20	1 / 100	99 %
Q 30	1 / 1000	99.9 %
Q 40	1 / 10 000	99.99 %
Q 50	1 / 100 000	99.999 %
Qq	$10^{-q/10}$	$100 \cdot (1 - 10^{-q/10})$ %

Quality Values

Idea: interpret like phred scores (Ewing & Green, 1998)

quality	error rate	percent ok
Q 10	1 / 10	90 %
Q 20	1 / 100	99 %
Q 30	1 / 1000	99.9 %
Q 40	1 / 10 000	99.99 %
Q 50	1 / 100 000	99.999 %
Qq	$10^{-q/10}$	$100 \cdot (1 - 10^{-q/10})$ %

Quality values q often range from 4 to 60. They are encoded as the ASCII character of q + 33 or q + 64.

FASTQ format

FASTQ: extension of FASTA to store encoded quality values

@EM7LVYS01C1LWG

TCAGGGGGGGGGGGGCTTAAATTTGAAACTAGAAAAATTTTGAACAAAATAATCATAATTGT +EM7LVYS01C1LWG

=;8GC91*#==<C=EA.EA/<B=(<<:=HC90'FB5&;B:<GC6(=D=<<==C=C==B.@EM7LVYS01B2EMP

TCAGGGGGGGGGTTACACGTGCAGATTTGTTACACGGGTGTACTGTGAGGTTTGGGGGTA(+EM7LVYS01B2EMP

=<8F@71-*&#D=<=<<<:FB1=C=;<=<FA/==<<====<D=FB0FB4%<<=

Technology Summary

- Different chemistries, measurement technologies,
- Different read lengths, number of reads, thoughputs, ...
- Different "native" output
- Output often converted to FASTQ: sequence + qualities
- Convenient: uniform interface for analysis

Technology Summary

- Different chemistries, measurement technologies, ...
- Different read lengths, number of reads, thoughputs, ...
- Different "native" output
- Output often converted to FASTQ: sequence + qualities
- Convenient: uniform interface for analysis
- but lossy!

Challenge: Efficiently Use Sequencer State

- Each technology has its specific strengths and weaknesses
- "Primary" output is available:
 - 454, IonTorrent: flowgrams (intensities)
 - SOLiD: color sequence
 - PacBio SMRT (single molecule real time): kinetics

Challenge: Efficiently Use Sequencer State

- Each technology has its specific strengths and weaknesses
- "Primary" output is available:
 - 454, IonTorrent: flowgrams (intensities)
 - SOLiD: color sequence
 - PacBio SMRT (single molecule real time): kinetics
- Develop methods that start from primary data, but:
 - short-lived (technology change)
 - must translate reference genome to primary format
 - combinatorial explosion ?

One Idea: Intermediate Flowgram Format

454 outputs flowgrams for fixed flow sequence TACG: (105, 3, 99, 7, 0, 112, 9, 103, ...) means probably TCAG...

One Idea: Intermediate Flowgram Format

- 454 outputs flowgrams for fixed flow sequence TACG: (105, 3, 99, 7, 0, 112, 9, 103, ...) means probably TCAG...
- What about these flow values?
 - 42 (presence?)
 - 149 (number?)
 - 899 (saturation?)

One Idea: Intermediate Flowgram Format

- 454 outputs flowgrams for fixed flow sequence TACG: (105, 3, 99, 7, 0, 112, 9, 103, ...) means probably TCAG...
- What about these flow values?
 - 42 (presence?)
 - 149 (number?)
 - 899 (saturation?)

Invent additional characters:

- ACGT: confirmed nucleotides
- acgt: potentially existing nucleotides
- +: additional copies of preceding nucleotide

One Idea: Intermediate Flowgram Format

- 454 outputs flowgrams for fixed flow sequence TACG: (105, 3, 99, 7, 0, 112, 9, 103, ...) means probably TCAG...
- What about these flow values?
 - 42 (presence?)
 - 149 (number?)
 - 899 (saturation?)

Invent additional characters:

- ACGT: confirmed nucleotides
- acgt: potentially existing nucleotides
- +: additional copies of preceding nucleotide
- Ex: (105, 35, 157, 12, 999, 99) = TaCcTTTTT+A

One Idea: Intermediate Flowgram Format

- 454 outputs flowgrams for fixed flow sequence TACG: (105, 3, 99, 7, 0, 112, 9, 103, ...) means probably TCAG...
- What about these flow values?
 - 42 (presence?)
 - 149 (number?)
 - 899 (saturation?)

Invent additional characters:

- ACGT: confirmed nucleotides
- acgt: potentially existing nucleotides
- +: additional copies of preceding nucleotide
- Ex: (105, 35, 157, 12, 999, 99) = TaCcTTTTT+A
- Allows to use sequence alignment against reference
 - insert before + is cheap
 - deletion of acgt+ is cheap

One Million Dollar Challenge

Double IonTorrent Personal Genomics Machine's accuracy¹:

- Pure algorithm / software challenge
- Use raw / primary data
- Produce more accurate FASTQ file than PGM does now

¹http://www.lifetechnologies.com/about-life-technologies/ grand-challenges/accuracy.html

Part 2

Biomedical Questions Addressed by High-Throughput Sequencing Technologies

UNIVERSITÄT

- De novo genome sequencing
- Genome resequencing

UNIVERSITÄT

- De novo genome sequencing
- Genome resequencing
- Variation discovery: e.g. SNP and CNV discovery; selected parts only: exome sequencing

UNIVERSITÄT

- De novo genome sequencing
- Genome resequencing
- Variation discovery: e.g. SNP and CNV discovery; selected parts only: exome sequencing
- Description of the pan-genome of a species

INIVERSITÄT

- De novo genome sequencing
- Genome resequencing
- Variation discovery: e.g. SNP and CNV discovery; selected parts only: exome sequencing
- Description of the pan-genome of a species
- Population sequencing (e.g., virus population in host)

BURG

NIVERSITÄT

- De novo genome sequencing
- Genome resequencing
- Variation discovery: e.g. SNP and CNV discovery; selected parts only: exome sequencing
- Description of the pan-genome of a species
- Population sequencing (e.g., virus population in host)
- Amplicon sequencing (ultra deep; rare variants)

Genomics

INIVERSITÄT

- De novo genome sequencing
- Genome resequencing
- Variation discovery: e.g. SNP and CNV discovery; selected parts only: exome sequencing
- Description of the pan-genome of a species
- Population sequencing (e.g., virus population in host)
- Amplicon sequencing (ultra deep; rare variants)
- Metagenomics:

Genomic composition of ecological communities; Implications for inter-species relations

Genomics

UNIVERSITÄT

- De novo genome sequencing
- Genome resequencing
- Variation discovery: e.g. SNP and CNV discovery; selected parts only: exome sequencing
- Description of the pan-genome of a species
- Population sequencing (e.g., virus population in host)
- Amplicon sequencing (ultra deep; rare variants)
- Metagenomics:

Genomic composition of ecological communities; Implications for inter-species relations

Aim for (at least) some long reads (454, Sanger). Use paired end reads with long insert sizes.

S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges

Transcriptomics (RNA-seq)

- ... will, in the long run, replace DNA microarrays.
 - Transcriptome discovery / description:
 - exons
 - all splice variants of a gene
 - (small) noncoding RNA

Transcriptomics (RNA-seq)

- ... will, in the long run, replace DNA microarrays.
 - Transcriptome discovery / description:
 - exons
 - all splice variants of a gene
 - (small) noncoding RNA
 - Gene/exon/transcript expression analysis (binary)
 - Gene/exon/transcript expression analysis (quantitative)
 - Noncoding RNA expression analysis

Transcriptomics (RNA-seq)

- ... will, in the long run, replace DNA microarrays.
 - Transcriptome discovery / description:
 - exons
 - all splice variants of a gene
 - (small) noncoding RNA
 - Gene/exon/transcript expression analysis (binary)
 - Gene/exon/transcript expression analysis (quantitative)
 - Noncoding RNA expression analysis

Number of reads more important than length. Splicing: Use paired-end reads.

Approaches to "Regulomics"

ChIP-seq:

sequence DNA bound to a protein (transcription factor) \Rightarrow transcription factor binding sites and motifs

Approaches to "Regulomics"

ChIP-seq:

sequence DNA bound to a protein (transcription factor) \Rightarrow transcription factor binding sites and motifs

 Determination of epigenetic modifications, e.g. basepair-level DNA methylation state: Bisulfite sequencing / SMRT sequencing

Part 3

Basic Bioinformatics: Read Mapping

S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges

Read Mapping: A Fundamental Task

Read Mapping Problem

- Given: **1** short DNA sequence read (string),
 - 2 per-base quality values
 - **3** reference sequence (string)
 - 4 error rate threshold

Read Mapping: A Fundamental Task

Read Mapping Problem

- Given: **1** short DNA sequence read (string),
 - 2 per-base quality values
 - **3** reference sequence (string)
 - 4 error rate threshold
- Sought: locations in reference where read occurs, (quality-weighted) error rate below threshold (≈ classical approximate matching / alignment.)

Read Mapping: A Fundamental Task

Read Mapping Problem Given: short DNA sequence read (string), 2 per-base quality values **3** reference sequence (string) 4 error rate threshold Sought: locations in reference where read occurs. (quality-weighted) error rate below threshold (\approx classical approximate matching / alignment.) Variations: local alignments for long reads read ends may be adapters, spliced alignment across exon boundaries

- Speed of read mapping: index necessary Indexing helps to locate exact matches of read substrings.
 - 1 index (parts of) the reference
 - **2** index (parts of) the reads

- Speed of read mapping: index necessary Indexing helps to locate exact matches of read substrings.
 - 1 index (parts of) the reference
 - 2 index (parts of) the reads
- Size of reference & data (and indexes): GBs!
 32 bits limit us to addressing 2 GB,
 suffix array of human genome needs 24 GB (uncompressed).
 Usage of 64 bits doubles space requirements.

- Speed of read mapping: index necessary Indexing helps to locate exact matches of read substrings.
 - 1 index (parts of) the reference
 - 2 index (parts of) the reads
- Size of reference & data (and indexes): GBs!
 32 bits limit us to addressing 2 GB,
 suffix array of human genome needs 24 GB (uncompressed).
 Usage of 64 bits doubles space requirements.
- Guarantees of read mapping (exact vs. heuristic)

- Speed of read mapping: index necessary Indexing helps to locate exact matches of read substrings.
 - 1 index (parts of) the reference
 - 2 index (parts of) the reads
- Size of reference & data (and indexes): GBs!
 32 bits limit us to addressing 2 GB,
 suffix array of human genome needs 24 GB (uncompressed).
 Usage of 64 bits doubles space requirements.
- Guarantees of read mapping (exact vs. heuristic)
- Dealing with multiple matching loci (one best, all best, all suboptimal): effects on downstream analysis; repeats.

Indexing

Indexing the Reference

- Reference does not change over time.
- Reference is smaller than sum of reads.
- Reads must be considered sequentially anyway.

Indexing

Indexing the Reference

- Reference does not change over time.
- Reference is smaller than sum of reads.
- Reads must be considered sequentially anyway.

Indexing the Reads

- Scan over reference (genome) once
- Large data (600 GB), even larger index (5 TB)
- Index might be constructed during sequencing!

Index Data Structures

- q-gram index
- hash-based index
- (enhanced, extended) suffix array
- compressed self-index

Index Data Structures

- q-gram index
- hash-based index
- (enhanced, extended) suffix array
- compressed self-index

Idea: Fast Filtration

Appropriate choice of q implies:

- No exact q-gram match \Rightarrow no good alignment
- However: exact q-gram match \neq good alignment
- Necessary to verify matches with full alignment.

q-gram index

- Read a q-gram as a base-4 number with q digits
- Example: AGTTCA \mapsto (023310)₄ = 0 · 1 + 1 · 4 + 3 · 16 + 3 · 64 + 2 · 256 + 0 · 1024 = 756
- 1-to-1 correspondence: q-grams \leftrightarrow integers $\{0, \ldots, 4^q 1\}$
- For each number, record positions of *q*-gam in reference

q-gram index

- Read a q-gram as a base-4 number with q digits
- Example: AGTTCA \mapsto (023310)₄ = 0 · 1 + 1 · 4 + 3 · 16 + 3 · 64 + 2 · 256 + 0 · 1024 = 756
- 1-to-1 correspondence: q-grams \leftrightarrow integers $\{0, \dots, 4^q 1\}$
- For each number, record positions of *q*-gam in reference

Hashing

- Define a hash function h that assigns a number h(x) to each q-gram x
- Different $x \neq y$ may have same hash value h(x) = h(y)
- Often: larger q, ignore some characters

Suffix array

Given a text T of length n, the suffix array pos is a permutation of $\{1, \ldots, n\}$, such that the suffix starting at position pos[r] is the *r*-th lexicographically smallest one.

Example: AGTTCA\$ has pos = (7, 6, 1, 5, 2, 4, 3) with suffixes (\$, A\$, AGTTCA\$, CA\$, GTTCA\$, TCA\$, TTCA\$).

Suffix array

Given a text T of length n, the suffix array pos is a permutation of $\{1, \ldots, n\}$, such that the suffix starting at position pos[r] is the *r*-th lexicographically smallest one.

Example: AGTTCA\$ has pos = (7, 6, 1, 5, 2, 4, 3) with suffixes (\$, A\$, AGTTCA\$, CA\$, GTTCA\$, TCA\$, TTCA\$).

Matches correspond to intervals of suffix array. **Example:** T is found at $r \in [6, 7]$ with positions 4, 3.

Suffix array

Given a text T of length n, the suffix array pos is a permutation of $\{1, \ldots, n\}$, such that the suffix starting at position pos[r] is the *r*-th lexicographically smallest one.

Example: AGTTCA\$ has pos = (7, 6, 1, 5, 2, 4, 3) with suffixes (\$, A\$, AGTTCA\$, CA\$, GTTCA\$, TCA\$, TTCA\$).

Matches correspond to intervals of suffix array. **Example:** T is found at $r \in [6, 7]$ with positions 4, 3.

"BWT" + "Backward search" obtain interval with little memory. Position list pos must be scanned on disk.

S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges

Mismatch- and Difference-tolerant Indexing

Develop an index that locates matches

- with Hamming distance ≤ 1 or edit distance ≤ 1
- rapidly
- without wasting memory
- with few false hash hits

Mismatch- and Difference-tolerant Indexing

Develop an index that locates matches

- with Hamming distance ≤ 1 or edit distance ≤ 1
- rapidly
- without wasting memory
- with few false hash hits

Requires engineering appropriate hash functions. Requires understanding statistics of hash functions.

UNIVERSITÄT

Technology-Dependent Indexing

- 454 & IonTorrent sequence a run of nucleotides at a time: TAAGTCCCA = (T, AA, G, T, CCC, A).
- \blacksquare Unable to determine exact length of a long run: AAAAAA \approx AAAAAAA

UNIVERSITÄT

Technology-Dependent Indexing

- 454 & IonTorrent sequence a run of nucleotides at a time: TAAGTCCCA = (T, AA, G, T, CCC, A).
- \blacksquare Unable to determine exact length of a long run: AAAAAA \approx AAAAAAA
- Idea: Ignore run length completely!
- Transform reference and reads by "forgetting": TAAGTCCCA = (T, AA, G, T, CCC, A) \mapsto TAGTCA

UNIVERSITÄT

Technology-Dependent Indexing

- 454 & IonTorrent sequence a run of nucleotides at a time: TAAGTCCCA = (T, AA, G, T, CCC, A).
- Unable to determine exact length of a long run: AAAAAA \approx AAAAAAA
- Idea: Ignore run length completely!
- Transform reference and reads by "forgetting": TAAGTCCCA = (T, AA, G, T, CCC, A) \mapsto TAGTCA
- No two adjacent characters are equal.
- Build indexing / hash function on this property.
- Effective alphabet size: 3 instead of 4

Genome Assembly and Overlap Detection

- Illumina: up to $6 \cdot 10^9$ reads
- 3.6 · 10¹⁹ potentially overlapping pairs
- Finding all overlapping read pairs is time-consuming!

Genome Assembly and Overlap Detection

- Illumina: up to $6 \cdot 10^9$ reads
- 3.6 · 10¹⁹ potentially overlapping pairs
- Finding all overlapping read pairs is time-consuming!
- Use specialized hardware:
 - GPGPU (graphics card) programming
 - FPGAs
 - SSDs for fast index access

Problems: data transfer, programming tools

Part 4

Specific Bioinformatics Problems: Case Studies

S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges

Bisulfite Sequencing of CpG Islands (454)

Goal

Determination of methlyation state in CpG islands

454-Technology: Pros and Cons

- relatively long reads
- bisulfite treatment (meth-C \mapsto C, but C \mapsto U=T) works
- errors primiarily run lengths: TTTTTT pprox TTTTTTT
- problem: (close to) 3-letter alphabet, long runs

Read Mapping

In parallel against two genomes: bisulfite-treated, untreated Variant: Shorten runs to one character in genomes and in reads

S

Task: Library Optimization

Goal: Sequencing of CpG islands. Obtain them by restriction enzymes and length selection. In-silico-optimization by simulation:

							Number of			#Fragments	#Fragments	Fragments	CGIs hit
Experiment					Fragment	Length	Distinct	CG	Alu	in MinLength	in MaxLength	in [Min, Max]	by Fragments
Number		Enzym	e Comb	ination	Min	Max	Fragments	Score	Score	-5%to +5%	-5% to +5%	hitting a CGI	in [Min, Max]
0	Msel	Tsp509			613	800	99388	5473	21472	53501	25524	4344	4035
1	Msel	Tsp509	Alul		436	800	99890	15652	16442	44360	3868	10785	9204
2	Msel	Tsp509	Nall		463	800	99529	18384	15019	44658	5808	13264	10778
3	Msel	Tsp509	Bfal		532	800	99980	11400	18664	43833	12026	8349	7416
4	Msel	Tsp509	HpyCH4	L	436	800	99207	18142	12440	43068	4189	12537	10417
5	Msel	Tsp509	Dpul		536	800	99748	11740	11799	44704	13026	8636	7623
6	Msel	Tsp509	Mboll		573	800	99255	9250	20326	48504	17360	7040	6343
7	Msel	Tsp509	Mlyl		588	800	99642	8597	17305	51587	19675	6544	5921
8	Msel	Tsp509	BCCI		574	800	99162	9387	18362	47642	17366	7158	6461
9	Msel	Tsp509	Alul	Nalli	337	800	99463	22451	15126	44353	1364	14368	11217
10	Msel	Tsp509	Alul	Bfal	381	800	99403	17455	17371	45858	2067	11490	9539
11	Msel	Tsp509	Alul	HpyCH4	332	800	99268	19141	14561	47417	1178	11975	9672
12	Msel	Tsp509	Alul	Dpul	378	800	99736	16823	11089	43809	2129	11005	9223
13	Msel	Tsp509	Alul	Mboll	400	800	99865	16930	17280	46676	2655	11283	9479
14	Msel	Tsp509	Alul	Mlyl	412	800	99568	15229	15229	45205	2862	10340	8851
15	Msel	Tsp509	Alul	BCCI	401	800	99173	16790	16466	47211	2362	11203	9450
16	Msel	Tsp509	Nall	Bfal	398	800	99090	22430	16298	40045	2690	15153	11901
17	Msel	Tsp509	Nall	HpyCH4	346	800	99187	25121	9605	45792	1595	16312	12482
18	Msel	Tsp509	Nall	Dpul	402	800	99102	21570	10010	44201	3039	14649	11599
19	Msel	Tsp509	Nalli	Mboll	425	800	99924	20966	16022	43109	3828	14623	11713
20	Msel	Tsp509	Nall	Mlyl	437	800	99464	19648	12975	42603	4127	13774	11134
21	Msel	Tsp509	Nall	BCCI	424	800	99988	21247	15236	43892	3688	14814	11731
22	Msel	Tsp509	Bfal	HpyCH4	372	800	98930	21213	13141	43407	2043	13845	11133
23	Msel	Tsp509	Bfal	Dpul	456	800	99422	15632	10735	40167	5825	10894	9294
24	Msel	Tsp509	Bfal	Mboll	490	800	99888	14261	19726	42657	7703	10075	8700
. Rahmanr	1 Se	quenc	ing T	echnolgo	eis and Bioir	nform	atics Cha	llenge	es				34/41
27	Msel	Tsp509	НруСНи	Dpul	378	800	99084	19885	8165	42925	2093	13052	10639

Many CpG islands on chr X incompletely methylated

	read start	pattern	read start	pattern	read start	pattern	read start	pattern
	149279998	0	73672170	••••	77245759	•••••	48419335	00++++0+0+++++
	68030965		73672170		153339088	000000000	48419335	00000000000000
	152900492	0000	144706855	•0•0000	47402759		118485986	************
	48569581	•000	95826086		73672170		135160359	
	46190993		73672170		90576058		48899399	000000000000000000000000000000000000000
	153397205	00000	100193070	00000000	83328852	•••••••	31194225	•000000000000000
	150096073	000000	12902828	•000••000	152804010	•••••	39564884	000000000000000000000000000000000000000
	48797670		39915562	000000000	47363414		135160359	*****
	153371648		100193070	00000000	83328852	••00000•00	46317798	000000000000000000000000000000000000000
	46190993		39915562	000000000	74060377	0000000000	152528293	
	153371648		100070333	00000000	47267565	00000000000	74659290	000000000000000000000000000000000000000
	30236160	00000	138841328	000000000	133510640	0000000000	124164746	• • • • • • • • • • • • • • • • • • • •
	153371648		68640256		24940182	000000000000	68674716	000000000000000000000000000000000000000
	133965547		150096073	000000000	153176735	000000000000	118416991	***************************************
	67829824		68640256	••000000	133506061	•0••0•0•00000	48977071	***************************************
	108754218		118889079		24940182	000000000000	48977071	***************************************
	200052220		100005057		200052220		405070400	
S	. Rahman	n Seque	ncing Tec	hnolgoeis ar	ıd Bioinfoi	matics Challenge	es	35/41
	130/21/0		102200007		139413333	0000000000000000		· · · · · · · · · · · · · · · · · · ·
	73672170		102205057		39949487	00000000000000000		

miRNA Expression in Neuroblastoma (SOLiD)

SOLiD: short reads (35 bp), ideal for short non-coding RNAs dinucleotide color space

- 1 read mapping
- 2 classification of reads into RNA categories
- **3** quantification of miRNA expression: **normalization method**
- differential expression between neuroblastoma subtypes?
 detection of weak differential expression
- 5 miRNA-Editing?
- 6 discovery of two new miRNAs: now in miRbase

Schulte, ..., SR, Schramm; Nucleic Acids Research, 2010.

Statistical Challenges

 Uneven coverage in genome and transcriptome sequencing: Explain and correct library bias

Statistical Challenges

 Uneven coverage in genome and transcriptome sequencing: Explain and correct library bias

Test for gene / exon / transcript presenceQuantify gene / exon / transcript expression

Statistical Challenges

- Normalization between experiments
- Detection power of differential expression with few samples
- Statistical significance with multiple testing (e.g. exons)
- number of samples $n \ll p$ number of tests

NIVERSITÄT

Statistical Challenges

- Normalization between experiments
- Detection power of differential expression with few samples
- Statistical significance with multiple testing (e.g. exons)
- number of samples $n \ll p$ number of tests
- Solutions:
 - more samples!
 - independent confirmation
 - use external information (gene/protein networks)
 - exploit known dependencies (e.g. regulation)

Challenge: Data Structures for Pangenomes

Situation around 2000

Human genome almost done. Nothing left do do...

Challenge: Data Structures for Pangenomes

Situation around 2000

Human genome almost done. Nothing left do do...

Current "Genome" Projects

- 1000-Genomes-Project (human pangenome): over 3 Tbp sequences
- International Cancer Genome Consortium
- Human Gut Metagenome Initiative (100 bacteria per human cell, gene pool 100x bigger)

Image: M. Gerstenberg Die ZEIT (12/2006)

- $\label{eq:parameters} \begin{array}{l} \mbox{Pangenome} := \mbox{entirety of genetic information of a species} \\ \mbox{Metagenome} := \sim \mbox{of a community} \end{array}$
- S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges

Questions to a pangenome

- What's the genome of the 334-th sequenced person?
- How often and where does the motif TATAAW occur?
- Which variants of the dopamine D2 receptor gene exist?
- Which variables do these variants correlate with?

Questions to a pangenome

- What's the genome of the 334-th sequenced person?
- How often and where does the motif TATAAW occur?
- Which variants of the dopamine D2 receptor gene exist?
- Which variables do these variants correlate with?

Which data structures provide this information?

- lossless sequence representation
- fast search (index based), also approximate
- representation of consensus and variations (e.g., SNPs, CNVs)
- representation of rearrangements, repeats
- generalization ability
- integration of annotation and semantics

Questions to a pangenome

- What's the genome of the 334-th sequenced person?
- How often and where does the motif TATAAW occur?
- Which variants of the dopamine D2 receptor gene exist?
- Which variables do these variants correlate with?

Which data structures provide this information?

- lossless sequence representation
- fast search (index based), also approximate
- representation of consensus and variations (e.g., SNPs, CNVs)
- representation of rearrangements, repeats
- generalization ability
- integration of annotation and semantics

No existing ones!

UNIVERSITÄT

- Use raw data / sequencer state information (instead of common FASTQ files)
 - +: no information loss
 - +: save conversion steps
 - \blacksquare –: too many combinations technology \times application
 - -: technology short-lived

INIVERSITÄT

- Use raw data / sequencer state information (instead of common FASTQ files)
 - +: no information loss
 - +: save conversion steps
 - \blacksquare –: too many combinations technology \times application
 - -: technology short-lived
- **2** New ideas in sequence indexing:
 - direct use of sequencer state information
 - error tolerance

INIVERSITÄT

- Use raw data / sequencer state information (instead of common FASTQ files)
 - +: no information loss
 - +: save conversion steps
 - \blacksquare –: too many combinations technology \times application
 - -: technology short-lived
- **2** New ideas in sequence indexing:
 - direct use of sequencer state information
 - error tolerance
- **3** Special hardware for read mapping: GPGPUs, FPGAs

UNIVERSITÄT

- Use raw data / sequencer state information (instead of common FASTQ files)
 - +: no information loss
 - +: save conversion steps
 - \blacksquare –: too many combinations technology \times application
 - -: technology short-lived
- **2** New ideas in sequence indexing:
 - direct use of sequencer state information
 - error tolerance
- **3** Special hardware for read mapping: GPGPUs, FPGAs
- 4 Statistics:
 - bias correction
 - normalization
 - multiple testing, $n \ll p$

INIVERSITÄT

Summary of Key Challenges

- Use raw data / sequencer state information (instead of common FASTQ files)
 - +: no information loss
 - +: save conversion steps
 - \blacksquare –: too many combinations technology \times application
 - -: technology short-lived
- **2** New ideas in sequence indexing:
 - direct use of sequencer state information
 - error tolerance
- **3** Special hardware for read mapping: GPGPUs, FPGAs
- 4 Statistics:
 - bias correction
 - normalization
 - multiple testing, $n \ll p$
- **5** Data structures for variations / pangenomes

S. Rahmann | Sequencing Technolgoeis and Bioinformatics Challenges