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Abstract. A radii-based evolutionary algorithm is applied in solving a difficult classification problem 
concerning diabetes diagnosis. The algorithm was designed to treat multimodality and has recently 
successfully been applied in the optimization of several multimodal functions. The medical problem to be 
solved is to predict the diagnosis – either diabetic or not – for a set of patients, given some personal and 
medical conditions. Proposed algorithm gives a high accuracy of prediction and thus provides a good 
means of understanding the factors that doctors consider when diagnosing diabetes and a way of checking 
the consistency of decision making. A clear advantage over other computational techniques is that, besides 
the outcome for patients in the test set, the algorithm also provides simple rules that led to that decision. 
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1. Introduction

Evolutionary algorithms are optimization techniques that have been applied, with very promising 
results, to optimization problems, classification, clustering etc. 
In present paper, a recently developed multimodal evolutionary algorithm [13] is applied in 
deciding if, based on the values of eight factors, patients should be tested positive or negative for 
diabetes.
The algorithm uses some part of the data, the training set, in order to learn the most appropriate 
attributes values that made doctors decide whether a patient was ill or not; this way, IF-THEN 
rules are built, having as the condition part the values medically leading to the conclusion part, 
i.e. one of the two possible outcomes. These rules are built in present algorithm in an 
evolutionary manner, that is, they encode chromosomes that are evolved during this training step 
and then applied for the classification of the rest of the data, i.e. the test set. These obtained rules 
are themselves of high importance, as they can also provide the reasoning rules underlying the 
decision-making and not only the results.



The data set comes from the UCI repository of machine learning databases [8]. The diagnosis, 
which is binary-valued, represents whether the patient shows signs of diabetes according to 
World Health Organization criteria (i.e., if the 2 hour post-load plasma glucose was at least 200 
mg/dl at any survey examination or if found during routine medical care).
The algorithm uses the training set to generally establish two rules, one for each class. It 
sometimes detects more than two rules, meaning there is more than one for a class; the accuracy 
for classification in these cases is also good, indicating that in the two classes, there are clusters 
that are formed.
The paper is organized as follows: next section shortly presents the basic ideas underlying 
evolutionary algorithms; section 3 gives a brief description of the framework proposed method 
belongs to and depicts the new algorithm; section 4 shows the diabetes optimization problem and 
its solution, through the means of proposed evolutionary algorithm, is reached in section 5; 
finally, conclusions are reached in last section.

2. Evolutionary Context

In a regular evolutionary algorithm, the solution to the problem to be solved has to be encoded
into a chromosome. More possible solutions (chromosomes) are initially considered; the values 
for the genes of these chromosomes are randomly chosen. Then, by the means of a fitness 
function that measures the quality of the chromosomes (and thus the quality of the solutions) and 
using variations operators, the possible solutions are evolved to better ones and, in the end, to 
reach the optimum. The optimum can be considered as the best chromosome from the last 
generation or the best chromosome from all generations.
The standard variants of evolutionary algorithms are the genetic algorithms [7], the evolution 
strategies [9] and evolutionary programming ([4], [5]).
In multimodal evolutionary algorithms, there are several solutions for the problem considered for 
solving; that means, in the end, not only the best chromosome is of interest, but more 
chromosomes that are connected to other solutions (local optima, for example, in the case of 
function optimization).
There are several techniques for solving multimodal problems, e.g. niching methods, island 
models, coevolution [3]. The algorithm [13] applied in present paper for classification belongs to
the Genetic Chromodynamics (GC) framework [2] and has the advantage of an increased 
convergence speed over the original algorithm of GC, as shown in [13].
GC represents an evolutionary framework designed for solving problems with multiple 
solutions. It has been widely applied in the past for the optimization of multimodal functions, 
text categorization, classification and clustering ([6], [13], [14]). 

3. Genetic Chromodynamics Framework. Elitist Generational Genetic Chromodynamics 
algorithm

GC belongs to the family of radii-based multimodal evolutionary frameworks, as it builds and 
maintains subpopulations connected each to local or global optima of the problem to be solved. 
This is achieved by introducing a set of restrictions such as the way recombination takes place or 
the way selection is applied. For reproduction, a local interaction principle is considered, meaning 
that only chromosomes similar under a given threshold recombine. For selection, each 
chromosome represents a stepping-stone for the forming of the new generation – each 
chromosome is taken into account for reproduction. After crossover takes place, the offspring 
fights for survival with its first parent only, that is the stepping-stone.
GC introduces a new operator that merges very similar chromosomes into a single one that is 
often chosen to be the best one of them with respect to the fitness evaluation. It is a very useful 



operator as it leads to a better computational time, obtained by reducing the size of the 
population, thus meaning less fitness evaluations.
It is important to note that, firstly, the merging operator saves evaluations only where they most 
likely will not make sense because chromosomes are very near to each other. Secondly, it can be 
used to decrease the population size in a meaningful way, so that in present example only two 
rules remain (which is what it is desired, since there are two classes of diagnosis). Without 
merging, the algorithm would end up with a lot of rules.
The elitist generational genetic chromodynamics framework (EGGC) algorithm applied in present 
paper achieves an even higher speed up in convergence by changing the way the offspring enters 
the population and the way selection for reproduction is carried out.
The EGGC algorithm is outlined below.

Algorithm 1.  EGGC algorithm used for Diabetes Diagnosis

 t = 0;
 The initial population P(t) is randomly chosen;
 Repeat

o Evaluate each chromosome;
o For i = 1 to n do

 Randomly choose a chromosome c from the current population;
 If there are chromosomes in the mating region of c:

 Use proportional selection to choose a chromosome for crossover;
 Crossover takes place and a descendant is obtained;
 The descendant replaces the worst chromosome in its own mating 

region with respect to the fitness function provided the descendant is 
better.

 Else, if there are no chromosomes in the mating region of c, mutation is 
applied to c. The descendant replaces the parent chromosome only if it is 
better.

o Merging is applied to all chromosomes;
o t = t + 1;

 Until (stop condition)

In the initialization of the population, a number n of chromosomes are considered – the values for 
genes are randomly taken from their intervals. Evaluation of a chromosome is done by measuring 
its quality; the quality (or fitness) evaluation is differently defined for each problem. 
The distance between two chromosomes is computed. Let a chromosome c be considered: the 
distance between c and all the other chromosomes in the population is computed. The mating 
region of c contains all chromosomes that are at a distance from c of less than a given threshold 
that represents the mating radius.
Usually, crossover is considered to take place only between pairs of two chromosomes and one 
offspring is obtained from two parents. The offspring fights to enter the current generation with 
the chromosomes in its personal mating region. Mutation causes only minor perturbation to a 
chromosome. 
The stop condition can refer to a given number of generations (size of t) or to the case when there 
is not any major improvement achieved after many generations, as in present paper.

4. Diabetes Diagnosis Problem



The Diabetes data set was given to the UCI repository by the Johns Hopkins University. Prior to 
that, the university selected cases from a larger database owned by the National Institute of 
Diabetes and Digestive and Kidney Diseases to create it.
All patients in the dataset are females of at least 21 years old, of Pima Indian heritage, living near 
Phoenix, Arizona, USA. There are eight attributes (either discrete or continuous) containing 
personal data, e.g., age, number of pregnancies, and medical data, e.g., blood pressure, body mass 
index, result of glucose tolerance test etc (see Table 1). 

No. Attribute Interval
1 Number of times pregnant 0…5

2
Plasma glucose concentration in an oral 
glucose tolerance test

0…199

3 Diastolic blood pressure 0…122
4 Triceps skin fold thickness 0…99
5 2-Hour serum insulin 0…846
6 Body mass index 0…67
7 Diabetes pedigree function 0.078…2.42
8 Age 21…81

Table 1. Attributes and their corresponding ranges in Pima Diabetes problem

The last attribute is a discrete one and it offers the diagnosis, which is either 0 (negative) or 1 
(positive). 34.9% of the patients in the dataset are assigned diabetes positive. The total number of 
cases is 768. The data is complete, according to its documentation; however, there are some 0 
values of attributes that were not reported as missing data, but look a bit strange. No replacement 
or deletion of these values was undertaken in present paper. Some brief statistical analysis is 
presented in Table 2.

Attribute 
No.

Mean Standard deviation

1 3.8 3.4
2 120.9 32.0
3 69.1 19.4
4 20.5 16.0
5 79.8 115.2
6 32.0 7.9
7 0.5 0.3
8 33.2 11.8

Table 2. Statistical analysis of attribute values in Pima Diabetes problem

5. Diabetes Diagnosis Problem approached by Evolutionary Computation

Each chromosome will encode an IF-THEN rule. A chromosome contains therefore nine genes, 
one for each attribute; first eight genes are real valued while the last is a binary one and it gives 
the output of the chromosome (diagnosis of the patient encoded).



First, n chromosomes are randomly generated with genes taking values from the intervals 
presented in Table 1. These chromosomes form the initial population. The quality of these 
chromosomes is next measured. 

5.1 Fitness evaluation

Patients from the database are considered as being vectors of values for the nine attributes, in 
conclusion, they are further on represented in the same way chromosomes are. The distance 
between two chromosomes refers to the first eight attributes only; as the values for the eight 
attributes belong to different intervals, the distance measure has to refer to the bounds of the 
intervals. Having a chromosome c = (c1, c2, …, c8, c9) and a patient from the training set p = (p1, 
p2, …, p8, p9), the distance between c and p is computed by

d(c, p) = 
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1

||

i ii

ii
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where ai and bi represent the lower and upper bounds of the i-th attribute.
When measuring the quality of a chromosome from the current population, one has to refer to all 
patients in the training set that have the same outcome as it does. The distance between the 
chromosome to be evaluated and all patients from the training set that have the same outcome as 
the chromosome has to be minimized in order to achieve good chromosomes (rules) for an 
outcome. In conclusion, a rule is good if its values for the nine attributes very much suit the 
values for the attributes patients with same outcome from the training set have.

5.2 Application of rules on the test set

The EGGC technique, as presented in Algorithm 1, is applied then and rules are evolved. Mating 
and merging take into consideration only chromosomes with same outcomes. Convex crossover 
and mutation with normal perturbation are used.
Usually, two rules are obtained, one for each outcome. The rules are then applied to the test set. 
For each patient from the test set, the distance between it and each of the resulted rules is 
computed as in (1). The outcome for the patient is concluded to be the same with the outcome of 
the rule that has the lowest value for the distance between it and the patient. The outcome is 
considered to be correct only if it is the same the patient already had assigned for real in the data 
set.

5.3. Obtained rules

The rules that are obtained within a run of proposed algorithm are approximately the following:

- IF number of times pregnant = 2 AND plasma glucose concentration = 106.85 AND diastolic 
blood pressure = 69.99 AND triceps skin fold thickness = 21.32 AND 2-Hour serum insulin = 
42.97 AND body mass index =  29.99 AND diabetes pedigree function = 0.34 AND age = 27 
THEN healthy

- IF number of times pregnant = 4 AND plasma glucose concentration = 137.92 AND diastolic 
blood pressure = 72.02 AND triceps skin fold thickness = 27.60 AND 2-Hour serum insulin = 
27.88 AND body mass index = 34.19 AND diabetes pedigree function = 0.47 AND age = 35 
THEN ill



5.4 Experimental results

The values used for the parameters of the evolutionary algorithm are given below in Table 3.

Number of 
chromosomes

Mutation 
probability

Mating 
region

Merging 
radius

Mutation 
strength

No 
improvement 

times
100 0.4 0.3 0.03 difi / 100 10

Table 3. Parameters of the EGGC algorithm

In previous table, difi denotes the difference between the bounds of the interval corresponding to 
attribute i. 

Three ways of choosing the training and test sets were considered. Each time, the two sets were 
disjoint and there was a correspondence of 75% training - 25% test cases, as established in [8] 
with respect to the diabetes task.

The first way of splitting the data set was cross-validation. The first 75% of the cases made the 
training set and the last 25% composed the test set. 
The second way was performed according to the best rules that should be used for the diabetes 
problem, as established in [8] and called the sequential manner of splitting.  The data set is 
sequentially split into 75% training - 25% test cases in such a way that there result four different 
combinations of these two sets:

 first 75% of the cases for training and last 25% for test
 reversely, first 25% data for test and last 75% for training
 first 50% data for training, next 25% for test and last 25\% for training, as well
 first 25% data for training , next 25% for test and last 50% for training, as well

The third way was random cross-validation. The cases that went into training and test, 
respectively, were chosen randomly. 

The algorithm was applied for 100 runs in all three cases. The results range from 69.5% to 75% 
accuracy and are given in Table 4. However, in many tests, it was noticed that when the 
chromosome pool still has four chromosomes left and has not converged yet, a higher accuracy of 
80% is obtained. There are actually two rules for each of the two classes and that means there are 
two subclusters of patient patterns inside the two clusters defined by the presence or absence of 
diabetes. 

Obtained results have been compared to others reported by literature, with respect to the Diabetes 
Diagnosis problem. Accuracies obtained by other techniques, namely artificial neural networks or 
one method closer to evolutionary algorithms, i.e. hybridization of evolutionary computation 
again with neural networks, range between 62% and 80.7%. 

Below, a comparison with such methods that specify exactly the values of variables of the testing 
environment is reached. Such variables include size of training/test, method of choosing these 
sets, replacement or deleting of missing data, number of runs of the algorithm. Although neither 
affirmed nor denied, it is supposed authors did not operate on the 0 values of the data set. It is 
mentioned however that they did not delete any of the tuples containing missing data. Whenever 
not specified, the number of runs is presumed to be ten.



In [10] a neural network algorithm to forecast the onset of diabetes mellitus was used. From the 
768 samples, an equal number of 170 samples were selected randomly to represent each of the 
two possible results of diabetes test: positive and negative. The remaining 428 were used as 
validating samples. The mean of five runs of the best neural configuration was 75.12%.

In [1], a total of 30% of the records were randomly selected as test set. Rules were mined from 
the remaining 70% of the data. The algorithm was applied ten times. If the authors were to define 
a baseline accuracy to mean the accuracy obtained by simply assigning the most frequently 
occurring values to the attributes being predicted, it is 65.1%.

One approach our results can be directly compared to is ([11], [12]). Using a neural networks 
heuristic, 75% training - 25% test cases, the rules established by Prechelt for choosing 
training/test sets, 100 trials and no replacement or deletion of missing data, just as in the present 
algorithm, the mean accuracy was obtained as 65.55%.

Another approach to which an objective comparison of results can be achieved is [15]. A new 
evolutionary system to evolve artificial neural networks was proposed, cross-validation was used 
and 30 runs of the algorithm were conducted and again no replacement or deletion of missing 
data was done. The obtained mean accuracy on the test set was of 77.6%. As the issue of best 
results produced is concerned, the evolved artificial neural network obtained an accuracy of 
80.7%.

A comparison with the results the original algorithm of GC obtains was not performed, as it had 
been shown that the modified algorithm converges faster to the same optima a problem has [13].

Table 4 shortly depicts the comparison with the last two other results discussed above.

Algorithm
Number of 

runs
Accuracy 

(%)
EGGC with cross-validation 100 75

EGGC with sequential splitting 100 69.67
EGGC with random cross-validation 100 69.5
EGGC best accuracy instead of last 100 80

Neural Network with sequential splitting 100 65.5
Evolved Neural Network with cross-validation 30 77.6

Evolved Neural Network with cross-validation - best result 
within specified number of runs

30 80.7

Table 3. Results of different techniques for the Diabetes Diagnosis Problem in 
comparison to EGGC

Although the accuracy of present algorithm is comparable to that of other techniques, proposed 
algorithm has a clear advantage over the others as it also provides the means to understand, not 
only to achieve, the decision-making. This is not the case with artificial neural networks. Present 
algorithm is thus as good as the best-known approaches and additionally provides simple rules 
that underlie the medical decision process.

6. Conclusions and future work



A multimodal evolutionary algorithm has been applied to the problem of diabetes diagnosis. The 
data came from the UCI repository of machine learning databases and originally belonged to 
Johns Hopkins University. 
The application correctly classified up to 80% of the cases. Perhaps a better understanding and
analysis of the Diabetes data set might improve accuracy. Also, another distance measure or other 
issues lying at the border of evolutionary computation and classification of diabetes cases might 
give better results. And maybe a training - validation - testing procedure, as common in genetic 
programming, might lead to significant improvement. Another thing that we may investigate in 
the future is the question whether the clustering is over-determined by the eight attributes given. 
Maybe one or two of the attributes only add noise because they do not really have an influence on 
the decision. Therefore, a sort of 'incomplete' rule (leaving out some attributes) may achieve even 
better than 75 or 80%.
Nevertherless, even as it is now, proposed application achieves the goals that were set, those of 
creating a means of understanding and supporting medical decision making in the question of 
diabetes diagnosis.
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