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Abstract Population based evolutionary algorithms (EA) are frequently used to
optimize on multimodal functions. A common assumption is that dur-
ing search several sub-populations might coexist in different attraction
regions of the search space. Practical experience and takeover–time
considerations suggest that this is not true in general. We therefore an-
alyze the stability of sub-populations within a simplified EA on a two-
attractor model, focussing on two extreme cases: (1) Function values of
both local minima are exactly the same and (2) function values on the
first attractor are always better than on the second. Realistic scenarios
for bimodal optimization are assumed to be located in between these
two extremes, such that upper and lower bounds for extinction times
can be estimated, e. g. by Markov chain analysis and empirical stud-
ies. The obtained results provide new insights into the effect of (µ+, λ)
selection on the stability of sub-populations and the effect of genetic
drift. Moreover, the effect of idealized niching on the same scenarios
is investigated, leading to an immense increase of the EA’s ability to
perform concurrent search.

1. Introduction

EA are preferable tools for optimization on multimodal functions. It
has often been assumed that the strength of EA stems from the ability to
search concurrently in different high performance regions of the search
space. Contrary to this, experimental results on multimodal function
optimization suggest that EA using the panmictic (µ+, λ) selection tend
to rapidly concentrate on a single attractor, even if all optima have
the same size and function values. It seems impossible to maintain
individuals in different regions at the same time, without employing
niching techniques.
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In this paper we trace back the effect of extinction on neutral land-
scapes to random genetic drift dynamics, which can be observed in a
simplified scenario. Though, dealing with an theoretical issue, the paper
provides valuable insights for the practitioner on how to design niching
techniques, when searching on multimodal landscapes.

The paper is structured as follows: First, we demonstrate the effect
on a simple test-case (2-sphere model) (Sect. 2). Second, we ascribe
extinction to random genetic drift dynamics that can be reproduced
and analyzed with a simple Markov model which is set up and analyzed
in Sect. 3. Based on the theoretical observation we motivate a design
principle for niching techniques and demonstrate its benefit on the test
case (Sect. 4).

2. Population dynamics on a bimodal test-case

As an example, the extinction of sub-populations has been observed
for the minimization of a simple two-sphere problem
f(x) = min((x1 − 1)2 + x2

2, (x1 + 1)2 + x2
2) (cf. Figure 2.1).

Algorithm 1 describes the (µ+, λ)-EA [2] that will be studied in this pa-
per. Let I define the individual space. Each individual a ∈ I consists of
information on its position in the search space and its objective function
value. Furthermore, let Pt ∈ I

µ, Qt ∈ I
λ and Mt ∈ I

ν denote multisets of
individuals (or populations) with ν = µ + λ for the (µ + λ) selection and
ν = λ for the (µ, λ) selection. Pt will be termed the parent populations,
while Qt will be termed the offspring population for t = 0, . . . , tmax. The

Algorithm 1

t← 0
Pt ← init() /* Initialize population Pt ∈ I

µ*/
while t < tmax do

Qt ← gen(Pt) /* Generate Qt ∈ I
λ by variation operators */

Mt ←

{
Qt for (µ, λ) selection
Qt ∪ Pt for (µ + λ) selection

Pt+1 ← sel(Mt) /* Select µ best individuals from Mt for Pt+1 */
t← t + 1

end while

EA starts with initializing the population of parents Pt in the individual
space I. Then the following procedure is repeated while the genera-
tion counter does not exceed a user defined maximum tmax: Generate a
multiset of λ offspring by means of variation operators (usually recom-
bination and mutation), then select the best µ individuals out of Mt.
Here Mt = Qt in case of (µ, λ) selection and Mt = Qt ∪ Pt in case of
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Figure 2.1. Two-sphere model: Crosses mark starting points for the EA.
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Figure 2.2. Extinction times (left) and probabilities (right) for a (µ + 7µ)-ES with
Gaussian mutation on the two sphere model (with 2 dimensions) averaged from 5000
runs.

(µ + λ) selection. Finally increase the generation counter and jump to
the beginning of the loop.

We make the convention that in case of equal objective function values
for Mt, sel(Mt) draws randomly k individuals out of the Mt individuals,
without choosing one of the individuals twice and without preferring
offspring individuals in case of (µ + λ) selection.

Figure 2.2 shows the average extinction time and probabilities for the
(µ+λ)-EA. It can be observed that the takeover probability of one sub-
population grows proportionally with its ratio in the initial population.

3. Markov Model for the Extinction Dynamics

Imagine an objective function (for minimization) with two large local
optimal regions with equal or slightly different optimal function values.
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Figure 3.3. Schematic draw of the instantiations of the two-attractor model. The
left figure describes the case with equal function values in both attractor basins and
the right figure describes the case of better function values for the black individuals
than that for the white individuals.

In between these plateaus there is a large barrier with extremely high
function values (Fig. 3.3), such that it is very improbable that an indi-
vidual from one area crosses the barrier by a single mutation. This is
similar to the case that the optimization has reached the bottom of two
equal or similar local optima of a bimodal function with flat bottoms.

In order to simulate the dynamics of the (µ+, λ)-EA on such a system,
let us define the following rules of the game:

For a population Pt at a time t let black(Pt) define the number of
individuals on the first attractor (we will call them black individuals).
Accordingly, µ− black(Pt) individuals are located on the second attrac-
tor (we call them white individuals). Furthermore, let us assume that
all individuals on an attractor have the same function value. Individu-
als cannot move from one attractor to another attractor or leave their
attractor by means of mutation. Hence, the reduced mutation operator
simply results in a copy of the individual.

Assuming an initial population with a specified number of black indi-
viduals, we are now interested in the dynamics of the simplified EA for
the case that (1) the function value for both plateaus is equal and (2)
the function value for the plateau that contains the black individuals is
better than the function value on the plateau that contains the white
individuals. Markov chain analysis can be a powerful tool for under-
standing simple models of evolution [3, 5]. Next, we provide the reader
with the derived Markov chain model.

3.1 Deriving the Transition Probabilities

Let k denote the number of black individuals in the initial population.
Then we are interested in the probability pj(k) for j black individuals
in the subsequent population. This can be obtained by dividing the EA
into two steps - the generation of individuals and the selection of Pt+1.
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A possible generational transition could be described as

Pt = {•, . . . , •
︸ ︷︷ ︸

k

, ◦, . . . , ◦
︸ ︷︷ ︸

µ−k

}
−→

generate Qt = {•, . . . , •
︸ ︷︷ ︸

l

, ◦, . . . , ◦
︸ ︷︷ ︸

λ−l

} (3.1)

−→
replace Pt+1 = {•, . . . , •

︸ ︷︷ ︸

j

, ◦, . . . , ◦
︸ ︷︷ ︸

µ−j

} (3.2)

Then the transition matrix of the whole evolution step reads:

P := (pk,j)k∈{0,...,µ},j∈{0,...,µ} , (3.3)

with

pk,j =
λ∑

l=0

p
gen
l (k) · psel

j (l, k) . (3.4)

Here p
gen
l (k) describes the transition probabilities of the procedure gen(Pt)

p
gen
l (k) = Pr(black(Qt) = l|black(Pt) = k) (3.5)

and psel
j (l, k) describes the transition probabilities for the procedure

sel(Mt)

psel
j (l, k) = Pr(black(Pt+1) = j|black(Pt) = k ∧ black(Qt) = l) . (3.6)

The transition probabilities p
gen
l (k) for the generate function are the

same for all selection schemes studied here:

p
gen
l (k) =

(
k

µ

)l

·

(
µ− k

µ

)λ−l

·

(
λ

l

)

. (3.7)

Table 3.1 shows the transition probabilities that are instantiated for
different selection methods and assumptions about the function values
on the two attractors.

3.2 Markov Chain Analysis

Now, we can apply Markov chain analysis [7] in order to analyze the
dynamics of the system. Recall from probability theory, for t > 0 and
any given state vector pt we can calculate the probability distribution
for the resulting subsequent state j by means of pt+1 = P·pt . The limit
value for pt as t → ∞ can be obtained by means of the fundamental
matrix:

The Markov process of the two-attractor model has absorbing bound-
aries k = 0 and k = µ. If one of the absorbing states has been reached the
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Table 3.1. Selection probabilities psel
j (l, k) (I is the indicator function)

selection method equal function values black better than white

(µ + λ)
(k+l

j )·(µ+λ−k−l
µ−j )

(µ+λ

µ )
I(j = min(µ, k + l))

(µ, λ)
(l

j)·(
λ−l
µ−j)

(µ+λ
µ )

I(j = min(µ, l))

system remains stable. The absorption probabilities and mean absorp-
tion times correspond to the extinction probabilities and mean extinction
times. Both can be derived from the transition matrix P and the initial
state k0. First, let us partition the transition matrix as follows:

P =














1 0 . . . 0 . . . 0 0
a1,1 c1,1 . . . c1,j . . . c1,µ−1 a1,2

...
...

...
...

...
ak,1 ck,1 . . . ck,j . . . ck,µ−1 ak,2

...
...

...
...

...
aµ−1,1 cµ−1,1 . . . cµ−1,j . . . cµ−1,µ−1 aµ−1,2

0 0 . . . 0 . . . 0 1














. (3.8)

Now, the fundamental matrix T of the transition matrix P reads:

T := (I−C)−1 , (3.9)

and from Markov chain theory ([7], Chap. 3) an expression for the
extinction of black individuals , i. e. for reaching the absorbing state
k = 0, can be derived as

pE(k0) =

µ−1
∑

i=1

ai,1tk0,i, k0 = 1, . . . , µ− 1 (3.10)

It is also known that ti,j of T equals the mean number of iterations that
the system is in state i when starting in state j before absorption takes
place. Thus

E(k0, µ) =

µ−1
∑

i=1

tk0,i, k0 = 1, . . . , µ− 1 (3.11)
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is the mean absorption time, or - translated to our model - the aver-
age time that two species in the evolutionary system can coexists when
working with the generational transition described by P and starting
with k individuals.

4. Analysis of Selection Mechanisms

Now, we can use the Markov chain techniques proposed in the previous
section to determine some characteristics of selection mechanisms on the
two-attractor model. We start with the case of equal fitness.
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Figure 4.4. Expected extinction times (EET) and probabilities (PE) obtained by
Markov theory. Upper left: EET (µ + 7µ)-EA, Upper right: PE (µ + 7µ)-EA, Lower
left: EET (µ + 1)-EA, Lower right: EET (µ + µ)-EA.

Figure 4.4 shows the mean EET and PE for some frequently used EA
strategies. The figure reveals that the extinction times increase linearly
with a growing µ if λ and k are set as a constant proportion of µ. Note,
that the extinction times are measured in generations. In the case of
(µ+7µ) selection and µ = 40, k = 20 this means that one population dies
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out on average after 53 generations or about 15, 000 offspring. Contrary
to this, for the (µ + 1) selection and the same settings for µ and k only
550 offspring are generated until one population dies out.

In addition to the mean extinction time we are interested in the proba-
bility of extinction for one population. As a closer look at the underlying
data of the upper right diagram in Fig. 4.4 reveals, the extinction prob-
ability could be quantified by k

µ
. This is an astonishing simple formula

and especially independent from λ.
Investigating the model of equal function values gives fundamental

insights into the behavior of EA on a bimodal fitness landscape. But
it is assumed that a real EA will produce different offspring on a two-
attractor landscape. Therefore, we study the two sphere model depicted
in Fig. 2.1 as a more realistic case.

For this function, a Markov chain analysis can not be applied any
more. Hence, we obtain the results presented in Fig. 2.2 by a monte
carlo simulation with a real EA. In order to prevent an acceleration
of the extinction process cause by recombination, the EA shall only
apply a variation operator that works with the mutation operator only.
The mutation operator adds a normal distributed random variate to the
object variables. The small value of the mutation step size assures that
no individual is produced that jumps from one attractor to the other.

The results show that due to the stochastic mutation the extinction
times are smaller than in the former model. This is an expected result
because this scenario is lying in between the two models of equal and dif-
ferent function values. In contrast to this, the probabilities of extinction
are the same.

Our investigations show that a species can die out quickly even if it has
equal function values as the other species. To guarantee the survival of
a fitter species and to prevent the extinction of sub-populations located
on equally shaped attractors one could use several techniques. One of it
is niching [4, 6, 8]. Some of the former experiments were repeated with a
simple niching technique: Attraction areas to which individuals belong
are identified by some clustering approach (cf. [9]) and we generate the
same number of offspring individuals. In contrast to many other nich-
ing techniques, the suggested selection process is panmictic (alternative
selection schemes are presented in [1, Sect. C2]). It was observed that
using this kind of simple niching, the sub-populations were able to co-
exist for a very much longer time (Table 4.2), even for the more realistic
example of the 2-sphere function. Hence, the results in this paper affirm
that for optimization on multimodal landscapes niching is a preferable
technique to avoid the loss of information gained by sub-populations [9],
even in the presence of equality.
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Table 4.2. Illustrative cases for extinction times and probabilities.

Strategy Model Niching k Simulation Method E(t) pE

(16,112) boolean - 1 Markov 2.0 7 ·10−4

(16,112) neutral - 1 Markov 6.7 0.94
(16,112) neutral x 1 Markov 1.1 ·105 0.5
(16,112) boolean x 1 Markov 1.0 0
(4,28) neutral x 1 Markov 10.2 0.5
(50+1) boolean - 1 Markov 224.0 0
(16,112) two-sphere x 1 Experiment 9.8 ·104 0.48
(16+112) two-sphere x 1 Experiment > 106 0.52

The results for some selected test cases are shown in Table 4.2. It
contains the mean extinction times as well as the extinction proba-
bilities. The cases were chosen because they reflect some frequently
observed situations and provide the reader with some borderline cases.
The mean extinction time shows the number of reproduction cycles both
sub-populations survive. In contrast to this pE measures the probabil-
ity that the species with the black individuals die out. Some remarks
need to be spend on the results of the (16+112)-ES on the two-sphere
model. Due to time limitations the runs were limited to 107 generations.
Until then, in only 15% of all runs one population died out. On aver-
age, a single run lasts longer than 106 generations. In the case that one
population died out, the black sub-population was eliminated in 52%.

5. Conclusions

By means of this paper a better understanding of the extinction pro-
cess on multimodal landscapes has been achieved. In detail our investi-
gations give evidence for the following conjectures:

– For (µ +, 7µ)-EA and the equal fitness model the extinction time
grows linearly with µ. Thus, even in the best-case scenario the co-
existence of populations will not occur for a long time. This result
can be interpreted also in a way that mating restrictions alone
will not suffice to prevent sub-populations from extinction. This is
because in the studies on the simplified model, the recombination
has been ommitted and thus it cannot accelerate the extinction of
species.

– For different function values and comma selection it was observed
that better individuals survive with probability near 1. Hence,
the effect of random genetic drift unlikely biases the direction of
evolution, if fitness values are clearly different.
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– The extinction time for a (µ + 1)-EA are long even in the case
of equal function values. However, if we regard the number of
function evaluations as a criterion for the extinction time, propor-
tions change and the mean extinction time for the (µ + 1)-EA is
significant smaller than that for, e.g., the (µ + 7µ)-EA.

– The extinction time is increased substantially by using the sug-
gested niching technique.

In this paper only the bimodal case has been considered. However, we
conjecture that similar results can be obtained for landscapes with more
than two attractors. Future research will have to clarify this point.
Furthermore, the effect of the recombination operator deserves further
attention.
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