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Abstract

Evolutionary support vector machines (ESVMs) are a
novel technique that assimilates the learning engine of the
state-of-the-art support vector machines (SVMs) but evolves
the coefficients of the decision function by means of evo-
lutionary algorithms (EAs). The new method has accom-
plished the purpose for which it has been initially devel-
oped, that of a simpler alternative to the canonical SVM
approach for solving the optimization component of train-
ing. ESVMs, as SVMs, are natural tools for primary ap-
plication to classification. However, since the latter had
been further on extended to also handle regression, it is the
scope of this paper to present the corresponding evolution-
ary paradigm. In particular, we consider the hybridization
with the classical ε-support vector regression (ε-SVR) in-
troduced by Vapnik and the subsequent evolution of the co-
efficients of the regression hyperplane. ε-evolutionary sup-
port regression (ε-ESVR) is validated on the Boston housing
benchmark problem and the obtained results demonstrate
the promise of ESVMs also as concerns regression.

1. Introduction

This paper represents the first attempt of the novel evo-
lutionary support vector machines (ESVMs) learning tech-
nique to tackle regression.

ESVMs [11], [12], [13] represent the paradigm that
emerged from the hybridization between support vector ma-
chines (SVMs) and evolutionary algorithms (EAs). The
reason for their development has come to meet the idea

of an easier approach for the optimization problem within
the canonical counterpart. While the latter then employs
the quite difficult generalization of the Lagrange multipli-
ers method, the new ESVMs evolve the coefficients of the
decision function and, in addition, obtain their values in a
direct and interactive means.

As SVMs had been initially designed for classification
purposes and later conversed for regression tasks, the evo-
lutionary alias technique has followed the same route.

The aim of this paper is therefore to also extend the ap-
plication of ESVMs to the regression field and to demon-
strate that they remain as competitive as they have a priori
proved to be for the classification domain [11], [12], [13].

The novel ESVMs for regression will incorporate the
classical ε-support vector regression (ε-SVR) learning en-
gine [14] while regression coefficients will be consequently
evolved by an EA.

The paper is organized as follows. Section 2 introduces
the concepts specific to canonical SVMs for regression. The
choice and construction of either a linear or a nonlinear
SVM regression model is explained in the different sub-
sections. The novel ESVMs for regression are presented
in Section 3: the components of the EA are described and
the way to compute the prediction capacity of the obtained
regression model is explained. In addition, a reconsidered
version of the EA, which confers a simpler and more ef-
fective representation from an evolutionary point of view, is
undertaken. Section 4 contains the experiment of the new
technique against the Boston housing task. Experimental
setup and parameter setting are outlined and the obtained
results are illustrated. Also, the comparison to those of the
canonical approach and a simple linear regression model on
the same problem is undertaken. In the final section conclu-



sions are reached and ideas for future work are discussed.

2. An Overview of Support Vector Machines
for Regression

Let it be given a training set {(xi, yi)}i=1,2,...,m, where
every xi ∈ Rn represents a data sample and each yi ∈ R
a target. Such a data set could represent exchange rates
of a currency measured in subsequent days together with
econometric attributes [9] or a medical indicator registered
in multiple patients along with personal and medical infor-
mation [1].

The task of ε-SVR [14] is to find a function f(x) that
has at most ε deviation from the actual targets of data sam-
ples and, simultaneously, is as flat as possible [9]. In other
words, the aim is to estimate the regression coefficients of
f(x) with these requirements.

While the former condition for ε-SVR is straightforward,
i.e. errors are allowed as long as they are less than ε, the lat-
ter one needs some further explanation [8]. Resulting val-
ues of the regression coefficients may affect the model in
the sense that it fits current training data but has low gen-
eralization ability, which would contradict the principle of
Structural Risk Minimization for SVMs [15]. In order to
avoid this situation, it is required to choose the flattest func-
tion in the definition space.

Another way to interpret ε-SVR is that training data are
constrained to lie on a hyperplane that allows for some error
and, at the same time, has high generalization ability.

2.1. Linear Support Vector Machines for
Regression

Suppose a linear regression model can fit the training
data. Consequently, function f has the form:

f(x) = 〈w, x〉 − b, (1)

where w ∈ Rn is the slope of the regression hyperplane and
b ∈ R is the intercept, i.e. the point at which the surface
intersects the y-axis.

The task of ε-SVR is then mathematically translated as
follows. On the one hand, the condition that f approximates
training data with ε precision is written as:

|yi − (〈w, xi〉 − b)| ≤ ε, i = 1, 2, ...,m. (2)

or, alternatively, as:{
yi − 〈w, xi〉 + b ≤ ε

〈w, xi〉 − b − yi ≤ ε
, i = 1, 2, ...,m (3)

On the other hand, flattest function means smallest slope,
i.e. w, which leads to condition:

minimize ‖w‖2 (4)

Summing up, the optimization problem that is reached in
the case of linear ε-SVR is stated as:




find w and b as to minimize ‖w‖2

subject to

{
yi − 〈w, xi〉 + b ≤ ε

〈w, xi〉 − b − yi ≤ ε.
, i = 1, 2, ...,m

(5)

2.2. Linear Support Vector Machines for
Regression with Indicators for Errors

It may happen that the linear function f is not able to fit
all training data and consequently ε-SVR will also allow for
some errors, analogously to the corresponding situation in
SVMs for classification [3], [6].

Therefore, the positive slack variables ξi and ξ∗i , both
attached to each sample, are introduced into the condition
for approximation of training data:

{
yi − 〈w, xi〉 + b ≤ ε + ξi,

〈w, xi〉 − b − yi ≤ ε + ξ∗i .
, i = 1, 2, ...,m (6)

Simultaneously, the sum of these indicators for errors is
minimized:

C

m∑
i=1

(ξi + ξ∗i ), (7)

where C is a parameter which denotes the penalty for errors.
Adding up, the optimization problem in the case of linear

ε-SVR with indicators for errors is written as:




find w and b as to minimize ‖w‖2 + C
∑m

i=1(ξi + ξ∗i )

subject to




yi − 〈w, xi〉 + b ≤ ε + ξi

〈w, xi〉 − b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

, i = 1, 2, ...,m

(8)

2.3. Nonlinear Support Vector Machines for
Regression

If a linear function is not at all able to fit training data, a
nonlinear function has to be chosen. The procedure follows
the same steps as in SVMs for classification [4]. Data is
mapped via a nonlinear function into a high enough dimen-
sional space and linearly modelled there as in the previous
subsection. This corresponds to a nonlinear regression hy-
perplane in the initial space.



Hence, data samples are mapped into some Euclidean
space, H, through a mapping Φ : Rn �→ H . Therefore, the
equation of the regression hyperplane in H is stated as:

〈Φ(w),Φ(xi)〉 − b = 0 (9)

where Φ(w) is the slope of the hyperplane.
Also, the squared norm:

‖w‖2 = 〈w,w〉 (10)

changes to:
〈Φ(w),Φ(w)〉. (11)

The appointment of a function Φ with the required prop-
erties is nevertheless not a straightforward task to perform.
However, as in the training algorithm vectors appear only as
part of dot products, if there were a kernel function K such
that:

K(x, y) = 〈Φ(x),Φ(y)〉 (12)

where x, y ∈ Rn, one would use K in the training algorithm
and would never need to explicitly even know what Φ is.

The kernel functions that meet (12) are given by Mer-
cer’s theorem from functional analysis [2]. Still, it may not
be easy to check whether the condition is satisfied for every
new kernel. There are, however, a couple of classical ker-
nels that had been demonstrated to meet Mercer’s condition
[2]:

• Polynomial classifier of degree p: K(x, y) = 〈x, y〉p

• Radial basis function classifier of parameter σ:

K(x, y) = e
‖x−y‖2

σ

To conclude, the linear regression in H (which corre-
sponds to the nonlinear regression in the initial space) leads
to the optimization problem in:




find w and b as to minimize K(w,w) + C
∑m

i=1(ξi + ξ∗i )

subject to




yi − K(w, xi) + b ≤ ε + ξi

K(w, xi) − b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

, i = 1, 2, ...,m

(13)

3. Evolutionary Support Vector Machines for
Regression

Canonical ε-SVR solves either optimization problem
that we earlier arrived at through the generalized form of the
method of Lagrange multipliers that is typical to any SVM.
As previously in ESVMs for classification [13], where the

solving of the optimization problem within SVMs was con-
ducted by means of a canonical EA [5], ε-evolutionary sup-
port vector regression (ε-ESVR) makes use of an EA as
well, this time with the aim of finding the optimal estimated
regression coefficients [10].

Again, contrarily to ε-SVR, where the mathematics of
the method is both complicated and not always able to state
the values of w and b in a straight way (and various mecha-
nisms to appoint the target of test data samples are used in-
stead), in ε-ESVR the coefficients are determined in a sim-
ple and direct fashion.

3.1. The Evolutionary Algorithm

Training follows the same steps as in canonical ε-SVR.
For the sake of generality, the employed EA solves the last
optimization problem that was reached, because previously
defined cases (5) and (8) are particular situations of equa-
tion (13). The components of the EA to solve the inherent
optimization problem were experimentally chosen as in the
following subsections.

3.1.1 Representation of Individuals

An individual c encodes the regression coefficients together
with the indicators for errors of regression (included for rea-
sons of reference in the EA formulation of the optimization
problem), i.e. w, b, ξ and ξ∗:

c = (w1, ..., wn, b, ξ1, ...., ξm, ξ∗1 , ..., ξ∗m) (14)

The best individual from all generations will give the opti-
mal estimated values for w and b.

3.1.2 Initial Population

Individuals are randomly generated following a uniform
distribution, such that wi ∈ [−1, 1], i = 1, 2, ..., n, b ∈
[−1, 1] and ξj and ξ∗j ∈ [0, 1], j = 1, 2, ...,m.

3.1.3 Fitness Evaluation

The expression of the fitness function is considered as fol-
lows:

f(w1, ..., wn, b, ξ1, ..., ξm, ξ∗1 , ..., ξ∗m) = K(w,w)+

C

m∑
i=1

(ξi + ξ∗i ) +
m∑

i=1

[t(ε + ξi − yi + K(w, xi) − b)]2+

m∑
i=1

[t(ε + ξ∗i + yi − K(w, xi) + b)]2,

(15)



where

t(a) =

{
a, a < 0,

0, otherwise.
(16)

The fitness function embodies the objective function of
equation (13) while the three constraints within are handled
by penalizing infeasible individuals; this is done by intro-
ducing the penalty function (16) in the fitness evaluation
(15). Finally one is led to:

minimize (f(c), c). (17)

3.1.4 Genetic Operators

Tournament selection is used. Intermediate crossover and
mutation with normal perturbation are considered. Muta-
tion is restricted only for ξ and ξ∗, preventing the indicators
for errors from taking negative values.

3.2. A Reconsideration of the Evolutionary
Algorithm

Although the current proposed approach is very compet-
itive as compared to the canonical technique (as to be seen
in the experimental results section), it may still be improved
concerning simplicity and efficiency. The current optimiza-
tion problem requires to treat the error values, which in the
a priori proposed EA variant are included in the represen-
tation. These can be expected to severely complicate the
problem by increasing the genome length (variable count)
by the number of training samples. We propose to tackle
this issue by a radical reconsideration of the elements of the
EA as follows.

Since ESVMs directly and interactively provide regres-
sion hyperplane coefficients at all times, we propose to drop
the indicators for errors from the EA representation and, in-
stead, calculate their values in a simple and natural fashion.

3.2.1 Representation of Individuals

Consequently, this time, an individual c encodes solely the
regression coefficients, i.e. w, b, as in (18):

c = (w1, ..., wn, b). (18)

3.2.2 Initial Population

Individuals are again randomly generated following a uni-
form distribution, such that wi ∈ [−1, 1], i = 1, 2, ..., n and
b ∈ [−1, 1].

3.2.3 Fitness Evaluation

Currently all indicators for errors will have to be computed
in order to be referred in the expression of the fitness func-
tion. The method we propose for acquiring the errors is
subsequently described.

For every training sample, one firstly calculates the dif-
ference between the actual target and the predicted value
that is obtained following the coefficients of the current in-
dividual (regression hyperplane), as in (19):

differencei = |K(w, xi) − b − yi|, i = 1, 2, ...,m (19)

Subsequently, one tests the difference against the ε
threshold, following (20):

{
if differencei < ε then ξi = 0,

else ξi = differencei − ε.
i = 1, 2, ...,m

(20)
The newly obtained indicators for errors can now be em-

ployed in the fitness evaluation of the corresponding indi-
vidual, which changes from (15) to (21):

f(w1, ..., wn, b) = K(w,w) + C

m∑
i=1

ξi (21)

The function to be fitted to the data is thus still required
to be as flat as possible and to minimize the errors of regres-
sion that are higher than the permitted ε.

All the other evolutionary elements remain the same.

3.3. Test Accuracy of Evolutionary Support
Vector Machines for Regression

Either algorithm stops after a predefined number of gen-
erations and, in the end, one obtains the optimal estimated
regression coefficients, i.e. w and b, which are subsequently
applied to the test data.

Given a test data sample x, its predicted target is com-
puted following:

f(x) = K(w, x) − b (22)

Suppose the test set {(xi, yi)}i=1,2,...,p is given, where yi is

the actual target and y
(pred)
i the prediction, where y

(pred)
i =

f(xi). In order to verify the accuracy of the technique, the
value of the root mean square error (RMSE) is computed as
in:

RMSE =

√√√√1
p

p∑
i=1

(y(pred)
i − yi)2 (23)



4. Application to the Boston Housing Regres-
sion Task

The proposed technique is validated against the Boston
housing data from the UCI repository of machine learning
databases.

This regression task deals with the prediction of the me-
dian price of housing in the Boston area based on socio-
economic and environmental factors, such as crime rate,
nitric oxide concentration, distance to employment centers
and age of a property.

There are 506 samples, thirteen continuous attributes (in-
cluding the target attribute) and one binary-valued attribute.
There are no missing values.

4.1 Experimental Setup

The Boston housing data set was split into 380 cases for
training and remaining 126 for test. The cases for the two
sets were each time chosen in a random fashion. Normaliza-
tion was not performed to the Boston housing data, as pre-
liminary tests proved it to be unnecessary in order to reach
optimal performance.

4.2 Parameter Setting

A linear kernel was experimentally chosen. Both param-
eters of the SVM and of either of the EAs were manually
picked and are depicted in Table 1.

Table 1. Values for parameters of ε-ESVR for
the Boston housing regression problem (left
for evolution / right for computation of indi-
cators for errors)

Parameter Manually picked value (err. ev./comp.)
C 1/1
ε 0/5
Population size 200/200
Number of generations 2000/2000
Crossover prob. 0.5/0.5
Mutation prob. 0.5/0.5
Mutation prob. for ξ 0.5/-
Mutation strength 0.1/0.1
Mutation strength for ξ 0.1/-

4.3 Experimental Results

The mean square error in 10 runs was computed and the
obtained values are depicted in Table 2. The results of the
reconsidered EA are comparable to those of the initial al-
gorithm, but slightly worse. This is rather surprising as it
is the outcome of a technique that was introduced to reduce
the problem complexity and thus bolster EA performance.

Obviously, accurate estimation of the error terms is a re-
quirement of major concern for the overall ESVM success
on regression tasks. However, we expect that the results of
the reconsidered EA can be improved by a fine tuning of
the evolutionary parameters or a different approach to error
computation.

Table 2. Root mean square error of ε-ESVR af-
ter 10 runs with a random split of training/test

Descriptor Evolution of errors Computation of errors
Average RMSE 4.64 5.03
Worst RMSE 5.88 5.76
Best RMSE 4.06 4.51
St.D. 0.52 0.43

4.4 Comparison to Other Approaches

Comparison to the results obtained by canonical ε-SVR
and a linear regression model was next performed.

For reasons of achieving an objective comparison be-
tween the three techniques, the two other methods were
also personally implemented with the same configurations.
In this respect, the R language and environment was em-
ployed.

For the canonical ε-SVR implementation the R e1071
package for SVMs was used. The kernel type was set to
linear and 0 was experimentally appointed as the value for
ε. The penalty for errors C was by default equal to 1 in
specified package (same as in the ε-ESVR case).

The Boston housing data was taken from the R mlbench
package. The canonical ε-SVR was run 10 times and each
time 380 random cases constituted the training set while
the remaining 126 made the test set, respectively. Conse-
quently, the experimental setup and the corresponding pa-
rameter setting are identical to that of ε-ESVR.

Additionally, a linear regression model was implemented
with the same training/test set sizes and random manner of
appointment. The obtained results are given in Table 3.

Table 3. Obtained root mean square error of
ε-ESVR versus canonical ε-SVR and a linear
regression model after 10 runs with a random
split of training/test

ESVR (err ev./comp.) SVR Linear model
Average RMSE 4.64/5.03 5.3 4.76
Worst RMSE 5.88/5.76 6.53 5.49
Best RMSE 4.06/4.51 3.76 4.26
St.D. 0.52/0.43 0.93 0.33

Comparison to canonical ε-SVR and the linear regres-
sion model shows ε-ESVR as a competitive alternative.



However, automatic tuning of parameters may yield even
better results.

5. Conclusions and Future Work

Following the course of application of their parent
paradigm, the present paper extends the novel technique of
ESVMs to the regression case. In this respect, we achieved
the hybridization between the ε-SVR engine and EAs. Val-
idation of ε-ESVR is conducted through the test against a
real-world regression case, i.e. the benchmark problem of
Boston housing. The obtained prediction error is compared
to corresponding results of the canonical counterpart and a
linear regression model. The expanded version of ESVMs
once again proves to be competitive to SVMs while, in addi-
tion, the former have a simpler nature and a direct handling
of the learning function.

A reconsideration of the underlying EA is performed
through the removal of indicators for errors from an indi-
vidual’s representation and their converse computation by
a straightforward method. In this way, we significantly re-
duce the high dimensionality of the genome. The second
approach performs in a similar fashion to the initial one
while is yet more elegant and natural.

However, there is still some potential for improving the
EA. We could alternatively use a shrinking procedure, e.g.
adapt the chunking method in SVMs [7] to fit the hybridized
technique. This would certainly boost runtime which is cur-
rently very high due to data dimensionality.

Moreover, we could adopt other selection, crossover and
mutation schemes as it is not clear how well-adapted to the
problem the used EA is.

In addition, the way of treating the two criteria (i.e. re-
duce errors and obtain a flat function) through proposed fit-
ness evaluation may not be the best choice. In this respect,
we could alternatively try a multicriterial approach in future
work.

Finally, we could perhaps imagine an enhanced manner
to approach the problem of the computation of indicators
for errors.
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