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Abstract. A radius–based separation of selection and recombination
spheres in diffusion model EAs is introduced, enabling a new taxonomy,
oriented towards information flow analysis. It also contains parallel hill-
climbers, panmictic EA and an unexplored area. Experiments are per-
formed systematically on five complex binary and real coded problems in
search of the best performing variants w.r.t. available optimization time.
Additionally, information flow through recombination and selection is
emulated by means of a simple model, that produces qualitative similar
results.

1 Introduction

It is a generally agreed on opinion that for successfully performing evolutionary
search on multimodal and epistatic optimization problems, population diver-
sity maintenance plays an important role. To prevent an evolutionary algorithm
(EA) from concentrating on a small search space area, many different operators
and structures based on local interaction have been introduced. In contrast to
panmictic population models, they deliberately slow down the information flow.

Aranging individuals in topologies and and selecting offspring from local
neighborhoods obviously exerts a certain influence on the information flow. This
selection type severely limits the distance covered by the offspring as an informa-
tion carrier. A second influence arises in connection with recombination: Local
selection can lead to subpopulations in terms of sets of individuals with low
diversity, resulting in high parent–offspring–fitness correlation.

As opposed to this, subpopulation boundaries often reveal incompatibilities
with respect to recombination where individuals from different areas usually
only bear offspring of much lower fitness than their parents. Fig. 1(a) shows this
phenomenon for an exemplary ring topology EA run.

Population separation in search space may lead to undesired effects: Sub-
populations can get stuck far away from well known optima whereas others get
extinct despite being located in promising areas. This happens e.g. if one out
of two adjacent subpopulations is able to populate the common border position
instead of bad individuals resulting from cross subpopulation recombination.

? Authors appear in random order.
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Fig. 1. Left hand: This plot uses radial coordinates to show the individuals fitness
against their ring position, presenting six successive generations. Several connected ar-
eas exist, seperated by ring postions always showing fitness worse than their neighbors.
These permanent fitness slumps indicate, that genomes of adajcent individuals could
not be recombined successfully. Right hand: Offspring is generated by a central indi-
vidual and mating partners from recombination radius r; selection accepts the best
individual from the offspring pools within selection radius s.

In this paper, we consider the information flow induced into structured popu-
lations by the two ubiquitous non–unary evolutionary operators, recombination
(sexual reproduction) and selection. Our aim is to separately observe their influ-
ence systematically under different local interaction radii in order to get insight
into the mechanisms leading to relatively good or bad optimization performance
on multimodal problems.

2 Generalized Local Selection in Structured Populations

Once originating from parallelization efforts, evolutionary algorithms employ-
ing structured populations are nowadays regarded as an approach to implicitly
preserve diversity and thus prevent premature convergence to a non–optimal so-
lution in case of a complex optimization task [2]. If explicit mechanisms (such as
crowding [3], fitness sharing [4], species conservation [5], guided local search [6] or
topology based selection in genetic programming [7]) are not considered, mainly
two classes of algorithms remain, representing different control and communi-
cation methodologies: island model and diffusion model EAs [8]. As the former
introduce additional operators like migration, we concentrate on the latter and
investigate their relations to multi–hillclimber strategies on the one hand and
algorithms using structureless, panmictic populations on the other hand.

Topology issues like size and shape of local neighborhoods in diffusion model
EAs have been subject to extensive research (e.g. [9], [10]). Definition of over-



lapping demes containing all parents available for mating is strictly oriented
towards the needs of the recombination operator. Parent replacement is directly
linked with the production of new offspring and usually happens either at the
center or a random position of the actual deme.

However, in absence of expensive communication on a parallel hardware,
nothing prevents us from copying an accepted individual to another location
that belongs to different deme. In analogy to the specification of a recombination
range, we may also define a selection range. For each parent individual, it would
contain the locations a replacing offspring can originate from during selection.
Going to the extremes, the selection range could include the whole population or
just one individual. The former would correspond to global selection, the latter
is local selection where only direct descendants are allowed to replace a parent.
This scheme enables systematic empiric testing of different recombination and
selection ranges.

A concrete instantiation of the previously suggested selection range depends
on definition of an underlying topology. As we target optimization of very dif-
ficult multimodal and epistatic problems, it may be beneficial to slow down
information distribution to a minimum and thus keep diversity high for a long
period of time. We therefore restrict ourselves to mapping the parent population
onto a ring topology. This provides us with maximum characteristic path length
and indistinguishable local conditions (2 direct neighbors) for each individual.

We can now define a distance between individuals in algorithmic space, in-
dependent from their distance in search space. Distance between two individ-
uals is ascertained by counting edges between them, distance of individuals to
themselves is zero. For any arbitrarily chosen center individual, this enables con-
structing a neighborhood from all individuals found within a certain radius, a
method also used in [10]. The whole population is included at radius µ/2 if µ
denotes the population size.

Consequently, we introduce two radii for determining recombination and se-
lection ranges. As we want to model speed of information flow rather than an-
alyze the impact of specific concrete operators, we idealize recombination as
method that takes two parent individuals and generates one offspring. Likewise,
idealized selection is a process that takes a number of offspring individuals and
replaces a parent with the best one. Recombination radius r defines the maxi-
mum distance of individuals available for mating. As an individual is contained
in its own recombination radius for any r ≥ 0, we always permit selfing, which re-
sults in cloning the parent for individuals of constant length. Produced offspring
is stored in sets assigned to their first parents until selection.

The distance between this set and the parent individual an offspring may
possibly replace is called selection radius s. During selection we process each
member of the parent population in random order and detect the best not yet
assigned offspring individual from the union of all sets contained in s (see also
fig. 1(b)). The chosen offspring always replaces the considered parent individual,
resulting in a comma selection. In contrast to other local selection schemes, this



allows for individuals being replaced by offspring from outside their recombina-
tion radius if s > r.

In the following, we refer to EA variants determined by concrete recombina-
tion and selection radii as strategies. Exploring their taxonomy given by r and
s (see fig. 2(a)), we identify several well-known strategies: (r = 0,s = 0), in
short (0, 0), corresponds to µ independent (1, λ/µ)-hillclimbers. The two arrows
in fig. 2(a) represent diffusion models: (r, 0) means replacement of the central
individual of a deme, whether for r = s strategies, replacement is randomly
done within the recombination radius. Note that the (µ/2, µ/2) strategy is very
similar to a panmictic population structure with global selection, the only dif-
ference lies in the enforced minimum offspring number of λ/µ per parent. To our
knowledge, EAs with s > r are yet unexplored.

3 EA–Systems and Experiments

The previously described radius approach matches well with environmental selec-
tion driven by a birth surplus. Therefore, in all our experiments µ = 100 parents
bear λ = 500 offspring. To enable local selection, strict mating is enforced, so
that each parent generates λ/µ offspring with randomly chosen mates from its
recombination range. The following paragraphs describe the remaining settings
of the utilized evolutionary algorithms and tested problems. Note that we use
problem generators ([11]) instead of hand chosen problem instances wherever
applicable, to obtain increased predictive power of the experimental results.

3.1 Experiments on Real-Valued Problems

For the real–valued problems, we use an EA instance containing mutation and
recombination operators from standard evolution strategies [1]: self–adaptation
of one mutation strength for gaussian mutations and dominant (discrete) or
intermediary recombination with two parents.

Significance tests yielded that a maximum mutation strength of 1.0, a learn-
ing factor τ = 0.05 and dominant recombination for the object parameters are
robust settings for all three problems. All three continuous problems are formu-
lated for minimization.

Rastrigin Function The highly multimodal but strictly symmetrical Rast-
rigin function has originally been considered as difficult testbed for EA, espe-
cially when using small population sizes. However, more recent studies (e.g. [10])
demonstrated that it is efficiently solvable given that the population size exceeds
a certain threshold. We use the function in a generalized form mentioned in [1]
and generate problem instances by drawing random numbers for the waviness
B ∈ [2, 7], keeping the number of dimensions constant at 50. Search for good
strategy parameters yielded dominant mutation strength recombination, low ini-
tial mutation strength (0.5) and low minimum mutation strength (10−30). Each
run is allowed 106 function evaluations and the object parameters are initialized
at 5.0 + N(0, 1).



Continuous n-Peak Problem This function generator serves as flexible tool
in producing multimodal problem instances of configurable complexity. Its basic
concept is to buildup fitness landscapes by combining several peaks of different
height and structure as suggested in [12]. We use 100 problem instances with
8 randomly distributed optima in a d = 10 dimensional search space. For each
peak we also define a dependency matrix to ensure non-separability of the re-
sulting problem, a method inspired by [13]. Equations below summarize fitness
computation for an object parameter vector x. Herein, f(x) stands for the fit-
ness function, g(x,p) is the evaluation result of x for peak p, dist(x,p) is the
modified euclidean distance, and dep(x,p) calculates a dependencies term. The
parameters sp, hp, and rp denote peak shape, height and radius, respectively.
All peaks are distributed in the space bounded by xi ∈ [0, 20], with sp ∈ [2, 3]
and rp ∈ [10, 20]. Peak heights of local optima are randomly chosen in between
0.7 and 0.9, such that fitness values below 0.1 originate only from search points
on the peak containing the global optimum, with hp = 1.0 .

f(x) = min
∀p

(g(x,p) ), g(x,p) = hp

(

sp

√

max

(

0,
dist(x,p)

rp

)

− 1

)

+ 1
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√

∑

(xi − pi)2 + dep(x,p)

dep(x,p) =

d
∑

j=1

d
∑

k=j+1

(xj − pj)(xk − pk)Dpjk , Dpjk :=
random(−0.5, 0.5)

d − 1 − j

On this problem class, dominant mutation strength recombination, low initial
mutation strength (0.5) and low minimum mutation strength value (10−30) pre-
vail against all other tested strategy parameter combinations, as for the Rastrigin
function. Also, an observation period of 106 function evaluations seems sufficient.
Object parameters of initial individuals are randomly distributed, xi ∈ [0, 20].

Keane’s Bump Function Keane introduced this function [14] as test problem
with several local optima occurring very near to constraint boundaries. For this
problem we use the same problem instance with 20 dimensions for all runs. Strat-
egy parameters chosen for this function are: low initial 0.5 mutation strength,
high minimum mutation strength 10−4, and dominant mutation strength recom-
bination. A quadratic penalty function ensures strong attraction towards valid
function regions. Runs start with object parameters randomly distributed in the
valid interval 0 < xi < 10 and end after 2 ∗ 106 function evaluations.

3.2 Experiments on Boolean Coded Problems

Normally genetic algorithms (GA) use mating selection, so this is the most im-
portant point in which we differ from classic GA. Most other utilized settings are
comparable to a standard configuration. We use 1–point–crossover to recombine



two individuals and bit–flipping for mutation. Each bit is mutated with equal
probability. This probability is equal to the reciprocal value of the individuals
length.

NK Fitness Landscapes Using NK models, every gene locus contributes to
fitness. More precisely, its contribution does not only depend on its binary value,
but also on the value of K other (adjacent) loci. Each gene of a genome can thus
contribute to 2K+1 different values. Theses values are drawn randomly with
uniform distribution out of [0, 1] and managed in N different tables. The mean
value of the N = 48 loci is the individuals fitness, which is to be maximized.

L–SAT, a boolean satisfiablity problem Boolean satisfiablity problems are
frequently used as representatives of the class of NP–complete problems. The
task is to find an assignment of boolean values to V variables, so that a boolean
expression becomes true.

Mitchell et al.[15] presented the random L–SAT problem generator, which
creates expressions in conjunctive normal form using three parameters. These
expressions consist of C clauses of length L. The L variables are drawn randomly
out of a set of V variables, and each of them is negated with a probability of 0.5.
When optimized with GAs, fitness of a candidate solution is typically measured
by the proportion of satisfied clauses. Here we use V = 100 variables and each
clause is composed of C = 3 (possibly negated) variables.

4 Results

Our experimental design focuses on the influence of different combinations of
selection and recombination radius. We thus consider 36 different strategies as
defined in sec.2, resulting from r × s with r, s ∈ [0, 1, 2, 5, 16, 50]. We chose this
logarithmic distribution of measuring points, because test runs showed promising
results in the range of low radii. For each tackled problem class and strategy
combination we carry out 100 runs. On the same problem the set of instances is
equal for all strategies.

First we want to investigate how effectiveness of strategies depends on the
number of objective function evaluations. We call a strategy dominant if its
populations show best average best ever fitness. Fig. 2(b) plots the sequence of
parameters of dominant strategies at each time step.

The strategy–time–trajectories show consistent gradients for most problems.
On short runs, strategies using high radii usually perform best. However, at
a later point in time, strategies with lower selection radii start to dominate.
These allow for mating with distant individuals, but only offspring at central
and neighboring positions can get selected.

Figure 3 plots the average best ever fitness progression of selected strategies.
Ring–strategies (r = 1, s = 0) with minimal deme size show best results from
around 105 evaluations on most problems. On the long run, multi–hillclimber
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Fig. 2. Left hand: Taxonomy of population models using selection and recombination
radius, with the positions of well–known EA variants. Right hand: Strategy–time–
trajectory of considered problems. For each measuring point in time, we plot the strat-
egy displaying best average best ever fitness. At first, high radii dominate, but later on
strategies with low radii take the lead. (a) L-Sat (C = 400), (b) L-Sat (C = 1200), (c)
NK, (d) n-Peak, (e) Rastrigin, (f) Keane’s Bump

strategies with (r = 0, s = 1) and without (r = 0, s = 0) individual “migration by
selection” also perform well, the latter starting faster, but stagnating earlier. The
former eventually take the lead at nearly 106 evaluations for the n-Peak and the
two L-Sat problems. Both strategies are not allowed to use sexual reproduction
(apart from selfing) and thus have no means to mix genetic information of two
individuals. Nevertheless, recombination seems to be crucial for solving Keane’s
bump and Rastrigin problems and at least important for the “NK” problem
where ring–strategies stay dominant.

Figure 2(b) first suggests that strategies with high selection and low re-
combination radius are medium–term advantageous on Keane’s Bump function.
However, fig. 3 shows that this part of the strategy–time–trajectory corresponds
to the early stages of the optimization, where most strategies achieve similar
results. This is true until the (r = 1, s = 1)–strategy starts to dominate. In
our opinion, the short dominance of strategies with low recombination and high
selection radius is not statistically significant. Choosing radii that comply with
s > r does not seem to make sense in general. For these strategies recombination
and selection radii are effectively equal, because an individual chosen for mating
within a small neighborhood may just have been transferred into it from a far
away position during the previous reproduction cycle.

5 Radius dependent information speed model

The previously identified qualitatively similar relations between strategies raise
the question, whether these results are reproducible by means of a simple simula-
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Fig. 3. Time dependent average best ever fitness on considered problems for a small
subset of analyzed strategies, scaled differently to stress important fitness ranges.
Higher curves show better fitness.

tion model. Such a model shall only take information transfer via recombination
and selection into account, ignoring mutation. We thus suggest to consider each
position on the ring topology as host of an information carrier, representing an
amount of information with a single real value x ∈ [0, 1]. Initially we deposit
information quantity 1 at one position and set all other positions to value 0.
We then measure how fast this information is transfered to the opposite ring
position. We assume neutral fitness, i.e. we only model the genetic drift effect.

Each simulation time step consists of randomly determining a position and
replacing its information carrier. Therefore, we randomly select an other infor-
mation carrier a within its selection radius s and chose a random mating partner
b out of the recombination radius r of a. Assigned information quantity I(o) of
offspring o depends on information quantities of its parents and their diversity. It
is drawn randomly from a normal distribution N((I(a)+I(b))/2, |I(a)−I(b)|/2),
with values outside [0, 1] adjusted to the limits.

Fig. 4 plots the average amount of information transfered to the opposite po-
sition for different (r,s) configurations, averaged from 1000 replicates. Settings
using recombination radius r = 0 are only capable of transferring information as
a whole by selection and thus always yield discrete values zero or one at the op-
posite position. Setting (r = 0, s = 0) prohibits information transfer completely
and always leads to zero values at the opposite position.
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The ring–strategy (r = 1, s = 0) shows desirable behavior in this simple
model, too. Note that it yields high information quantities despite an expectedly
deferred start.

Further comparison with fitness plots of fig. 3 reveals, that high radii lead
to a fast increase of information quantity in the beginning but also favor early
stagnation. Low radii settings need much more time to start information transfer,
but show progress for longer periods of time. Again, recombination seems to be
important, enabling transfer of parts of information in contrast to the “all or
nothing”–principle of pure selection.

6 Conclusion and Outlook

An improved success rate by increased diversity on the one hand and a loss of
computing time on non–promising regions of search space on the other hand are
the two conflicting effects of local recombination and selection. These effects are
adjustable by the degree of locality, controlled by selection and recombination
radii, which have to be chosen with respect to the available optimization time.

Using the radius based approach we identified three important strategies
for optimizing complex problems with an EA: Panmictic population structures
provide early results whereas for long runs, we suggest use of a local–selection
EA with minimal recombination radius (1, 0). Alternatively, a multi-hillclimber
approach may be worthwile although it seemingly fails on some problems like
NK landscapes, Keane’s Bump or the Rastrigin function. This can be due to bad
parameterization (e.g. mutation strength) or the inability to aggregate matching
building blocks.

In the presented approach, we explicitly modelled the speed of information
flow in EAs. Beside rings we considered other topologies as small–world networks
[16] that are well known as topologies of natural systems. Thus, we shortened
average path lengths by adding shortcuts instead of increasing radii. As those
shortcuts connect very diverse subpopulations, we again met the problem of
unsuccessful recombination.



In our opinion, investigation and control of information flow is a promising
approach to improve and better understand the dynamics of EAs. Nevertheless,
research on this area shall be guided by examination of recombineability.
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