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Abstract

Thispaperdescribesa novel peerto-peer(P2P)erviron-
mentfor running distributed Java applicationson the In-
ternet. The possibleapplicationareasinclude simpleload
balancing parallel evolutionary computation,agent-based
simulationand artificial life. Our ervironmentis basedon
cutting-edg P2P technology. We introduce and analyze
the conceptof long term memorywhich providesprotection
againstpartitioning of the network.\We demonstate the po-
tentials of our appmac by analyzinga simpledistributed
application. We presenttheoletical and empirical evidence
that our approach is scalable effectiveandrobust.

1. Introduction

This paperdescribesa novel frameawork for running dis-
tributedexperimentonthelnternet.lt is beingdevelopedas
partof the DREAM project[9]. In a nutshell,the aim of the
DREAM projectis to developacompleteervironmentfor de-
veloping and running distributed evolutionary computation
experimentson the Internetin a robust and scalablefash-
ion. The presentwork focuseson the network engine,i.e.
the overlay network on which theseexperimentswill even-
tually berun.

Although our project focuseson evolutionary computa-
tion theervironmentsupportsary applicationthat

e is massvely parallelizable
e usesasynchronousommunication
¢ haslittle communicatiorbetweerits subprocesses

e haslargeresourceequirements
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e andis robust (the succesf the applicationdoesnot
dependnthesucces®f ary givensubprocess).

This list might seemquite restrictive but in factit includes
mary interestindgields. Goodexamplesarerunningindepen-
denttaskswith loadbalancingjslandmodelsin evolutionary
computation(EC), heuristicoptimization,modelingswarm
intelligenceandothersystemawvith emegentbehaiour, etc.

In essencave relax strict requirementsoncerningreli-
ability of computationsand synchronizatiorand control of
subprocessed.his allows usto apply scalableP2Ptechnol-
ogy basedn epidemicprotocolsthatcanbe usedon unreli-
ableWANSs. This approacthasthe advantageof beingable
to access potentiallyhugeamountof idle resources.

To our knowledge,usinga P2Pnetwork thatdeploys epi-
demic protocolsfor distributing computationaltasksin a
fully decentralizeanannelis new. Existing P2Psystemsre
mainly usedfor data-oriente@pplicationamanagemenike
maintainingdiscussiongroupsor to distribute information
(e.g.[4, 6, 1]). CurrentsystemghatuseWANSs for solving
computationalproblemsgenerallydeploy a sener/worker
paradigmthatrequirescentralcomponentswhich maylead
to scalabilityor availability problems.(e.g.[3, 10, 11]). The
Java platform offers a naturalway to distribute computa-
tional tasksby allowing runtimelinking of executablecode
to anapplication.It providesrich securityfeaturesandatlast
but not leastcompleteplatform independence This made
Javaanobviouschoicefor us.

To summarize: our environment can be thoughtof as
a virtual machineor distributed resouce madine (DRM)
madeup of computersanywhereon the Internet. The actual
setof machinescan (and generallywill) constantlychange
and can grow immenselywithout ary specialintervention.
Apart from security considerationsanyone having access
to the Internetcan connectto the DRM and caneitherrun
his/herown experimentsor simply donatethe sparecapacity
of hisor hermachine.

Theoutlineof thepaperis asfollows: Section?. discusses



name thisis theuniquekey

address thelP addresandport of thenode
date timestampof theentry

agent§] nameof agentdiving atthe node

map optionalinformationin ahashmap

Table 1. Structure of an entry in the database
of anode.

the DRM from analgorithmicandtheoreticalpoint of view.
We will illustratethe scalabilityandrobustnes®f theunder
lying epidemicprotocol.

Section3. givessimulationresultsfor large networks. We
shav a shortcomingof the algorithm suggestedn [5] and
suggestandanalyzea solution.

Section4. describesan applicationdevelopedfor our en-
vironment. This applicationperformsexecutesa setof in-
dependentaskswith load balancingover the nodesof the
network. While this is only a simple applicationand does
not at all make useof all the possibilities,it is suitablefor
illustratingthefeatureof the DRM. Section5. describeshe
resultsof ourexperimentsonarealDRM underdifferentcir-
cumstancesSection6. concludeshe paper

2. Thedistributed resource machine

The DRM is a P2Poverlay network on the Internetforming

anautonomouggenternvironment Computationgreimple-

mentedas multi-agentapplications. The exact way an ap-

plicationis implementedn themulti-agentframework is not

a priory restricted,althoughwe intendto suggestemplates
andexampledn thefuture (oneof whichis discussedh Sec-
tion 4.) to facilitatedevelopment.

2.1. Self-organizing structure

The DRM is a network of DRM nodes. In the DRM every
nodeis completelyequialent. Thereareno nodesthat pos-
sessspecialinformation or have specialfunctions. Nodes
mustbeableto know enoughabouttherestof thenetwork in
orderto beableto remainconnectedo it andto provide in-
formationaboutit to theagents Spreadingnformationover
andaboutthe network is basedn epidemicprotocolg[2].
Every nodemaintainsan incompletedatabaseaboutthe
restof the network. This databaseontainsentrieson some
othernodes(seeTable 1). We call thesenodesthe neigh-
bours of the node. The databases refreshedusinga push-
pull anti-entropy algorithm. Every nodes choosesa living
addresdrom its databaseaegularly oncewithin a time in-
terval. An addresss living if thereis a working nodes’ at
that addressThenary differenceshetweens ands’ arere-
solved so that after the communications and s’ will both
have the union of the two original databasegchoosingthe
fresheritemif bothcontainitemswith a givenkey). Besides
this, s will receve afreshitemon s’ (with anew timestamp
of course)ands’ will alsoreceveanitemon s with theactual

timestamp.As mentionedbefore,the sizeof the databasés
limited. This limitation is implementedby keepingonly the
freshestitemsthatfit in (accordingto the timestampin the
entries).Note thatwe assuméherethatthe local time at the
differentnodesdoesnot differ significantly

Fortunatelythetheoreticabndpracticalresultsdiscussed
belon shav that limiting the size of the databaseloesnot
affect the power of the epidemicalgorithm. Essentiallythe
sameapproachwasadoptedy [5].

To connecta new nodeto the DRM oneneedsonly one
living address.The databasef the new nodeis initialized
with theentrycontainingtheliving addres®nly, andtherest
is taken careof by the epidemicalgorithmdescribedabove.
Removal of a nodedoesnot needary administrationat all.
Notethatanodemightevenchangéts IP addressnd/orport
while running,so computerswith dynamiclP addresseare
alsoautomaticallysupportedwithout any specialmodifica-
tion of the algorithm.

2.2. Theoretical properties

The theory of epidemicalgorithmsis well known [2]. To
applyit to our limited-sizedatabasewe have to assumeéhat
agivennodehasanequalprobabilityof beingin thedatabase
of ary othernode. In Section3. we will examinea special
casewhenthis assumptiordoesnot hold.

Letn bethenumberof nodesn thenetwork, & thesizeof
thedatabasén eachnodeandlet a nodeinitiate exactly one
informationexchangesessiorin every ¢ seconds.

We know thatinformationspreadsery fastover the net-
work if thenetwork is connectedBut whatis the probability
thatthe network is connected?

LetG(n, k) denotearandomdirectedgraphof n nodesin
which the outdaegreeof eachnodeis exactly £ andthesek
arcsgo to randomnodes.Let 7(k, n) denotethe probability
thatthereis a directedpathfrom a givennodeto ary other
nodein G(n, k). Thefollowing theoremholds[7]:

Theorem 1 Consider the sequenceof random graphs
G(n, k,) with k,, = logn + ¢ + o(1), whele ¢ is a constant.
We have

lim 7(kn,n) =e™®
n—oo

It is notablethat1 — 7(k,,n) < 1071%if n > 23. The
theoremtells usthatfor alarge network of sizen if thesize
of thedatabasés k = logn + ¢ wheree.g.c > 23 wehavea
connectedhetwork with anextremelylarge probability. For
examplefor £ = 100 we canhave n ~ 1033. Empirical
analysisshaws that the constantgpredictedby the theorem
provide the expectedperformancg?, 5].

3. Recovery after partitioning

In Section2.2.it wasassumedhatagivennodehasanequal
probability of beingin the databasef ary othernode. In

practicethis assumptionis often unrealistic. For instance
if for somereasona subsetof the nodesin the DRM (e.g.
the oneswithin a university intranet)is separatedrom the



restof the DRM dueto thefailure of the underlyinginternet
connection then this equaldistribution assumptioncannot
be expectedto hold. We shav thatthe DRM (andthusthe
architecturein [5, 7]) is very sensitve to this problemand
we will suggest cheapandsimplesolutionin theform of a
stodasticlongtermmemory

3.1. Thepartitioning problem

We illustrate the problemthrougha simple examplewhich
we will uselaterfor the simulationexperimentsaswell. Let
n be the numberof nodesin a DRM. Let us assumethat
initially the equaldistribution assumptioris true. At some
point a clusterof n /2 nodeslosesphysicalconnectiorwith
the otherclusterof n/2 nodeswhile connectioris presered
within the clusters.Let usdenotetheseclusterswith C; and
C, respectiely. This resultsin a situationwhennodesex-
changenformationonly with nodesfrom their own cluster

Dueto lack of spacewe do not detail this partof our ex-
perimentsbut simulationsof upto n = 10000 anddatabase
size100shaw thatwithin a coupleof time stepsthe connec-
tivity of thenetwork is lost,i.e.theclusterscompletelyforget
eachother This alsomeanghatafterrestoringthe physical
connectionbetweerthe clustersthe DRM is not ableto re-
cover its integrity; we endup with two independenDRMs.
In real networks this would happerwithin at mosta couple
of minutes.

Note that entriesare never removed from the databases
explicitly basedon e.g. availability tests. Items “die out”
only whentheir timestampsaretoo old to be includedinto
thelimited-sizeddatabasesThis is a negative sideeffect of
the quick adaptvity of the network which s in facta major
adwantagdn othersituations.

3.2. Stochastic long term memory

Oursolutionto thepartitioningproblemis thestochastidong
termmemory We addan additionalsetof addresseflong
termmemory)to every nodebesidethe databaseWhenthe
nodecommunicatesvith a peer(accordingto the epidemic
algorithm)the addresof the peeris storedin this setwith a
given probability p;;.,,. If the sizeof the setexceedsa fixed
limit, arandomelements removed.
Theepidemicalgorithmpicksarandomelemenfrom the
long term memoryinsteadof the databasewith the same
probability pjs,,. Theideais thatthis way old addresseare
tried time to time which helpsto malke the connectvity of
the DRM robustto physicalconnectiorfailures.Notethat—
unlike approachebasedn theunderlyingphysicalnetwork
topologylik e [8]—this approchis topologyindependent.
Let usgive sometheoretialpropertieof this solution. Let
out(C}) bethe numberof long term memoryentriesin the
whole C; clusterthatpointto nodesfrom clusterCs. Let ¢
be the size of the long term memory Let out(Cy) = m at
time 0. Let usfurther assumehat the physicalconnection
betweenC; and(C, is lostattime 0 aswell. Thenafterthe
t-th cycle of the epidemicalgorithmout(C;) follows a bi-
nomial distribution with parametersB((<=1)t1m m). For

examplefor py,, = 0.1, m = 100, ¢ = 100 and¢ = 1000
theexpectedvalueis still 36.6.

Another interestingquestionis how muchtime elapses
until the expectedvalueof out(Cy) becomesl. After some
elementaryransformationsve getthefollowing equation:

1

m

— T & clogm
log <%=

tpltm =
This tells us thatthe size of the memoryis muchmoreim-
portantfor preservingnformationthanthe original amount
of information.We will seelaterthatevenif out(C}) is only
one,i.e. if only oneof the nodeshasonly oneaddressn its
long term memoryfrom clusterC, thisis oftensufiicientto
restorefull connectvity.

Notethatthe sizeof memorycanbe muchlargerthanthe
sizeof the databasd®ecaus¢éhe memoryis never exchanged
betweemodes(it never travels throughthe network) andit
containsonly addressesno additionalinformation (unlike
thedatabase).

We canthus calculatethe amountof available informa-
tion asa function of time during the time interval whenthe
physicalconnections missing. But whathappensvhenthe
physical connectionis restoredbetweenC; and C»? Ta-
bles2 and3 give simulationresultsthatanswetrthis question
for network sizes1000and 10000respectiely. The tables
shaw statisticsfrom 10 runsfor eachparametesettingwith

piem = 0.1. peon is the probability of restoringthe con-

nectiity betweerthe two clustersandt is the averagetime
necessaryor this.

The mostinterestingphenomenothatwe canobsene is
that a very small amountof informationis sufficient to re-
coverthe network. As little asl itemis sufficientin almost
half of the occasionsNotethatfor a network sizeof 10000
andc = 10 thelong termmemoriesof thenodesin C; hold
50000itemsaltogether Whenonly 3 of thesepointsto the
otherclusterwe experienceduccessfutecoveryin 10 outof
thelOcases.

3.3. Alast note

The conceptof long term memory can easily be extended
by applyingmoresophisticatedlatastructuresandmachine
learningalgorithms.Nodescanbuild a representatioof the
DRM while communicatingwith the mary differentnodes
which canincreasahe chance®f the survival of the DRM,
evenundervery poor conditionsof the underlyingphysical
network.

4. Thetest application

The applicationitself hastwo layers. The lower layeris an
abstractoad balancingframework on top of the DRM. The
higherlayeris the applicationconsistingof a setof tasksto
be executed.The only interestingfeatureof the tasksetwe
usedfor testingin the presentexperimentis that every task
needsexactly the sameamountof resourcegCPU time and
memory)if run on a single fixed machinebut the tasksare
sensitve to theresourcesctuallybeingavailable.



m = 1 2 3 4 5 6 9 15 27
c=10 | peon  40% 60% 80% 90% 100% 100% 100% 100% 100%
t 70.25 89.17 27.88 30.89 1390 27.60 1530 7.70 5.00
c=20 | peon  40% 60% 100%  90% 90% 100% 100% 100% 100%
t 106.75 119.67 108,50 51.67 57.78 40.00 20.20 20.10 12.10
c¢=50 | peon 20% 90% 100% 100% 100% 100% 100% 100% 100%
t 188.50 200.56 277.60 165.50 88.80 153.20 60.70 73.40 21.80
c=90 | peon 50% 70% 90% 80% 100% 100% 90% 100% 100%
t 229.40 410.14 209.89 269.38 254.10 186.80 95.22 40.40 39.80

Table 2. Results for a network size of 1000.
m= 1 2 3 4 5 6 9 15 27

c=10 | peon 50% 90% 100% 80% 100% 100% 100% 100% 100%

t 60.20 65.89 29.40 6450 4390 24.70 1240 7.00 5.80

c=20 | peon 70% 70% 90% 70% 90% 100% 100% 100% 100%
t 119.43 34.29 65.78 93.14 3356 60.70 62.80 10.70 12.10

¢=50 | peon 50% 80% 80% 80% 90% 100% 100% 100% 100%
t 126.40 197.13 211.38 69.50 119.89 88.70 68.20 59.80 17.50

Table 3. Results for a network size of 10000.

4.1. Theload balancing algorithm

In this paperwe choseto considerthe simplestpossibleap-
plication on the DRM, a load balancingframework. This
framavork doesnot make useof the messagindeaturesof
the DRM (at leastnot on the applicationlevel) i.e. the tasks
do not communicatewith eachother This applicationsuf-
ficesfor illustratingthereliability, scalabilityandrobustness
of our DRM system.

We assumehat our applicationis composef T' tasks
that have to be run independentlyof eachother asfastas
possible. Thetaskshave to bedistributedefficiently overthe
available resourcesn a way that toleratesthe unreliability
and high communicationcostsof WANs, andthe dynamic
natureof the DRM, in the sensg¢hatmachinecancomeand
goatary time.

Loadbalancings basedon epidemicalgorithmsjustlike
theDRM itself. Theapplicationstartsby initiating anisland
whichis implementedanautonomousgent.Thisislandcan
be startedon arny nodewithin the DRM. The goal of this
islandis to completeT" tasks. The islandachievesthis goal
by startingto work onataskandatthe sametimelisteningto
the communication®f its hostnode. Whenthe nodewhere
theisland canbe found exchangesnformationwith another
node (accordingto the epidemicprotocol of the DRM) the
island checksif the peernodealreadyhasanisland(recall
thatthe databasentry of a nodecontainsinformationabout
theagentsunningthere).If notit sendshalf of its remaining
tasksto the peernodein theform of anew islandwhich then
runsthe samedistribution mechanisnon the peernodein
orderto completeits tasks.In thisway thetasks'infect” the
network. Note thatit meanghatthereis at mostoneisland
oneverynode.

Whenanislandarrivesat its hostnodeit sendsa confir-

mationmessagdack. This is the only communicatiorthat
is taking place. It ensureghatthe processingof the setof
taskssentto anothemodewasat leaststarted.Confirmation
of finishing tasksdoesnot make sensesincethe senderis-
land might not exist arymoreat thattime. This might result
in loosingtasksbut this is not a seriousdisadwantageunder
ourassumptionslescribedn Sectionl..

The performanceof the nodesdoesnot have to be taken
into accountwhensendingout taskssinceif the machineis
too slow, it will sendmost of its taskson nodesthat fin-
ish earlier Also, no mechanisms neededo indicatethat
nodeshave becomeavailable becausehey will be infected
very quickly anyway by simply communicatingwith peers.
Thesevaluablepropertiesresultform the natureof our epi-
demicprotocolunderlyingthe DRM discusseaarlier

4.2. Sometheoretical properties

We do not needto develop a separateheoryto explain the
behaviour of the architecturebecauseaesultsdescribingthe
epidemicalgorithmsapply. In thefollowing we briefly sum-
marizetheseanalogies.

Let T bethe numberof tasksandn the numberof nodes.
We have to differentiatebetweerthreecaseslf T' < n then
taskspreadingollows the behaiour of the startingphaseof
information spreadingn an epidemicnetwork. If 7' > n
thenthe behaiour of the end-phasef the pull versionof
anti-entrogy is relevant. In this casethe expectednumberof
tasksanislandhasis muchmorethanone. Whenin sucha
network an emptynodeconnectgo a randompeer(accord-
ing to the epidemicalgorithm)it is very likely thatthis peer
will have sometasksto send. Thusit is very unlikely that
ary noderemainsemptyfor alongtime.

Finally T' =~ n is themostproblematiccase astherewill



be a momentwhen a considerablenumberof islandswork
only ononetask. Theseislandscoveraconsiderabl@ropor
tion of the DRM. As a consequenceslandsrunningseveral
taskswill only slowly discoveridle nodes.However in the
first phasehespreadingf tasksacrossnodesds fast;it slows
down only in theendphase But evenin this casef thecom-
pletiontime of anaveragetaskis muchlongerthanthetime
betweertwo informationexchangedbetweerthe nodesthen
this disadantagebecomeslmostinvisible.

5. Empirical results

We implementedtwo different scenarioson a cluster of
workstationsto substantiateur claims. For both of them,
afixednumberof tasks(here:1500)wascomputed.

Optimistic scenario: The experiment is running on an
undisturbedcluster no node is added, deleted or
restarted.

Cluster addition scenario: After the experimenthasbeen
running for a time, an additional cluster of nodesis
addedo anddeletedfrom the DRM severaltimes. The
addednodesarealwaysempty i.e. they have no tasks,
they do notremembetheir previousstatein the DRM.

We are interestedin the performancebehaiour of the
DRM underthesedifferentconditions,andwouldlike to see
a speedugactorthat doesnot vary much over the two sce-
narios. Note that we do not wantto shov robustnessn the
senseof gettingall of thetasksdone,thisis hinderedby the
layoutof theloadbalancingsystemandwouldin any casebe
very difficult to achievze on alarge-scaldistributedP2Psys-
tem. Fromourexperimentsyve cannotconcludemuchabout
scalabilityof the performancdehaiour becaus¢henumber
of machinesvailablefor testinghasbeenquite limited.

It mustbe statedthat even for the optimistic scenarioit
is very difficult, if notimpossible,to repeatan experiment
in exactly the sameway. However, we considerthe average
resultsover mary experimentgelatively stable.

5.1. Optimistic scenario

In this casenodeswererun on workstationsspreadall over
Europe. We had machinesrom Paris, Edinburgh, Amster
damandDortmund. The numberof nodesis stablefor this
scenariothe experimentrunsundisturbedoy externalinflu-
ences. This can easily be confirmedvisually from Fig. 1.
It also shows that the numberof working nodesvariesbe-
tween9 and 11 until mostof the tasksaredone. At around
3500secondsthe taskdistribution seemgo get more diffi-
cult, sothatre-balancinghesystenbeginsto takelongerand
morenodesremainwithout work. At this point, 83% of the
tasksaredone.But aslong asthe numberof tasksavailable
exceedsthe numberof nodesby far, the DRM canrecover
from this situation.Nearthe end,the numberof tasksleft to
computeapproacheshe numberof nodesandthe subopti-
mal behaviour describedn Sectiond.2. (T =~ n) appearsas
predicted.Theslowestof thenodeghatstill have onetaskto
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computedetermineghe endof the experiment.In this case,
all of the 1500taskshave beenexecuted Note thatthe num-
berof active islandsdiffersslightly from theworking nodes.
Thatis becauséslandsperformingtask setupanddistribu-
tion are consideredactive, but their nodeis not considered
working duringthis administratiortime.

Figure 2 shawvs a very similar structure. It displaysthe
usedresourceselative to the available capacityin termsof
tasksperhour. Thesenumbersaredeterminedy usingthe
taskghemselesasabenchmarlandcomputingtheapproxi-
matemaximumspeecdf a nodevia the averageime needed
to finish a task. The accumulategower usageshovn asa
separatdine provesthat the available total capacityof all
nodesn the experimentis usedto morethan86%.

5.2. Cluster addition scenario

Here we usedthe samecluster as in the optimistic sce-
nario. The additionalclusterwaslocatedin Dortmunden-
tirely within asingleLAN butit containedvorkstationswith
highly diverseperformances.
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It canbe visually perceved from Figure 3 that 9 addi-
tional nodeshave beenaddedto the DRM afteraround300
seconds.They are quickly found and exploited by placing
new islandson them. After 750 secondshave elapsedthe
nodesare removed again. This is repeatedvith 10 nodes
later on, this time removing them stepby stepand not at
once. Despitethe expectationthat this scenariodepictsa
very extremecoursethe DRM copesquite well with the sit-
uation. Availableresourcesreutilized rapidly andeventhe
deletionof half of the nodesdoesnot hinderthe experiment
from continuing.

For this experimentthedifferencebetweerthetwo types
of charts(Figures3 and4) is clearer Thereasonis thatthe
capacityof theaddednodess lower thanthe capacityof the
startingnodes.This is indicatedby the smallerstepsvisible
in Fig. 4. Both chartssuggeshoweverthatmostof theavail-
ableresourcesreused. At the end,the accumulategbower
usageis 80%. It is however importantto notethat not all
tasksareactuallycompletedn this scenario.As theislands
own their tasksafter confirmation(they are not memorized
arywhereelsein the DRM), thetasksof a prematurelyshut
down islandarelost. Thus,the numberof taskscompleted
in this experimentis only 1104 0f the 1500.

6. Conclusions

In this papemwe discussea distributedP2Pervironmentfor
running specialdistributed applicationsfrom domainslike
evolutionary computation, social modeling, artificial life,
etc.

The concepbf longtermmemorywasintroduced.Simu-
lation resultson largenetworkswerepresentedogethemith
theoreticalconsiderationsvhich showv us that the proposed
architectures stableevenif theunderlyingnetwork is parti-
tionedfor alongtime.

Empirical resultson a real network werealso presented.

Probablythesimplestpossibleapplication(loadbalancingof
agivennumberof independentasks)waschosertoillustrate
the potentialsof the system.The applicationreactedrapidly
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to changesn the systemresultingin good load balancing.
High utilization of availableresourcesvasalsoobsened.
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