
A Scalable and Robust Framework for Distributed
Applications

Márk Jelasity
Department of Artificial Intelligence, Free University of Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands, jelasity@cs.vu.nl
and RGAI, University of Szeged, Hungary

Mike Preuß
Chair of Systems Analysis, Department of Computer Science, University of Dortmund

Joseph-von-Fraunhoferstr. 20, 44227 Dortmund, Germany, mike.preuss@uni-dortmund.de

Ben Paechter
Napier University, 10 Colinton Road, Edinburgh, Scotland, EH10 5DT

Abstract—This paper describes a novel tool for running distributed ex-
periments on the Internet. The possible applications include simple load
balancing, parallel evolutionary computation, agent-based simulation and
artificial life. Our environment is based on cutting-edge peer-to-peer (P2P)
technology. We demonstrate the potentials of the framework by analyzing
a simple distributed multistart hillclimber application. We present theo-
retical and empirical evidence that our approach is scalable, effective and
robust.

I. INTRODUCTION

This paper describes a novel tool for running distributed ex-
periments on the Internet. It is being developed as part of the
DREAM project (see project statement [1]). In a nutshell, the
aim of the DREAM project is to develop a complete environment
for developing and running distributed evolutionary computa-
tion experiments on the Internet in a robust and scalable fashion.
Accordingly, the project involves developing different libraries,
user interfaces and tools to support application development and
execution. The present work focuses on the network engine, i.e.
the overlay network on which these experiments will eventually
be run.

Although our project focuses on evolutionary computation
the environment supports any application which

� is massively parallelizable
� is asynchronous
� has little communication between its subprocesses
� has large resource requirements
� and is robust (the success of the application does not depend
on the success of any given subprocess).
This list might seem quite restrictive but in fact it includes many
interesting fields. Good examples are running independent tasks
with load balancing, island models in evolutionary computation
(EC), heuristic optimization, modeling swarm intelligence and
other systems with emergent behaviour, etc.

The above assumptions essentially involve the relaxation of
the strict reliability requirement and the burden of synchroniz-
ing and controlling subprocesses. This allows us to apply P2P
technology, i.e. technology which does not assume any central

This work is funded as part of the European Commission Information Society
Technologies Programme (Future and Emerging Technologies). The authors
have sole responsibility for this work, it does not represent the opinion of the
European Community, and the European Community is not responsible for any
use that may be made of the data appearing herein.

and guaranteed control mechanism or database. Instead it is
based only on local information and local communication be-
tween the components of the network.1

P2P approaches provide only statistical guarantees for relia-
bility but work on wide area networks (WANs) where the costs
of communication are much higher than within a parallel ma-
chine (cluster) or local network. The advantage of targeting
WANs is the huge amount of resources that is available in the
form of e.g. the idle CPU time of computers with an Internet con-
nection. Another advantage of applying P2P technology is scal-
ability: the environment can easily grow with the rapid growth
of the amount of resources connected to the Internet without any
further investment.

To the authors’ knowledge, such an application of P2P tech-
nology for distributed computation is new. Existing P2P sys-
tems are used only to maintain discussion groups or to distribute
information or data (e.g. [4], [5], [6]). Systems that use WANs
for solving computational problems are not P2P and therefore
are not scalable (i.e. growing needs much effort and investment)
(e.g. [7], [8], [3]). The java platform offers a natural possibil-
ity to distribute computational tasks through allowing runtime
linking of executable code to an application. It provides rich
security features and at last but not least complete platform in-
dependence. This made Java an obvious choice for us.

To summarize: our environment can be thought of as a vir-
tual machine or distributed resource machine (DRM) made up
of computers anywhere on the Internet. The actual set of ma-
chines can constantly change and can also grow to a (very huge)
theoretical limit discussed in Section II without any special in-
tervention. Apart from security considerations, anyone having
access to the Internet can connect to the DRM and can either run
his/her own experiments or simply donate the spare capacity of
his or her machine.

The outline of the paper is as follows: Section II discusses
the DRM from an algorithmic and theoretical point of view. We
will illustrate the scalability and robustness of the underlying
epidemic protocol.

�

Note that there are broader interpretations of P2P technology, with empha-
sis on only resource-sharing or on the existance of some local communication
between participants. For example Napster [2] and even United Devices [3] are
P2P systems in this broader sense but not in the sense of our definition.

name this is the unique key
address the IP address and port of the node
date timestamp of the entry
agents[] names of agents living at the node
map optional information in a hash map

TABLE I

STRUCTURE OF AN ENTRY IN THE DATABASE OF A NODE.

Section III describes an application developed for this frame-
work. In this application the multistart stochastic hillclimbing
(MSHC) algorithm is parallelized; hillclimbers from random
starting points are distributed over our network using an algo-
rithm developed by us. While this is only a simple application
and does not make use of all the possibilities it is suitable for
illustrating the features of the DRM. We should note that in
spite of its simplicity the MSHC algorithm is sometimes sur-
prisingly successful so this example has considerable practical
relevance as well [9], [10]. The section contains the algorithmic
description and also theoretical analysis of the effectiveness of
the applied distribution scheme.

Section IV describes the results of our experiments on a real
DRM under different circumstances: in a stable, in an unstable,
and in a suddenly changing environment. Finally Section V
concludes the paper.

II. THE DISTRIBUTED RESOURCE MACHINE

The DRM is a P2P overlay network on the Internet forming
an autonomous agent environment. The applications are im-
plemented as multi-agent applications. The exact way an ap-
plication is implemented in the multi-agent framework is not
restricted in any way (only by the available features and func-
tionality of course), although we intend to suggest templates and
examples in the future (one of which is discussed in Section III)
to facilitate development.

For example in the EC domain a natural choice is to imple-
ment island models via a set of agents, each running an island
of evolution, and the information exchange (migration) can be
implemented on top of the communication functionality (mes-
saging) of the DRM. The extension libraries being developed by
our project support such higher level programming templates.

A. Self-Organizing Structure

The DRM is a network of DRM nodes. In the DRM every
node is completely equivalent. There are no nodes that possess
special information or have special functions. In other words in
the DRM there are no servers. Yet the nodes must be able to
know enough about the rest of the network in order to be able to
remain connected to it and to provide information about it to the
agents. The mechanism that allows this is a so called epidemic
protocol [11].

Every node maintains an incomplete database about the rest
of the network. This database contains entries on some other
nodes (see Table I). We call these nodes the neighbours of the
node. The database is refreshed using a push-pull anti-entropy
epidemic algorithm. This algorithm works as follows: every
node � chooses a living address from its database regularly once

within a time interval. An address is living if there is a working
node �

�
at that address (not necessarily the same node as in the

entry with the living address: it might be a new node started on
the same address). Then any differences between � and �

�
are

resolved so that after the communication � and �
�
will both have

the union of the two original databases (choosing the fresher
item if both contained items with a given key). Besides this �
will receive a fresh item on �

�
(with a new timestamp of course)

and �
�

will also receive an item on � with the actual timestamp.
The idea behind such algorithms is that in this way new in-

formation “infects” the network by getting in contact with an
(initially) exponentially growing front of the nodes (see also
Section II-B).

Two additions have to be made to this algorithm. The first is
that entries older than a given age have to be removed from the
database. The second is that the size of the database has to be
limited, otherwise, in the case of huge networks, the database
also becomes huge making the anti-entropy algorithm imprac-
tical. Fortunately the theoretical and practical results discussed
below show that both can be done without sacrificing the power
of the epidemic algorithm.

To connect a new node to the DRM one needs only one living
address. The database of the new node is initialized with the en-
try containing the living address only, and the rest is taken care
of by the epidemic algorithm described above. Removal of a
node does not need any administration at all. Note that a node
might even change its IP address and/or port while running,
so computers with dynamic IP addresses are also automatically
supported without any special modification of the algorithm.

B. Theoretical Properties

Since the epidemic algorithm is essentially statistical in na-
ture it is important to understand its behaviour well. The follow-
ing paragraphs will give answers to naturally arising questions.

An important assumption of the following results will be that
a given node has an equal probability of being in the database
of any other node. We will not analyse this assumption in this
paper. Let us mention however that the protocol is completely
location blind which would prove this assumption if the network
connections were reliable. Unfortunately they are not thus the
exact effect of the degree of reliability (and possibly the topol-
ogy of the underlying networks) should be studied in the future.

In all the following discussions the following notation will
be used: � is the number of nodes in the network,

�
is the size

of the database in each node and a node initiates exactly one
information exchange session in every � seconds.

B.1 How long does it take for a new entry to reach a given
node?

Let us assume that new information emerges in the system,
e.g. a new agent arrives at one of the nodes. Let the time be �
when introducing the new information in the system. Let ��� be
the probability that at time point 	
� the fixed node � has not yet
received the information. If we consider the pull version of the
epidemic algorithm then ������������� clearly holds since � did
not know the information at time 	
� and in step 	���� contacted
another node which has not yet learned about it either [11]. It
is elementary to show that for any given constant � there is an

	�� � 	 � ��� ��� index such that

� � �
�
�	� �
�
 �������� � 	�� 	�� � 	 � ��� ��� ��� ������� ���

Finally note that the push-pull version used in our system is of
course at least as fast as the plain pull variant.

B.2 How large the database must be to ensure connectivity?

We know already that information spreads very fast over the
network if the network is connected. But what is the probability
that the network is connected? The answer is given in [12] using
results and techniques from random graph theory.

Let � � ��� � � denote a random directed graph of � nodes in
which the outdegree of each node is exactly

�
and these

�
arcs

go to random nodes. Let � � � � ��� denote the probability that
there is a directed path from a given node to any other node in� � ��� � � . The following theorem holds:

Theorem 1: Consider the sequence of random graphs� � ��� �� � with
��

�
�����

��� � ��! � �"� , where � is a constant.
We have ��#%$ �&(' � � �) � ��� � �)*,+.-)/

It is notable that �0�1� � �) � ��� � �
* � � if �3254�6 . The

theorem tells us that for a large network of size � if the size
of the database is

�
�
�����

� � � where e.g. �7284�6 we have
a connected network with an extreamly large probability. For
example for

�
� � � � we can have �:9 � �<;�; . Empirical analysis

proves that the constants predicted by the theorem provide the
expected performance [12], [13].

B.3 Is it possible to have a “traffic jam”?

A given node � initiates exactly one information exchange
session in every � seconds. However one might suspect that
since other nodes can initiate sessions to � as well, in case of
large networks we can have a congestion if too many other
nodes want to talk to � at the same time. Fortunately this has
a very low probability. Let = be a random variable denoting the
incoming requests during a fixed time interval of � seconds. As-
suming random distribution of the connections in our network
it is easy to see that the distribution of = is binomial with the
parameters �>� � and � � �@? � �>� �@� . Accordingly, the expected
value and variance areA � �B� �

�B� � � ��� C � � � �D� �,� A � �B�E4
�B� � �

From around �F2HG � this distribution can be very closely ap-
proximated by the Poisson distribution with parameter I � �
(independently of �). For this distribution we have e.g. Pr

� =J2K � � �
*ML

and Pr
� =N2 �@4�� � �

* � � . Given the relatively small
required size of the databases at each node (as proved above)
this can be easily handled. Chosing a large value for � (say one
minute) can reduce communication even further. Recall that this
bounds are independent of � so scalability is not damaged.

III. THE TEST APPLICATION

The application itself has two layers. One layer is an abstract
load balancing framework on top of the DRM which has very
interesting characteristics in spite of its simplicity. The second

(highest) layer is the subset sum problem—the actual problem
to be solved—discussed in Section III-B.

A. The Load Balancing Algorithm

In this paper we chose to consider the simplest possible ap-
plication on the DRM, a load balancing framework. This frame-
work does not make use of the messaging features of the DRM
(at least not on the application level) i.e. the tasks do not com-
municate with each other. The reason for this choice is that this
work focuses on the DRM and this application suffices for illus-
trating the reliability, scalability and robustness of the system.

We assume that our application is composed of O tasks that
have to be run independently of each other as fast as possi-
ble. The tasks have to be distributed efficiently over the avail-
able resources in a way that tolerates the unreliability and high
communication costs of WANs, and the dynamic nature of the
DRM, i.e. that machines can come and go at any time.

Load balancing is based on epidemic algorithms just like the
DRM itself. The application starts by starting a so called is-
land which is in fact an autonomous agent. This island can be
started on any node within the DRM. The goal of this island is
to complete O tasks. The island achieves this goal by starting to
work on a task and at the same time listening to the communi-
cations of its host node. When the node exchanges information
with another (according to the epidemic protocol of the DRM)
the island checks if the peer node has an island already (recall
that the database item of a node contains information about the
agents running there). If not it sends half of its remaining tasks
to the peer node in the form of a new island which then runs the
same distribution mechanism on the peer node in order to com-
plete its tasks. In this way the tasks “infect” the network. Note
that it means that there is at most one island on every node.

When an island arrives at its host node it sends a confirmation
message back. This is the only communication that is taking
place. It ensures that the processing of the set of tasks sent
to another node was at least started. Confirmation of finishing
tasks does not make sense since the sender island might not exist
anymore at that time. This might result in loosing tasks but this
is not a serious disadvantage under our assumptions described
in Section I.

Let us briefly mention two notable properties of this algo-
rithm. Firstly, the performance of the nodes does not have to be
taken into account when sending out tasks since if the machine
is too slow, it will send most of its tasks on anyway to nodes
that finish earlier. Secondly, no mechanism is needed to indi-
cate that free resources are available because those resources
will be infected very quickly anyway by simply communicating
with peers. These properties are possible due to the epidemic
protocol underlying the DRM discussed earlier.

A.1 Some Theoretical Properties

Let O be the number of tasks and � the number of nodes. We
have to differentiate between three cases.

A.1.a Huge network: OQP � . Here the probability ��R that
an island with more than one task can send some of its tasks on
when contacting (or being contacted by) another node is ��RS�
� �

�
�T�UOV��? � which is close to 1. Assuming �WR � � the

distribution of the number of communications needed to find a

free node follows a geometric distribution with the parameter �
with the expected value and varianceA � �

�
� �
� �7O � C � � � � �

� �

These are close to 1 and 0 respectively. This—together with
the fact that the islands send half of their tasks every time they
can—means that the tasks literally explode into the space of the
DRM resources. The time needed to completely distribute the
tasks is � ������� OV� . Recall that we had huge networks in mind
when designing the DRM.

A.1.b Small network: O � � . In this case the expected num-
ber of tasks an island has is much more than one. When in such
a network an empty node connects to a random peer (accord-
ing to the epidemic algorithm) it is very likely that this peer
will have some tasks to send. Thus it is very unlikely that any
node remains empty for a long time. This situation is analogous
to the end-phase of the pull version of the epidemic algorithm
when most of the nodes already know some piece of new infor-
mation. A more exact formulation can be found in [11].

A.1.c O 9 � . This case (unlike the first two) is not optimal.
The reason is that a point comes when a considerable number of
islands work only on one task. At this point these islands occupy
a considerable proportion of the DRM. Because of this the is-
landss with more tasks find the islands which have none slower.
However in the first phase the growth is fast, it slows down only
at the end phase. But even in this case if the completion time of
an average task is much longer than the time between two in-
formation exchanges between the nodes then this disadvantage
becomes almost invisible.

B. The Subset Sum Problem

Even though the actual problem we solve does not play a
major part we chose to use a real problem instead of running
sleeping cycles or benchmarking code. We would like to em-
phasize however that this paper is not about solving the subset
sum problem. For that purpose metaheuristics like evolution-
ary algorithms or different hillclimbers are not the best choice
anyway as specific algorithms based on interesting mathemati-
cal results are known [14], [15]. For the sake of completeness
we give the description of a task.

In the case of the subset sum problem we are given a set�
����� �@��� � ���	�	� �
� �� of � positive integers and a positive

integer . We would like to find a ��� �
such that the sum

of the elements in � is closest to, without exceeding, . This
problem is NP-complete. This does not mean that every in-
stance is hard. When the elements of

�
are relatively large the

instances become harder. In particular, when the elements of
�

are uniformly drawn from
�
� � 4 � and is close to the average

of the set elements, the instance is very hard [14]. We used such
an instance with � � � � � .

A task was running a stochastic multistart hillclimber
(SMHC) for a given number of evaluations. The result of a task
is the best solution found. A solution (which is always a subset)
was encoded as a binary vector of length � . The neighborhood
for the hillclimber was defined by a usual mutation operator:
every bit is flipped with a probability of 4<? � . In every step a
new solution is generated. The new solution is accepted if it is

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500 4000 4500

nu
m

be
r

of
 n

od
es

time in seconds

Nodes used during undisturbed run

working nodes
nodes available
active islands

Fig. 1.

not worse than the actual solution (for evaluation the approach
used in [16] was adopted). The search is restarted from a ran-
dom solution if there is no improvement within a given number
of evaluations.

IV. EMPIRICAL RESULTS

We designed three different scenarios to show that what has
been claimed concerning DRM and epidemic load balancing
properties holds when run on a cluster of real machines. For
each of them, a fixed number of tasks (here: 1500) was com-
puted.
Optimistic scenario: The experiment is running on an undis-
turbed cluster, no node is added, deleted or restarted.
Cluster addition scenario: After the experiment has been run-
ning for a time, a huge number of nodes is added to and deleted
from the DRM several times. The added nodes are always
empty, i.e. they have no tasks.
Intensified real-world scenario: A number of nodes is inten-
tionally made unstable. Each of the modified nodes resets and
starts all over again several times.

We are interested in the performance behaviour of the DRM
under these different conditions, and would like to see a speedup
factor that does not vary much over the three scenarios. Note
that we do not want to show robustness in the sense of getting all
of the tasks done, this is hindered by the layout of the load bal-
ancing system and would in any case be very difficult to achieve
on a large-scale distributed p2p system. From our experiments,
we cannot conclude much about scalability of the performance
behaviour because the number of machines available for testing
has been quite limited.

It must be stated that even for the optimistic scenario it is very
difficult, if not impossible, to repeat an experiment in excactly
the same way. However, we consider the average results over
many experiments relatively stable.

A. Optimistic Scenario

The number of nodes is stable for this scenario, the experi-
ment runs undisturbed by external influences. This can easily
be confirmed visually from Fig. 1. It also shows that the num-
ber of working nodes varies between 9 and 11 until most of the

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000 3500 4000 4500

po
w

er
 in

 ta
sk

s/
ho

ur

time in seconds

Computational power usage during undisturbed run

power used in tasks/hour
power available in tasks/hour
accumulated power usage in tenths of percent
100 Percent

Fig. 2.

tasks are done. At around 3500 seconds, the task distribution
seems to get more difficult, so that rebalancing the system be-
gins to take longer and more nodes remain without work. At
this point, 83% of the tasks are done. But as long as the num-
ber of tasks available exceeds the number of nodes by far, the
DRM can recover from this situation. Near the end, the number
of tasks left to compute approaches the number of nodes and
the suboptimal behaviour described in Section III-A.1 (O�9 �)
appears as predicted. The slowest of the nodes that still have
one task to compute determines the end of the experiment. In
this case, all of the 1500 tasks have been executed. Note that
the number of active islands differs slightly from the working
nodes. That is because islands performing task setup and dis-
tribution are considered active, but their node is not considered
working during this administration time.

Figure 2 shows a very similar structure. It displays the used
resources relative to the available capacity in terms of tasks per
hour. These numbers are determined by using the tasks them-
selves as a benchmark and computing the approximate max-
imum speed of a node via the average time needed to finish
a task. The accumulated power usage shown as seperate line
proves that the available total capacity of all nodes in the exper-
iment is used to more than 86%.

B. Cluster Addition Scenario

It can be visually perceived from fig. 3 that 9 additional nodes
have been added to the DRM after around 300 seconds. They
are quickly found and exploited by placing new islands on them.
After 750 seconds have elapsed, the nodes are removed again by
shutting them down. This is repeated with 10 nodes later on, this
time removing them step by step and not at once. Despite the
expectation that this scenario depicts a very extreme course, the
DRM copes quite well with the situation. Available resources
are utilised rapidly and even the deletion of half of the nodes
does not hinder the experiment from continuing.

For this experiment, the difference between the two types of
chart (Figures 3 and 4) is clearer. The reason is that the capac-
ity of the added nodes is lower than the capacity of the starting
nodes. This is indicated by the smaller steps visible in Fig. 4.
Both charts suggest however that most of the available resources

0

5

10

15

20

0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r

of
 n

od
es

time in seconds

Nodes used during run with intentional addition/deletion of machines

working nodes
nodes available
active islands

Fig. 3.

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500

po
w

er
 in

 ta
sk

s/
ho

ur

time in seconds

Computational power usage during run with intentional addition/deletion of machines

power used in tasks/hour
power available in tasks/hour
accumulated power usage in tenths of percent
100 Percent

Fig. 4.

are used. At the end, the accumulated power usage is 80%. It
is however important to note that not all tasks are actually com-
pleted in this scenario. As the islands own their tasks after con-
firmation (they are not memorized anywhere else in the DRM),
the tasks of a prematurely shut down island are lost. Thus, the
number of tasks completed in this experiment is only 1104 of
1500. This result would have been different if only the network
connection of the additional nodes had been disabled. But after
restart, they have no knowledge of any previous task or island.

C. Intensified Real-World Scenario

In this scenario, 10 of the 19 used nodes are made unreliable
(Figures 5 and 6). This is modelled by enforcing a restart at
a randomly chosen time Gaussian distributed around 600 sec-
onds. Thus we assume that every one of the unreliable nodes
is restarted several times during the experiment. As stated be-
fore, a node restart means loss of the actual tasks concluded in
its island and therefore the number of finished tasks at the end
of the experiment is expected to be quite low. In fact, only 661
of 1500 tasks are computed. But it should be noted that this
scenario really is extremely intensified.

Nevertheless, the DRM again proves the ability to cope well

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500

nu
m

be
r

of
 n

od
es

time in seconds

Nodes used during run with an intentionally failing set of nodes

working nodes
nodes available
active islands

Fig. 5.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

po
w

er
 in

 ta
sk

s/
ho

ur

time in seconds

Computational power usage during run with an intentionally failing set of nodes

power used in tasks/hour
power available in tasks/hour
accumulated power usage in tenths of percent
100 Percent

Fig. 6.

with the situation. One example may illustrate this behaviour.
After 1800 seconds, a difficult task redistribution becomes nec-
essary, indicated by the number of working nodes going down
to 7. At this time, only 38 tasks are left in the system, thus the
suboptimal behaviour described in Section III-A.1 (O 9 �) is
near. But the load balancing algorithm places tasks on another
3 nodes. In the end, the accumulated power usage is 75%.

D. Results

For the sake of completeness we give the results of the op-
timization. For the meaning of the values below please refer
to [16]. Over all the experiments performed the mean of the
best objective function values found in the single hillclimbing
runs vary from 1.41E25 to 1.53E25 and the best value we found
is 8.51E20.

V. CONCLUSIONS

In this paper we discussed a distributed P2P environment for
running special distributed applications from domains like evo-
lutionary computation, social modeling, artificial life, etc. We
focused on the scalability and robustness of the environment.

Theoretical properties of the epidemic algorithm responsi-

ble for information flow and the connectivity of the system
were discussed. These results show that under certain assump-
tions the required scalability and reliability are present. Large
scale empirical simulations of the DRM are currently being con-
ducted in order to gain more insight into the dynamics of the
network.

Empirical results on a real network were also presented.
Probably the simplest possible application (load balancing of
a given number of independent MSHC optimizations) was cho-
sen to illustrate the potentials of the system. The application
reacted well to extreme conditions like fluctuation and sudden
changes of the available resources.

ACKNOWLEDGMENTS

The authors would like to thank the other members of the
DREAM project for fruitful discussions, the early pioneers [1]
as well as the rest of the DREAM staff, Maribel Garcı́a Arenas,
Emin Aydin, Pierre Collet and Daniele Denaro.

REFERENCES

[1] Ben Paechter, Thomas Bäck, Marc Schoenauer, Michele Sebag, A. E.
Eiben, Juan J. Merelo, and Terry C. Fogarty, “A distributed resoucre evo-
lutionary algorithm machine (DREAM),” in Proceedings of the Congress
on Evolutionary Computation 2000 (CEC2000). IEEE, 2000, pp. 951–
958, IEEE Press.

[2] Napster, “http://napster.com/,” .
[3] United Devicestm, “http://ud.com/,” .
[4] Peter Druschel and Antony Rowstron, “Storage management and caching

in PAST, a large-scale, persistent peer-to-peer storage utility,” in Pro-
ceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP), Banff, Canada, 2001, ACM.

[5] Gnutella, “http://gnutella.wego.com/,” .
[6] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong,

“Freenet: A distributed anonymous information storage and retrieval sys-
tem,” in Designing Privacy Enhancing Technologies, Hannes Federrath,
Ed., 2000, vol. 2009 of LNCS, pp. 46–66.

[7] distributed.net, “http://distributed.net/,” .
[8] SETI@home, “http://setiathome.ssl.berkeley.edu/,” .
[9] Andrew L. Tuson, Richard Wheeler, and Peter Ross, “Emergency

resource redistribution in the developing world: Towards a practical
evolutionary/meta-heursitic scheduling system,” in Proceedings of Ge-
netic Agorithms in Engeneering Systems: Innovations and Applications
(GALESIA’97), Glasgow, UK, 1997, IEE/IEEE.

[10] Ari Juels and Martin Wattenberg, “Stochastic hillclimbing as a baseline
method for evaluating genetic algorithms,” in Advances in Neural Infor-
mation Processing Systems, David S. Touretzky, Michael C. Mozer, and
Michael E. Hasselmo, Eds. 1996, vol. 8, pp. 430–436, The MIT Press.

[11] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry, “Epidemic
algorithms for replicated database management,” in Proceedings of the
6th Annual ACM Symposium on Principles of Distributed Computing
(PODC’87), Vancouver, Aug. 1987, ACM, pp. 1–12.

[12] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J.
Ganesh, “Probablistic reliable dissemination in large-
scale systems,” Submitted for publication, available as
http://research.microsoft.com/ camdis/PUBLIS/kermarrec.ps.

[13] Patrick Th. Eugster, Rachid Guerraoui, Sidath B. Handurukande, Anne-
Marie Kermarrec, and Petr Kouznetsov, “Lightweight probablistic broad-
cast,” in Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN 2001), Göteborg, Sweden, 2001.

[14] Claus-Peter Schnorr and M. Euchner, “Lattice basis reduction: Improved
practial algorithms and solving subset sum problems,” Mathematical Pro-
gramming, vol. 66, pp. 181–191, 1994.

[15] Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M.
Odlyzko, Claus-Peter Schnorr, and Jacques Stern, “An improved low-
density subset sum algorithm,” Computational Complexity, vol. 2, pp.
111–128, 1992.

[16] Sami Khuri, Thomas Bäck, and Jörg Heitkötter, “An evolutionary ap-
proach to combinatorial optimization problems,” in Proceedings of the
22nd annual ACM computer science conference on Scaling up: meet-
ing the challenge of complexity in real-world computing applications
(CSC’94). ACM, 1994, pp. 66–73.

