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Abstract. In this paper we investigate the properties of CEAs with populations
structured as Watts–Strogatz small-world graphs and Albert–Barabási scale-free
graphs as problem solvers, using several standard discrete optimization problems
as a benchmark. The EA variants employed include self-adaptation of mutation
rates. Results are compared with the corresponding classical panmictic EA show-
ing that topology together with self-adaptation drastically influences the search.

1 Introduction

The standard population structure used in evolutionary algorithms (EAs) is thepan-
micticstructure. In panmictic populations, also called mixing, any individual is equally
likely to interact with any other individual. This setting is the most straightforward and
many theoretical results have been obtained for it. However, since at least two decades,
several researchers have suggested that EAs populations might have structures endowed
with spatial features, like many natural populations (for recent reviews see [1, 2] and
references therein). Empirical results suggest that using structured populations is often
beneficial owing to better diversity maintenance, formation of niches, and lower selec-
tion pressures in the population favoring the slow spreading of solutions and relieving
premature convergence and stagnation. The most popular models are theisland model
and thecellular model. In the island model the whole population is subdivided into
several subpopulations each of which is panmictic. A standard EA runs in each sub-
population and, from time to time, a fraction of individuals migrate between islands.
Although this model may offer some advantages over a single mixing population, it is
still rather close to the latter.

Here we shall focus on cellular models instead, which are a more radical departure
from the standard setting. What sets them apart is the fact that all the operators act lo-
cally, within a small pool of individuals. The customary cellular topology is the regular
lattice. Cellular evolutionary algorithms (CEAs) on regular lattices, usually rings and
two-dimensional grids, have been often used with good results and some of their theo-
retical properties are known (see [2]). However, there is no reason why cellular models
should be limited to regular lattices. Other graph structures are possible, such as ran-
dom graphs andsmall-worldnetworks. These small-world networks are not regular nor
completely random, and have recently attracted a lot of attention in many areas because



of their surprising topological properties [3, 4]. Random graphs and small-world net-
works have been recently studied from the point of view of the selection intensity in
the population [5]. Random graphs are roughly equivalent to panmictic structures in
behavior, at least for not too small probability of having an edge between two arbitrary
vertices. The families of small-world graphs are potentially more interesting, as they
can induce widely variable global selection pressures, depending on the value of some
graph characteristic parameter [5]. A first investigation on the use of such structured
populations for optimization problems has been proposed by Preuss and Lasarczyk [6].

In this paper we investigate the properties of CEAs with populations structured
as Watts–Strogatz small-world graphs and Albert–Barabási scale-free graphs as prob-
lem solvers, using several standard discrete optimization problems as a benchmark. We
should like to point out at the outset that it is not our intention to compete with the
best heuristics for the problems. We do not use problem information, nor do we include
any kind of local or enhanced search. Our goal is simply to compare these irregular
population structures with regular lattices CEAs and the panmictic EA using the sim-
plest settings and only few parameters. We are especially interested in answering the
following questions:

– What is the influence of different node degree distributions on CEAs when the
overall connectivity (number of connections) remains constant?

– Are scale-free topologies worthwhile alternatives to standard small-world ones? If
so, for which problem types?

– When —if at all— does self-adaptation of mutation parameters provide an advan-
tage over fixed mutation rates?

When dealing with evolutionary algorithms on binary represented problems, a spo-
radically suggested [7] and rarely used technique is the self-adaptation of mutation
parameters. Although well established for continuous representations [8], its applica-
bility is rather unclear for test problems typically approached with genetic algorithms.
It is our hope that self-adaptation proves worthwhile for CEAs, especially in connection
with small-world topologies.

2 Test Problems

In this section we present the set of problems chosen for this study. The benchmark
is representative because it contains many different interesting features in optimiza-
tion, such as epistasis, multimodality, deceptiveness, and problem generators. These
are important ingredients in any work trying to evaluate algorithmic approaches with
the objective of getting reliable results, as stated by Whitley et al. in [9].

We experiment with the massively multimodal deceptive problem (MMDP), a mod-
ified version of the multimodal problem generator P-PEAKS, error correcting code de-
sign (ECC), and the countsat problem (COUNTSAT). The choice of this set of prob-
lems is justified by both their difficulty and their application domains (combinatorial
optimization, telecommunications, etc.). This gives us a fair level of confidence in the
results, although no benchmark will ever be able to assert the superiority of a particular
algorithm on all problems and problem instances [10]. The problems selected for this
benchmark are briefly presented in the following paragraphs.



Massively Multimodal Deceptive Problem (MMDP).The MMDP is a problem that
has been specifically designed to be difficult for an EA [11]. It is made up ofk de-
ceptive subproblems (si) of 6 bits each, whose value depends on the number of ones
(unitation) a binary string has (see Figure 1). These subfunctions possess two global
maxima and a deceptive attractor in the middle point.
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Massively Multimodal Deceptive Problem
unitation subfunction value

0 1.000000
1 0.000000
2 0.360384
3 0.640576
4 0.360384
5 0.000000
6 1.000000

Fig. 1: Basic deceptive bipolar function (si) for MMDP.

In MMDP each subproblemsi contributes to the fitness value according to itsuni-
tation (Figure 1). The global optimum has a value ofk and it is attained when every
subproblem is composed of zero or six ones. The number of local optima is quite large
(22k), while there are only2k global solutions. Therefore, the degree of multimodal-
ity is regulated by thek parameter. To avoid floor and ceiling effects (none or all EA
are able to solve the problem) we use a moderately difficult instance withk = 20.
Fitness is computed after after Eq. 1, utilizing subfunctionsi as depicted in Figure 1.
Note that this problem is separable; its constituents could be optimized individually if
its boundaries in the genome were known to the EA.

fMMDP (s) =

kX
i=1

fitness(si) (1)

Multimodal Problem Generator (wP-PEAKS).A problem generator is an easily pa-
rameterizable task which has a tunable degree of epistasis, thus permitting to derive
instances with growing difficulty at will. With a problem generator we evaluate our
algorithms on a high number of random problem instances. Since a different instance is
solved each time the algorithm runs, the predictive power of the results for the problem
class as a whole is increased.

The idea of P-PEAKS is to generateP randomN -bit strings that represent the
location ofP peaks in search space. Using a small/large number of peaks results in
weakly/strongly epistatic problems. In the original problem formulation [12], the fitness
value of a string was the number of bits it had in common with the nearest peak in that
space, divided byN . However, each peak represented a global optimum. We modified
the problem by adding weightswi ∈ R+ with only w1 = 1.0 andw[2...P ] < 1.0,



thereby requiring the optimization algorithm to find the one peak bearing the global
optimum instead of just any peak. It should be noted that doing so for one global and
nine local peaks (as utilized in our experiments) —tested empirically— appears to be a
lot harder than a standard P-PEAKS withP = 100.

fwP−PEAKS(x) =
1

N
max
1≤i≤p

{wi · N − HammingD(x, P eaki)} (2)

Error Correcting Code Design Problem (ECC).The ECC problem was presented in
[13]. We will consider a three-tuple(n, M, d), wheren is the length of each codeword
(number of bits),M is the number of codewords, andd is the minimum Hamming
distance between any pair of codewords. Our objective will be to find a code which
has a value ford as large as possible (reflecting greater tolerance to noise and errors),
given previously fixed values forn andM . The problem we have studied is a simplified
version of that in [13]. In our case we search half of the codewords (M/2) that will
compose the code, and the other half is made up by the complement of the codewords
computed by the algorithm. The fitness function to be maximized is:

fECC =
1

MX
i=1

MX
j=1,i6=j

d−2
ij

, (3)

wheredij represents the Hamming distance between codewordsi andj in the codeC
(made up ofM codewords of lengthn). In the present paper, we consider an instance
with M = 24 andn = 12, yielding optimum fitness of0.0674 [14].

COUNTSAT Problem The COUNSAT problem has been proposed by Drosteet al.
[15] as an instance of the MAXSAT problem difficult to be solved by Evolutionary
Algorithms. In COUNTSAT, the solution value is the number of clauses (among all the
possible3-variables Horn clauses) that are satisfied by ann-bit input string, where the
binary value0 and1 are considered as afalseand atrue boolean value, respectively.
It is easy to check that the optimum value is that of the solution with all the variables
assigned to1. Drosteet al.have proved that the fitness of a tentative solutionx can be
easily computed using the following equation:

fCOUNTSAT(x) = s + n(n − 1)(n − 2) − 2(n − 2)
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s
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!
, (4)

wheres is the unitation of the solutionx (i.e. the number of1 entries inx), andn
is the length ofx. In this paper we will study an instance ofn = 20 variables, with
normalized optimum fitness of1.0.

3 Small-World Graph Topologies

It has been shown in recent years that graphs occurring in many social, biological, and
man-made systems are often neither completely regular, such as lattices, nor completely
random [16]. They have instead what has been called asmall-worldtopology, in which



nodes are highly clustered yet the path length between them is small. This behavior
is due to the presence ofshortcutsi.e., a few direct links between nodes that would
otherwise be far removed. Following Watts’ and Strogatz’s discovery, Barabasiet al.
[3] found that several important networks such as the World Wide Web, Internet, author
citation networks, and metabolic networks among others, also have the small world
property but their degree distribution function differs: they have more nodes of high
degree that are likely in a random graph of the same size and edge density. These graphs
have been calledscale-freebecause the degree probability distribution function follows
a power law. In the next sections we briefly describe how small-world and scale-free
graphs can be constructed, more details can be found in [16, 3, 4].

3.1 The Watts–Strogatz Model

Although this model has been a real breakthrough in the technical sense when it ap-
peared, today it is clear that it is not a good representation of real networks as it retains
many features of the random graph model. In spite of this, the Watts–Strogatz model,
because of its simplicity of construction and the richness of behavior, is still an inter-
esting topology in artificial systems where there is no “natural” constraint on the type
of connectivity.

According to Watts and Strogatz [16], a small-world graph can be constructed start-
ing from a regular ring of nodes in which each node hask neighbors (k � N ) by
simply systematically going through successive nodes and “rewiring” a link with a cer-
tain probabilityβ. When the edge is deleted, it is replaced with an edge to a randomly
chosen node. If rewiring an edge would lead to a duplicate edge, it is left unchanged.
This procedure will create a number ofshortcutsthat join distant parts of the lattice.

Shortcuts are the hallmark of small worlds. While the average path length1 between
nodes scales logarithmically in the number of nodes for a random graph, in Watts-
Strogatz graphs it scales approximately linearly for low rewiring probability but goes
down very quickly and tends to the random graph limit asβ increases. This is due to
the progressive appearance of shortcut edges between distant parts of the graph, which
obviously contract the path lengths between many vertices. However, small worlds typ-
ically have a higher clustering coefficient2 than random graphs. Small-world networks
have a degree distributionP (k) close to Poissonian.

3.2 The Barab́asi-Albert Model

Albert and Barab́asi were the first to realize that real networks grow incrementally and
that their evolving topology is determined by the way in which new nodes are added
to the network and proposed an extremely simple model based on these ideas [3]. At
the beginning one starts with a small clique ofm0 nodes. At each successive time step
a new node is added such that itsm ≤ m0 edges link it tom nodes already in the

1 The average path lengthL of a graph is the average value of all pair shortest paths.
2 The clustering coefficientC of a node is a measure of the probability that two nodes that are

its neighbors are also neighbors among themselves. The average〈C〉 is the average of theCs
of all nodes in the graph.



graph. When choosing the nodes to which the new nodes connects, it is assumed that
the probabilityπ that a new node will be connected to nodei depends on the degree
ki of i such that nodes that have already many links are more likely to be chosen over
those that have few. This is calledpreferential attachmentand is an effect that can be
observed in several real networks. The probabilityπ is given by:

π(ki) =
ki∑
j kj

,

where the sum is over all nodes already in the graph. The model evolves into a sta-
tionary scale-free network with power-law probability distribution for the vertex degree
P (k) ∼ k−γ , with γ ∼ 3.

4 Experiment

Focus. Investigate the effects of varied scale-free and small-world topologies on cellu-
lar EA with and without self-adaptation.

Pre-experimental planning.First tests employed the parameter optimization method
SPO as recently suggested by Bartz-Beielstein [17]. They revealed that, keeping the
population size constant at400 and the number of connections at800, in most cases no
significant performance increase could be gained by varying the number of offspring per
generation or the maximum lifespan of an individual (the latter would lead to aκ-type
or comma-type environmental selection/replacement scheme). This also holds for the
mutation rate meta-parameterτ needed for self-adaptation, which has therefore been
fixed at0.5. Furthermore, the mutation rate default settingpm = 1/l, with l the repre-
sentation length, could be verified as a good compromise when using a fixed mutation
rate for different problems.

A notable exception is the COUNTSAT problem, where self-adaptation together
with large birth surplus and comma-type environmental selection performed very well.
However, to simplify interpretation of results, we limited experimentation to plus se-
lection, that is, any parent survives as long as it is not outperformed by its offspring.
Our tests also showed that choosing a large population size for the panmictic EA is
well-founded for the given problem set, at least when striving for high success rates.

For all problems, we determined suitable run lengths in order to measure success
rates that approximate the ones for an infinite number of evaluations. The resulting run
lengths are given in Table 1. In most cases, the actual average amount of evaluations
needed to reach the global optimum is much lower.

When mutation rates are allowed to change, they still must be initialized with mean-
ingful values. Our testing revealed that either starting withpm = 1/l or pm = 0.5 for
all individuals is advantageous, as opposed to initializingpm uniformly within ]0, 1[ .

Task. The character of our experiment is explorative; we want to find evidence that
helps to answer the questions posed in the Introduction, namely situations in which
small-world/scale-free topology based CEAs and/or self-adaptation appear advanta-
geous over a standard, panmictic EA.



Table 1: Problem designs, common (top) and individual (bottom) part. SR stands for success
rate, and AES is the average number of evaluations to solution. Each run was stopped at the
given maximum number of evaluations as the only termination criterion.

Initialization Number of runs Performance measures
randomized 100 SR/AES

Problem Instance Bits Max. eval Optimum
MMDP 20 blocks of 6 bits 120 120000 20.0
wP-PEAKS 10 peaks,w1 = 1.0, w[2...10] = 0.99 100 200000 1.0
ECC 12 codes̀a 12 bits, 12 complementary codes 144 400000 0.0674
COUNTSAT 20 bits 20 120000 1.0

Setup. Utilized problem designs, including initialization and termination criterion, are
documented in Table 1. The EA variants employed all use bit-flipping mutation with
probabilitypm and 2-point crossover. Mating selection is done randomly in the neigh-
borhood of each individual, i.e. uniform selection, or among the whole population
for the panmictic variant. We set the crossover probability to1, so that during each
generation, every individual produces one offspring. Replacement —or environmental
selection— is performed simultaneously (synchronous) for all individuals, taking the
better one of the current individual and its offspring each. Population size (400) and
number of connections (800) are kept at CEA standard values to allow for comparison
with previous studies [18].

Self-adaptation is performed as suggested by Rudolph [19] for discrete variables,
differing only in that a mutation event always flips the accordant bit instead of com-
puting its new value from the old one or choosing it randomly from{0, 1}. We apply
it to the mutation probability only, as depicted in Eqn. 5, whereτ is a constant meta-
parameter andN(0, 1) stands for a standard normally distributed random variable.

p′mut = pmut · exp (τ ·N(0, 1)) (5)

Thus every individual gets a mutation probability that it bequeathes to approximately
half of its children by discrete recombination. We follow the standard scheme of evolu-
tion strategies by first applying mutation to the mutation rate, then utilizing the acquired
mutation rate for mutating the rest of the genome [8].

Summarizing, four EA variants are run on the test problem set: A panmictic EA,
a CEA with fixed mutation ratepm = 1/l, and two CEAs with self-adaptive mutation
rates, starting withpm = 1/l andpm = 0.5, respectively. Except for the panmictic
EA, different graphs are tested: For the Watts and Strogatz model topologies tried, we
vary the rewiring factorβ between0 and0.2 . Whereas0 stands for an unmodified
ring structure,β > 0.2 produces networks that rapidly approach random graphs. The
scale-free topologies were created for kernel sizes from the minimum2 to 28, in which
almost half of the available connections must be spent for the kernel, so that at least one
per remaining node is left for preferential attachment. With the given parameters, actual
topologies have been created anew for every single run.

Experimentation/Visualization.Due to space limitations, we only depict SR (success
rate) results for the four problems, see Figures 2 and 3. Table 2 additionally provides
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Fig. 2: Success rates for small-world (left) and scale-free (right) topology CEAs, compared to a
similarly parametrized panmictic EA, on the MMDP. Each point is generated from 100 runs.

numerical values obtained for AES (average number of evaluations to solution) and SR
criteria on the MMDP, tables for the other problems are omitted for the same reason.

Observations.The first thing to note is that the SR performance curves look very dif-
ferent for the four test problems. We therefore decided to describe the obtained results
separately.

MMDP: Success rates for all small-world topology CEAs (except whenβ = 0) are
near1 and thus much higher than0.66 of the panmictic variant. At the same time,
they are a lot slower than the panmictic EA (see Table 2). Ring topology CEAs,
i.e.β = 0, may have failed to succeed because their time consumption would have
been even higher than the given limit. Scale-free CEAs with small kernels perform
comparable to small-world CEAs with medium rewiring factor, in success rates as
well as in speed. For larger kernels, success rates drop dramatically, even below the
ones for the panmictic EA. Simultaneously, the length of successful runs increases.
Self-adaptation of mutation rates works well in all small-world CEAs and quite
good for scale-free CEAs with small kernels. It remarkably lowers the AES if
started withpm = 1/l . Interestingly, it was observed that learned mutation rates,
especially when started at0.5, tend to develop towards both ends of the allowed
interval, namely0 and1, within the same population.

ECC: For both topology types, the fixed mutation CEA outperforms all other variants
with respect to the SR criterion. Rewiring rates and kernel sizes seem to have little
influence here. The panmictic EA is slightly faster but achieves much worse success
rates. Self-adaptation does not seem to work at all for this problem, it delays the
CEAs while also reducing success rates.

COUNTSAT: Only one of the four algorithms is able to solve the problem with non-
significant success rates: The self-adaptive CEA starting withpm = 0.5 . Topology
differences seem to have little influence. Unfortunately, we did not try a panmictic
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Fig. 3: Success rates for small-world (left) and scale-free (right) topology CEAs, compared to a
similarly parametrized panmictic EA, on problems (top to bottom) ECC, COUNTSAT and wP-
PEAKS. Points are generated from 100 runs each.



Table 2:Panmictic versus parametrized scale-free and small-world topology cellular EA on prob-
lem MMDP. Performance values for EA variants are ordered into blocks of three rows, giving
success rates (SR), average evaluations to solution (AES) and AES standard deviations, respec-
tively. Success rates are averaged from 100 runs, AES values and standard deviations computed
from the fraction reaching the global optimum. Characteristic path lengths (cpl) and clustering
coefficients (C) are determined empirically.

EA variant: panmictic, non-adaptive, initialpm = 1/l
SR 0.66 0.66 0.66 0.66 0.66 0.66 0.66
AES 28894 28894 28894 28894 28894 28894 28894
AES std.dev. 11727 11727 11727 11727 11727 11727 11727

kernel sizes⇒ 2 4 6 10 14 20 28
cpl/C⇒ 3.7/0.05 3.7/0.06 3.6/0.07 3.4/0.12 3.3/0.20 3.1/0.39 3.1/0.76

EA variant: scale-free, non-adaptive, initialpm = 1/l
SR 0.81 0.74 0.75 0.65 0.36 0.07 0.0
AES 58420 59027 57307 65785 65500 74571 —
AES std.dev. 10507 12162 8016 9998 9960 12816 —

EA variant: scale-free, self-adaptive, initialpm = 1/l
SR 0.60 0.55 0.50 0.44 0.30 0.03 0.0
AES 40067 38473 38480 40364 41067 44000 —
AES std.dev. 10334 2878 3407 3675 3714 4320 —

EA variant: scale-free, self-adaptive, initialpm = 0.5
SR 0.93 0.94 0.92 0.85 0.68 0.39 0.03
AES 64129 63745 62348 67365 71706 84051 110000
AES std.dev. 10373 10592 9239 11950 14014 15416 10198

rewiring factor⇒ 0.0 0.01 0.02 0.05 0.10 0.15 0.20
cpl/C⇒ 50.4/0.5 15.5/0.47 10.8/0.45 7.4/0.37 5.9/0.28 5.4/0.20 5.0/0.16

EA variant: small-world, non-adaptive, initialpm = 1/l
SR 0.00 0.96 0.98 1.00 0.98 0.98 0.99
AES — 100960 84850 70320 61460 56570 55270
AES std.dev. — 9652 9376 6240 5295 4989 7614

EA variant: small-world, self-adaptive, initialpm = 1/l
SR 0.95 1.00 0.98 0.99 0.88 1.00 0.98
AES 94880 59220 52420 45030 40200 40200 37320
AES std.dev. 1081 5871 4609 3622 3790 7180 2489

EA variant: small-world, self-adaptive, initialpm = 0.5
SR 0.35 0.97 1.00 1.00 1.00 1.00 0.99
AES 109540 88920 81040 68680 61380 58480 56040
AES std.dev. 8842 1223 1180 7854 7001 6400 6780

EA with self-adaptation to see if topology has an effect at all. Our impression is
that this is not the case but success rather depends on high mutation rates.

wP-PEAKS: Here, the small-world CEAs clearly dominate the panmictic EA, with the
fixed mutation rate CEA performing best. Self-adaptation only lowers the success
rates. Measured AES values for all small-world variants are largely constant and
around 2 to 3-times higher than for the panmictic variant, regardless of the rewiring
factor. The scale-free CEAs achieve no better success rates than the panmictic EA,
but also require 2 to 3-times more evaluations than the panmictic.

Interpretation. At a first glance, it seems hard to perceive a clear trend within the
obtained results. The most we can state is that scale-free topologies do not seem to
provide a worthwhile alternative to panmictic or Watts-Strogatz small-worlds. Never-
theless, when thinking about the properties of the utilized test problems and linking
them to the algorithm properties of the EA variants regarded as most successful (Ta-



ble 4), we may derive some generalizable conjectures. It seems that problems with a
certain degree of separability may profit from localizing operators. However, this also
happens for the wP-PEAKS problem which is non-separable.

Table 3:Test problem properties next to algorithm properties found successful. The ECC problem
is not fully separable but organized in blocks. Solution permutable means that fitness of a solution,
or subsolution in case of the MMDP, solely depends on the number of ones, not their location.

Problem SeparableSolution permutableTopology mattersSelf-adaptation works

MMDP X X X X
ECC partly – X –
COUNTSAT – X – X
wP-PEAKS – – X –

Concerning self-adaptation, the picture is much clearer. Within our experiments,
it worked well for problems with permutable best solutions. That is, several optimal
solutions exist that share the number of ones, either in the whole genome as for the
COUNTSAT problem, or in the separate building blocks as for the MMDP. Lacking
further investigations, we can only speculate why self-adaptation provides an advan-
tage, or at least does not diminish optimization success here. Possibly, the temporary
appearance of several different, namely higher mutation probabilities in the course of
the optimization process leads to better results.

5 Conclusions

The results of this empirical study indicate that small-world topologies allow for a trade-
off between robustness and speed of the search; this is in agreement with the results of
[5] on selection pressure, especially when Watts–Strogatz networks are used. In terms
of success rate, these population topologies behave at least as well, and often better,
than the panmictic case. However, their convergence speed is lower. This effect had
already been reported in the case of regular lattice population structures for the same
class of problems [18].

On the other hand, scale-free topologies do not seem very helpful in their current
form, especially for large kernel sizes. Smaller clique sizes work better but, overall, they
do not outperform the standard panmictic setting. This confirms that the selection pres-
sure induced by these topologies on the population may be too high, similar to the pan-
mictic, thus causing premature convergence [5]. However, we have only experimented
with static scale-free topologies: we feel that playing with highly connected nodes in a
graph would open new perspectives in the control of the exploration/exploitation trade-
off, and we intend to try out these ideas in the future.

As far as the EA strategies are concerned, self-adaptation helps if the solution/sub-
solution is permutable, while fixed mutation performs best overall. In the future we also
intend to extend the investigation to continuous problems and to study the dynamics of
birth surplus (comma) strategies.
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