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Abstract. Metaheuristics are a wide class of solution methods that have
been successfully applied to many optimization problems. The assess-
ment of these methods is commonly based on experimental analysis but
the lack of a methodology in these analyses limits the scientific value
of their results. In this paper we formalize different scenarios for the
analysis and comparison of metaheuristics by experimentation. For each
scenario we give pointers to the existing statistical methodology for car-
rying out a sound analysis. Finally, we provide a set of open issues and
further research directions.

1 Introduction

Metaheuristics are generated by the assemblage of search methods such as con-
struction heuristics, local search and more general guidance criteria to solve a
specific problem. Despite the lack of theoretical foundation, their simplicity has
attracted many researchers and practitioners. Many results in the literature in-
dicate that metaheuristics are the state-of-the-art techniques for problems for
which there is no efficient algorithm. However, for many problems, metaheuris-
tics do not always reach an optimal solution, even for long computation times.
In addition, it is often impossible to obtain an analytical prediction of either the
solution achievable within a given computation time or the time taken to find
a solution of a given quality. The assessment of these conflicting performance
measures is critical for the evaluation of metaheuristics [2] and their application
to real problems. Given the lack of theoretical guidelines and the stochastic na-
ture of most metaheuristics, such performance assessments are best carried out
by experimentation.



Measures of performance such as the solution-cost and run-time can be seen
as random variables. The field of statistics therefore provides the appropriate
basis for supporting the research on metaheuristics. Statistics offers the advan-
tage of providing i) a systematic framework (the design of experiments) for the
collection and evaluation of data, thus maximizing the objectivity and replica-
bility of experiments; ii) a mathematical foundation (the statistical analysis)
that supplies a probabilistic measure of events on the basis of inference from the
empirical data. Moreover, the use of statistical tools encourages and supports a
methodical approach to experimentation. Several possible use of statistical tools
in the study of algorithms and heuristics have been well illustrated in [10]. Never-
theless, in the field of metaheuristics, we still note some reluctance in conducting
well designed experiments.

In this paper, we review different scenarios in the assessment of metaheuris-
tics and outline the statistically-oriented methodologies for their analysis. In
doing this, we extend the cases discussed in [10] to other cases which are typical
of the studies on metaheuristics.

At the highest level, we distinguish two models of analysis:

1. the univariate model, in which either solution-cost or run-time is taken into
account;

2. the multivariate model, in which both solution-cost and run-time are of in-
terest.

The first model has long been the more typical in assessing metaheuristics. There
is a considerable amount of literature on the methods for its analysis. The sec-
ond model, although providing a deeper insight into the analysis, has not yet
been accurately and explicitly addressed, probably due to its higher degree of
complexity. In this case, some of the methods may be adapted from multivariate
statistics, which is a well-developed field [1]. Random set theory might also pro-
vide the building blocks for a methodological approach [17,15]. However, these
links have not yet been thoroughly explored. Moreover, there remain cases for
which it is not yet clear whether mathematically founded methods of analysis
have been developed at all. Our goal in this paper is to formalize the scenar-
ios of metaheuristic analysis and put them in the context of existing statistical
methods, while pointing out where there is need for further research and inter-
disciplinary development.

2 The Univariate Model

In this case, the researcher or practitioner is interested in either solution-cost
(e.g., in a minimization problem) or run-time6 as performance measure. If the
concern is solution-cost, we assume that equal computational resources are al-
located to the different algorithms in the study (fairness principle [27]). If the
concern is run-time, time is measured when a solution with desired properties is
found.
6 We assume that run-time corresponds to the number of operations performed based

on some cost model that is related to the CPU time, or simply wall clock time.
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Fig. 1. ECDFs of two metaheuristics on the graph coloring problem. On the left we
measure the solution cost in terms of number of colors which are to be minimized,
on the right we measure the computational time to find a solution with the minimal
number of colors. A dashed line and a dotted line are used to distinguish between
different algorithms.

Characterization The performance measure X (solution-cost or run-time) of a
metaheuristic on a single instance can be described by its probability distribution
p(x) = Pr [X = x] or equivalently by its cumulative distribution function7

F (x) = Pr [X ≤ x] =
∑
xi≤x

p(xi). (1)

Alternatively, if the probability distribution is known, few parameters, e.g., the
mean and variance, may be enough to represent it.

In experiments on metaheuristics, we observe data X1, . . . , Xn sampled from
the distributions above. It is then possible to derive the empirical cumulative
distribution function (ECDF) as follows

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x) (2)

where I(·) denotes the indicator function. Note that the formula is general and
holds both for uncensored as well as for censored data. In experiments on meta-
heuristics which consider run-time, sample data may be censored if a time limit
(imposed for practical reasons) is reached before a local optimum or a solution
with certain properties is found.

In Figure 1 we show examples of ECDFs for metaheuristics on the graph
coloring problem. On the left two metaheuristics are run 30 times on the same
7 We restrict the notation to the discrete case, which is often the case of the existent

experimental research.
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instance and the depicted ECDFs represent the frequency with which each algo-
rithm attains coloring at least as good as the colors indicated on the x-axis. On
the right two metaheuristics are left running 600 seconds on the same instance
recording the time when the chromatic number is found. In this case, the ECDFs
represent the frequency with which a solution is found within the time indicated.
The fact that one ECDF is truncated (i.e., it does not reaches 1) indicates that
the algorithm was not able to solve the instance within the given time.

Usually, the performance assessment of a metaheuristic is carried out on a
representative sample of a class of instances. In this context, a performance
measure X of a metaheuristic that is applied to a class of instances Π can be
described by the following probability distribution [6,23]

p(x) =
∑
π∈Π

p(x|π)p(π). (3)

In practice, instances in the class may have different probabilities to appear and,
hence, the term p(π) has an influence in the analysis. If instances are instead
equally likely to appear, the term p(π) is a constant and may be neglected. The
way to deal with p(π) is in the instance sampling process. Here we assume for
the sake of simplicity that instances are sampled from the class Π with equal
probability.

Summary measures for sampled data are divided into measures of location,
such as the sample mean and q-quantiles, and measures of dispersion, such as the
sample variance and the standard variation. Clearly, summary measures tend to
hide part of the information contained in the sample data. Often histograms,
boxplots and ECDF plots are used to provide a more complete view of the data.

Few computational studies focus on the characterisation of metaheuristic per-
formance, i.e., the nature of the distribution p(x). On the side of run-time, some
links have been explored with a branch of statistics called survival analysis that
deals with time-to-event models. It was shown that ECDFs of run-time obtained
by high-performance metaheuristics are often close to being exponentially dis-
tributed [19]. On the side of solution-cost, some research has used models from
extreme value theory to support the conclusion that ECDFs are well approxi-
mated by Weibull distributions [25].

Analysis Most of the literature on metaheuristics has focused on experimental
comparisons. In this case, the use of descriptive statistics, such as the sample
mean and the standard deviation, is not sufficient. Inferential statistics must also
be used to check that the sampled data are enough to claim that the differences
observed can be generalized to the population distributions. Statistical tests are
used to make these statements objective by checking whether a standard level of
confidence is present in the data. If the test does not allow to reject the absence of
differences, the researcher must either collect more data in order to increase the
power of the test and detect also small differences or he must stop if differences
become irrelevant in practical terms.
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There are two kinds of statistical inferential tests: parametric and non-para-
metric. The majority of parametric tests are based on the central assumption of
normally distributed data. The studies mentioned above on the nature of p(x)
for both solution-cost and run-time seem to indicate that this assumption is not
met in the analysis of metaheuristics, in which case, distributions are unknown.
However, this does not rule out the use of parametric statistics. It is well known
that some tests, like those based on the F -ratio in ANOVA, are very robust to
deviations from the normality assumption, especially for large data sets. Other
techniques such as the transformation of data (logarithm, inverse and square
root) can help data to meet the normality assumption. Non-parametric tests,
such as rank-based tests [32] and permutation tests [26], remove this assumption.
Yet, these methods are less developed and less powerful than the parametric
tests.

The starting case discussed in any text book of statistics is the two sample
case. In experiments on metaheuristics it is rarely the case that the comparison
involves only two alternatives, but this starting example serves us to clarify a
few basic concepts, in particular, the distinction between unreplicated case and
replicated case. In the unreplicated case, two metaheuristics are run once on
n instances. Since metaheuristics are randomized, it is recommended to adopt
a basic variance reduction technique and run both algorithms with the same
random seed on the same instance. Single instances may be treated as levels of
a blocking factor [27]. In the two sample case, this leads to the use of tests in
their matched pairs form. The possible tests are, in the parametric case, the t-
test8 and, in the non-parametric case, the binomial test (if ties are not possible)
and the Wilcoxon signed rank test [32]. Alternatively, permutation tests may be
used to generate the distribution of the test statistic from permutations of the
sampled data [26].

In the replicated case, two metaheuristics are run r times on n instances.
If the experiments are conducted by blocking both on instances and on ran-
dom seed then the same tests used in the previous unreplicated case can be
applied. Alternatively, other specific tests are available such as the parametric
two-way ANOVA (with blocking) or the non-parametric Kruskal-Wallis rank
sum test [32]. However, if the overall total number of experiments is fixed, the
unreplicated design is preferable [6].

More accurate tests compare the ECDFs of the two algorithms. The Kolmo-
gorov-Smirnov (KS) test statistic considers the maximal difference between the
two ECDF curves, and derives the distribution of this statistic by permutation
methods [12]. This test is able to identify more general differences than location
differences (mean or median). In particular, the test can also be used to deter-
mine whether there exists statistical dominance between the two curves [12].

Note that in the absence of statistical dominance and equal variance, every
test above must be used with caution because it is not trivial to decide which

8 More specifically, the t-test for differences in means should be used under the as-
sumptions of variances unknown and not equal (some statistical software refer to
this as the Welch form of the t-test).
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distribution we may prefer. Consider, for example, the two metaheuristics whose
ECDF is represented in Figure 1, left. Studying only means we would choose the
algorithm represented by the dashed line but the variance of its performance is
clearly larger than the other algorithm represented by the dotted line and we
might prefer for our application an algorithm whose performances are more cer-
tainly described. Moreover, some additional care must be taken in the presence
of censored data. In this case, the statistical tests mentioned above are no longer
appropriate for testing and the suitability of bootstrap methods [11] or tests used
in survival analysis [18] might need to be investigated.

Dealing with metaheuristics, we are however often faced with more complex
designs than these simple ones. We need indeed to compare several possible con-
figurations arising from the combination of different factors (i.e., metaheuristic
components and metaheuristic parameters). By applying any of the aforemen-
tioned tests c times, the effective level of confidence (the error committed in
rejecting the hypothesis that the two algorithms have equal performance) of the
overall test procedure becomes αEX = 1− (1− α)c [20]. For example, setting α
for each single test at the usual value of 0.05 and in presence of 3 comparisons,
c = 3, then αEX would grow to 0.14. A common procedure to control αEX is to
perform first an analysis of variance to identify whether there is at least one fac-
tor that exhibits significant difference and then to proceed to post-hoc multiple
comparisons by adjusting (or not) the α value.

In the parametric case, the analysis of variance is carried out with the well-
known ANOVA in its one- or multiple-way forms, depending on the presence of
one or more algorithmic factors under analysis [24]. The appropriate methods for
post-hoc analysis are methods for all-pairwise comparisons or multiple compar-
isons with the best [20]. In the latter case the Tukey honest significant difference
method is appropriate. Alternatively, it is possible to use an all-pairwise t-test
(also referred to as Fisher least significant difference method) with an adjust-
ment of the α value. Among the adjustment methods, the basic Bonferroni’s
method is quite conservative while the Holm’s procedure exhibits higher statis-
tical power and should be therefore preferred. In the non-parametric case, the
Friedman rank-based test and extensions thereof allow to determine differences
in a single factor with blocking scenario, although the adjustment issue is more
controversial in this context [12,32]. More complex scenarios with multiple fac-
tors of interest must be reconducted under the single factor scenarios. Extensions
of the KS test to study differences among several ECDFs are also available. In
particular we mention the Birnbaum-Hall test [12].

2.1 Advanced Topics

Recently, more advanced topics of statistics have been used to analyse and com-
pare metaheuristics. These are regression trees, Design of Experiments (DOE)
and sequential testing through fine-tuning algorithms.

Regression trees Regression trees are simple hierarchical models for group-
ing the available samples of a system according to the most important variable
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Fig. 2. An example of regression tree analysis for Tabu Search components on the
graph coloring problem. The importance of the effect of factors on the performance
is recognizable from the level in the tree where the relative branching occurs. In this
analysis the two numerical parameters do not yield any branching meaning that their
effect is negligible.

value ranges. This is especially helpful if quantitative and qualitative variables
are contained in the system, as it is often the case if metaheuristic parameters
are considered. Both are matched onto decision tree splits within the same bi-
nary tree. The importance of a variable or value range of a variable directly
corresponds to the level of the nodes containing it in its decision criterion. A
weakness of this technique is that variable interactions are not considered in the
linear models that determine the splits. The sample set is partitioned into axis
parallel rectangles in the coordinate system of the variables. CART, classification
and regression trees, a standard method, dates back to [7].

An example of the output of this analysis is given in Figure 2. The data
are extracted by an experiment designed to assess the contribution of compo-
nents in a Tabu Search metaheuristic for the graph coloring problem. Factors of
the study were: three strategies to restrict the neighborhood, three prohibition
mechanisms in the definition of a tabu move and two numerical parameters for
the definition of the tabu length. All these Tabu Search instantiations were run
once with the same time limit on 30 uniform graphs of the same size. In the fig-
ure, the performance measure y corresponds to the number of colors normalized
among the instances. The lower this measure is, the better the performance of
the algorithms that belong to the root-leaf path is. The number of data n left
after the partition is also reported. On the nodes, the p-value of the test that
determines branching is also reported.

Designs and techniques for parameter screening and tuning The de-
ployment of a metaheuristic usually involves setting the values of a large number
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of parameters, whose interactions are usually unknown. This difficulty is further
exacerbated by the possible interactions of some of these parameters with some
characteristics of the problem instance. The challenge then is to: i) determine
which algorithm parameters and problem characteristics have an effect on the
responses; ii) model the relationship between the most important algorithm pa-
rameters, problem characteristics and responses; and iii) optimise the responses
based on this relationship.

However, parameter settings are often chosen in an ad-hoc manner or quoted
from the literature without any rigorous examination of their suitability. Simple
factorial designs are inappropriate. They require testing all levels of all factors9

with one another. For a tuning problem of 10 parameters and 2 problem charac-
teristics, tested at the minimum of 2 levels each, this would require a prohibitive
212 = 4096 design points. Fractional factorial designs (FFD) offer a manageable
alternative, which uses some subset of a factorial design’s runs. This subset can
be chosen so that main effects and some lower order interactions can still be
determined but higher order interactions are aliased with one another. The as-
sumption in using a fractional factorial design is that higher order interactions
are likely to be of little consequence and so their aliasing can safely be ignored.
Recent publications [28,29] illustrate the screening and tuning of metaheuristics
with Design of Experiments techniques [24] such as desirability functions for
multi-response optimisation and overlay plots for response robustness.

Sequential testing and racing One issue in all the tests described above is
how many replicates are needed in order to distinguish differences. Increasing the
number of replicates for each configuration decreases the outcome’s sensitivity.
At the same time, it increases the effort needed to adapt the parameters of
the metaheuristic to the treated problem. It has long been common to solve
this meta-optimization problem by means of a one factor at a time approach.
However, several tuning methods based on the idea of sequential testing have
emerged recently. We present two of these.

Racing algorithms, e.g., the F-Race [6], select the best out of a finite number
of configurations (continuous parameters may be discretized) by running them
several times and deleting the inferior ones by means of statistical tests as soon
as significance arise. In each iteration, all remaining configurations are run on
one out of a possibly infinite number of problem instances. The advantage is
the reduction of the overall number of experiments to determine a single best
configuration.

Sequential parameter optimization (SPO) [3] combines an underlying regres-
sion model and a stochastic process as correlation model utilized in DACE [30]
with a simple variance reduction technique and the expected improvement heuris-
tic [21]. During an SPO run, the number of replicates is subsequently incremented
for the most successful configurations to reduce error probabilities. Next to a best

9 Here the term factor covers both metaheuristic tuning parameters and problem
instance characteristics.
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configuration, the internal model of SPO may also be used for algorithm anal-
ysis purposes (parameter interactions, etc.). A crossover of the two approaches,
extending SPO by means of automatic hypothesis testing as used in the F-Race,
is suggested in [4].

3 The Multivariate Model

In the analysis of metaheuristics for optimization problems the univariate case
may be oversimplified. A thorough understanding of the performance of a meta-
heuristic should include indeed both solution-cost and run-time. In this case,
the analysis falls into the scope of Multivariate statistics. We distinguish two
specific scenarios under the multivariate model that may be of interest for the
researcher:

– Scenario 1 : study of solution cost and run-time when a certain termination
criterion is reached, that is, the metaheuristic terminates naturally ; therefore,
each run of a metaheuristic is represented by a point in the plane solution-
cost× run-time;

– Scenario 2 : study of solution cost and run-time during the run of the algo-
rithm until a certain termination condition is reached; hence, each run of an
algorithm is characterized by a set of points in the plane solution-cost×run-
time..

3.1 Scenario 1

A typical example under this scenario is the study of construction heuristics.
They terminate when a complete solution has been produced. The interest is in
determining which heuristic returned the best solution and was the fastest.

Characterization Let X ∈ R2 denote now the bivariate performance measure
of solution-cost and run-time. Its distribution function is defined by

F (x) = Pr[X ≤ x]

where ≤ denotes the weak component-wise order in R2. F (x) gives the probabil-
ity that a metaheuristic finds a given solution cost within a given run-time.
The estimation of this probability is obtained from a collection of n points
X1, . . . ,Xn of solution-cost and run-time at the end of n independent runs.
The corresponding ECDF is then defined as:

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x).

Note that the ECDF can take also points derived from intersections of point
coordinates [17]. Algorithms for computing these ECDFs are described in [5,14].
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Fig. 3. Two sets of points in the space solution-cost and run-time obtained by running
two construction heuristics for graph coloring on 20 instances.

Analysis In multivariate analysis the interest is either about the “external”
structure of data (i.e., the configuration or interpoint distances of swarms of
points in the Euclidean space R2 of solution-cost and run-time) or about the
“internal” structure of the variables (i.e., how much correlated solution-cost and
run-time are). In our specific case, the interest is mainly in the “external” struc-
ture which, in the two algorithms case, corresponds to comparing two samples
of points by examining the center of gravity of the two swarms. Note that when
the points represent results on different instances it may be necessary to apply
some transformation to data in order to make their comparison meaningful.

This situation is represented in Figure 3 where we plot the points in the space
solution-cost and run-time attained by two construction heuristics for the graph
coloring problem, namely DSATUR [8] and RLF [22]. Each point represents
one run of the construction heuristic on one instance and indicates the quality
of the solution returned and the computational time. The data are collected
by running both algorithms on a set of 20 instances of similar characteristics
yielding 20 bivariate observations per algorithm.

In parametric statistics, a test to compare the bivariate means is the Hotelling’s
T2 test [1]. In the case of comparisons with more than two algorithms, the mul-
tivariate analysis of variance (MANOVA) [32] can be used to guarantee the
overall confidence level before proceeding to the pairwise comparisons. In the
non-parametric alternative, extensions of permutation tests based on the same
Hotelling’s T2 test statistic have been proposed in [16,26]. Note that the no-
tion of rank ordering that underlies univariate non-parametric statistics does
not readily extend into several dimensions.

As in the previous cases, one could also look more closely at the distribution of
solution-cost and run-time, hence considering the corresponding ECDFs. Statis-
tical tests based on a supremum test statistic similar to the Kolmorogov-Smirnov
test for the two-sample case or the Birnbaum-Hall test for the multi-sample case
can be applied to compare these distributions. However, the distribution of the
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test statistics is not known in advance and, therefore, one has to implement
permutation tests.

3.2 Scenario 2

In this scenario, the researcher is interested in the distribution of the solution
cost over the time in which the metaheuristic was running. The analysis be-
comes more complex because, as described previously, it has to focus on sets of
points of solution-cost and run-time collected during possibly multiple runs of
the metaheuristics.

Characterization As suggested in [17,19,33], the distribution of solution-cost
and run-time is seen as a random set of bidimensional points which is obtained
during the run. Therefore, topics of random set theory seem appropriate for the
analysis of metaheuristics under this scenario [17,15]. If only the improvements
with respect to solution cost are recorded, the run of a metaheuristic can then
be described as a set of non-dominated points of solution-cost and run-time [17].
Let X = {Xj ∈ R2, j = 1, . . . ,m} be a random set of m points of solution-cost,
run-time where each element Xj is non-dominated with respect to the other
elements in X . The new cumulative distribution function of solution-cost and
run-time is then denoted by

F (x) = Pr[X E x] (4)

where X E x means that X1 ≤ x ∨ . . . ∨ Xm ≤ x [17]. The estimation of this
probability is obtained from a collection of points of solution-costs and run-
times whenever there is an improvement on the solution-cost during each of the
n independent runs. The corresponding ECDF is then defined as follows:

Fn(x) =
1
n

n∑
i=1

I(Xi E x) (5)

where X1, . . . ,Xn are n sets of non-dominated points of solution-cost and run-
time obtained in n independent runs. Note that Eq. (4) corresponds to the
attainment function (AF) and Eq. (5) to the empirical AF [17].10

The top plots of Figure 4 show several quantiles of the EAFs for the per-
formance of a Novelty algorithm (left plot) and a Tabu Search algorithm (right
plot) in 10 runs on instance flat1000 60 0 of the graph coloring problem (see
[9] for details). The bottom plot shows the median EAF, that is, the set of
points whose probability of being attained in one single run is 50%. The plots
clearly indicate that the specific Tabu Search algorithm performs better up to
500 seconds, whereas the Novelty algorithm perfoms better afterwards.

Stützle [33] proposed a similar perspective to analyze a metaheuristic by
the ECDF of run-time for chosen bounds on the solution cost based on certain
ratios from the known optimum (or lower bounds); the resulting distributions
are called qualified run-time distributions functions.
10 Code for computing these ECDFs is available at www.tik.ee.ethz.ch/pisa/.

11



time

co
st

70

80

90

100

110

0 200 400 600 800 1000

Novelty

0 200 400 600 800 1000

Tabu Search

time

co
st

70

80

90

100

110

0 200 400 600 800 1000

Novelty
Tabu Search

Fig. 4. Plots of EAFs for the performance of a Novelty and a Tabu Search algorithm
for an instance of the graph coloring problem. See text for more details.

Analysis When comparing metaheuristics in this scenario, the best metaheuris-
tic is the one that produces a set of points of solution-cost and run-time that
dominates all the other sets of points of solution-cost and run-time associated
with the other metaheuristics. It is difficult to find such metaheuristic in practice.
There are those that converge to reasonably good solution quality very quickly,
and those that can reach high quality solutions only after a large amount of
time, following a slower convergence rate. The goal should be to find which
metaheuristic performs better with respect to different intervals of computation
time.

Very little research has been undertaken on this topic. We mention the work
of Taillard [34] who suggested the use of statistical tests to compare solution costs
of algorithms during the run. After collecting points of solution-cost and run-time
associated to multiple runs of several metaheuristics, a Mann-Whitney test is
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conducted for comparing the solution costs obtained by different metaheuristics
each time an improvement was observed in any of the runs. The significance
level of each test must be updated to take into account the multiple comparisons
performed.

A different approach would be to use statistical tests analogous to Kolmorogov-
Smirnov and Birnbaum-Hall tests with permutation arguments for testing the
inequality of ECDFs. This has been done in a different context [31].

Finally, note that Eq. (4) cannot fully charaterize metaheuristic performance
since it does not take into account the dependence between points in a set [15].
Second-order moments that are described in [15] would be more informative.
They permit investigating the probability that two points of solution-cost and
run-time are attained simultaneously in a run.

4 Concluding Remarks and Open Issues

Examining the literature, we have the impression that the assessment of meta-
heuristics must be improved in order to produce results that are more scientific.
In particular, a methodological approach must be followed. In this paper, we pre-
sented a framework for doing this, extending previous work to the multivariate
case. This has received little attention to date. Some issues still remain.

– In the univariate models, the parametric assumptions of both normality and
equal variance seem to be violated. Simulation studies that show the ro-
bustness of parametric models in the metaheuristics field would help to gain
confidence on the reliability of results from these models.

– Some approaches exist in statistics for the analysis of Scenario 2 in the
multivariate model. In particular, a study of the suitability of repeated mea-
surements methods [1,26] should be undertaken.

– This latter scenario can be interpreted as a multiobjective problem, as noted
in [17]. Therefore, unary performance measures that are used for the mul-
tiobjective case, such as the hypervolume and the ε-indicator, can be used
as well. Although they have been shown to have some drawbacks [35], their
use in the context of the multivariate analysis here suggested is worth inves-
tigating.

– Probably the most crucial issue in algorithm analysis is the possibility to
generalize results to at least a class of instances. How to do this above all in
the multivarite case is not well understood. Indeed, in both the multivariate
scenarios considered, difficulties arise when aggregating data from different
instances.

– Contrary to what has been done in the univariate model, advanced methods
mentioned in Section 2.1 for the multivariate case have not yet been applied.
A first attempt to extend racing algorithms to scenario 1 is given in [13]. The
application of advanced designs, sequential testing procedures and regression
trees in this context requires further development.
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