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Abstract

A new learning technique based on cooperative coevo-
lution is proposed for tackling classification problems. For
each possible outcome of the classification task, a popu-
lation of if-then rules, all having that certain class as the
conclusion part, is evolved. Cooperation between rules ap-
pears in the evaluation stage, when complete sets of rules
are formed with the purpose of measuring their classifica-
tion accuracy on the training data. In the end of the evolu-
tion process, a complete set of rules is extracted by selecting
a rule from each of the final populations. It is then applied
to the test data. Some interesting results were obtained from
experiments conducted on Fisher’s iris benchmark problem.

1. Introduction

Cooperative coevolution for classification (CCC) is in-
spired from the cooperative coevolution framework pro-
posed in [3], [4]; therein, it was applied for function op-
timization and each variable of the function to be optimized
is evolved by a separate population. When the fitness of an
individual from one population is evaluated, collaborators
from the other populations that evolve simultaneously have
to be chosen in order to form a complete solution that can
be measured. The evaluation of this solution is assigned as
the fitness of the initial individual, therefore its score di-
rectly depends on the chosen collaborators, or, to be more
specific, on the way of deciding cooperations.

In our classification approach, the number of populations

that coevolve equals the number of outcomes of the classifi-
cation problem. The data set to be classified is split into two
parts, one used for training the evolutionary algorithm (EA)
(or for learning the characteristics of each class) and one
for testing the performance of the obtained rules. Each pop-
ulation evolves if-then rules with the same outcome; sim-
ilarly to function optimization using cooperative coevolu-
tion, when the quality of an individual (rule) is computed,
collaborators from all others populations are selected in or-
der to form a complete rule set to be applied to the training
data. In the end of the evolution process, a set of rules is
extracted from all final populations and is applied to the test
data.

There is a set of parameters of cooperative coevolution-
ary algorithms that directly affect the values for the fitness
evaluations and, through this, indirectly influence the way
the algorithm evolves; the parameters refer to the selection
of cooperations, the number of collaborators that are picked
from each population in order to reach a more objective fit-
ness and to the manner in which fitness is computed when
several collaborators are considered from each population.
In the experimental section, we will explore some insights
of the CCC algorithm while employing several types of pa-
rameter configurations with the aim of an optimum setting.

The paper is organized as follows: the next section con-
tains some fundamental aspects of cooperative coevolution,
while proposed approach for classification is described in
section 3. Experimental results are presented in section 4
and the paper closes with a discussion section.



2. Prerequisites of Cooperative Coevolution

Coevolution is inspired by the way the various species
in nature interact; species may be in competition or they
may cooperate for a common goal. In competitive coevolu-
tion, the evaluation of an individual is determined by a set
of competitions between the current individual and other in-
dividuals, while in cooperative coevolution, collaborations
between two or more individuals are necessary in order to
evaluate one individual.

The first step that has to be undertaken when a problem
is intended to be solved by cooperative coevolution is to
find a proper decomposition of the problem into compo-
nents. Then, each component is assigned to a population
(or species); each population evolves independently, except
for the moment when the evaluation process takes place. As
each individual in a population represents a component of
the problem, collaborators have to be selected from all pop-
ulations in order to assemble a solution that may be eval-
uated. Therefore, at each generation, each individual from
each population is evaluated by selecting collaborators from
the other populations.

The algorithm that describes this process is outlined be-
low:

Algorithm 1 Cooperative coevolutionary algorithm
t = 0;
for each species s do

randomly initialize population Pops(t);
end for
for each species s do

evaluate Pops(t);
end for
while termination condition = false do

t = t + 1;
for each species s do

select population Pops(t) from Pops(t - 1);
apply genetic operators to Pops(t);
evaluate Pops(t);

end for
end while

The algorithm starts with the initialization of each pop-
ulation. The first evaluation of the individuals in each pop-
ulation is performed by making a random selection of indi-
viduals from each of the other populations and evaluating
the obtained solutions. After this starting phase, each pop-
ulation is evolved using an EA.

As mentioned before, the choice of collaborators repre-
sents the main issue in this process. Consequently, when
building a cooperative coevolutionary algorithm, there are
three attributes regarding selection that have to be decided
[4] on:

1. Collaborator selection pressure refers to the way in-

dividuals are chosen from each population in order
to form complete solutions to the problem, i.e. pick
the best individual according to its previous fitness
score, pick a random individual or use classic selec-
tion schemes in order to select individuals from each
of the other populations.

2. Collaboration pool size represents the number of col-
laborators that are selected from each population.

3. Collaboration credit assignment decides the way of
computing the fitness of the current individual. This
attribute appears in case the collaboration pool size is
higher than one. There are three methods for comput-
ing this assignment:

(a) Optimistic - the fitness of the current individual
is the value of its best collaboration.

(b) Hedge - the average value of its collaborations is
returned as fitness score.

(c) Pessimistic - the value of its worst collaboration
is assigned to the current individual.

3. Cooperative Coevolution for Classification

When dealing with a classification problem, the task is
to build rules able to classify data. The data set is split
into a set used for training the cooperative technique and
a set for the testing step. In the process of evolving the
rules, only information regarding data from the training set
is available. After the evolution process is complete, rules
are tested against the test set.

3.1 Representation

Each individual of the EA represents a simple if-then
rule for a certain class. The number of genes an individ-
ual possesses equals the number of features of a sample of
the data set considered for classification.

The decomposition of the classification problem into
components is naturally done by assigning to each popula-
tion the task of evolving rules of a certain class. Therefore
the number of populations equals the number of classes the
classification problem has.

3.2 The Components of the Evolutionary
Algorithm behind Cooperative Co-
evolution for Classification

The EA used in the evolution of each species is a canon-
ical one. Its components are further on presented.



3.2.1 Initialization of the Populations

The genes of all individuals are randomly initialized follow-
ing a uniform distribution in the intervals of the correspond-
ing attributes in the data set.

3.2.2 Fitness Evaluation

As stated before, in order to compute the fitness of an in-
dividual, collaborators (individuals) from all the other pop-
ulations have to be selected; thus, complete solution(s) are
created and subsequently evaluated.

In the present paper, different values for the collab-
oration pool size, which is denoted by n, were chosen.
Therefore, in order to evaluate an individual from a certain
population—that is a rule of a certain outcome—a random
collaborator from each of the other populations is selected
n times. Every time, the set of rules is applied to the entire
training collection. Obtained accuracy represents the evalu-
ation of the current individual. The fitness of an individual c
may be given by the best of the n acquired collaboration ac-
curacies (optimistic assignment), by the worst one of them
(pessimistic assignment) or by the average of all n accu-
racies (hedge assignment). Algorithm 2 describes the way
evaluation takes place in these cases.

Algorithm 2 Fitness evaluation of an individual c by means
of either optimistic, pessimistic or hedge collaboration
credit assignment

for i = 1 to n do
correcti = 0;
select a random collaborator from each population different
from that of c;
for each sample s in the training set do

find the rule r from the set of all collaborators that is closest
to s; found class for s = r’s class;
if found class for s = real class of s then

correcti = correcti + 1;
end if

end for
end for
if optimistic then

correct = maxn
i=1(correcti)

else
if pessimistic then

correct = minn
i=1(correcti)

else
correct = avgn

i=1(correcti)
end if

end if
accuracy = 100 * correct / number of training samples;

In addition, a novel type of assignment, different from
the classical cooperative coevolutionary ones, is considered
(Algorithm 3): for a sample s in the training set, multiple

sets of rules are formed and applied in order to predict its
class. All rules within a set have different outcomes. Scores
are computed for the sample s, for each of the possible out-
comes in the following manner: when a set of rules is con-
sidered for a sample, a certain outcome is established for it.
The score of that outcome is increased by unity. Each of
the n sets of rules are applied to s. Finally, the class of s is
concluded to be the class that obtains the highest score.

Algorithm 3 Score based fitness evaluation for an individ-
ual c

for each sample s in the training set do
set the score for each possible outcome of s to 0;

end for
for i = 1 to n do

select a random collaborator from each population different
from that of c;
for each sample s in the training set do

find the rule r from the set of all collaborators that is closest
to s; increase the score of r’s class for s by one unit

end for
end for
correct = 0;
for each sample s in the training set do

if the real class of s equals the class that had the higher score
for s then

s is correctly classified;
correct = correct + 1;

end if
end for
accuracy = 100 * correct / number of training samples;

The distance between a sample from the training set xi =
(xi1, xi2, ..., xim) and an individual c = (c1, c2, ..., cm) has
to be computed in order to measure which rule is closest
to the current sample. The distance does not depend on the
outcome and was experimentally chosen as in (1):

d(c, xi) =
m∑

j=1

| cj − xij |
bj − aj

(1)

where aj and bj represent the lower and upper bounds of
the j-th attribute. As usually the values for the attributes
belong to different intervals, the distance measure has to
refer to their bounds.

In both algorithms 2 and 3, the fitness of an individ-
ual is computed as the percent of correctly classified sam-
ples from the training set (variable correct in the algorithm
specifies the number of samples that were successfully la-
belled).

In Algorithm 3, situations may appear when, for a cer-
tain sample, there exist more classes that have the same
maximum score. In this case, one class has to be decided
and it was considered to choose the first one in the order
of outcomes. As herein all combinations of rules count in



the determination of accuracies, we might state that the new
choice of assignment is closer to the classical hedge type.

In order to achieve the optimum configurations for the
parameters of CCC, experiments were carried out as fol-
lows. As the collaborator selection pressure attribute is
concerned, we used random selection, on the one hand,
and, on the other hand, we employed a fitness proportional
scheme. All the three types of fitness assignment presented
in Algorithm 2 together with the one based on scores are
tested. As for collaboration pool size, we varied the num-
ber of collaborators in order to find the optimum balance
between accuracy and runtime.

3.2.3 Selection and Variation Operators

The selection operator discussed in this subsection refers to
the EA selection for reproduction, not to the selection of
collaborators. We employed proportional selection, but any
other selection scheme may be successfully applied.

We used intermediate crossover (with probability pc) –
having two randomly selected parents P and Q, the value
of a gene i of the offspring O is obtained according to:

Oi = Pi + R ∗ (Qi − Pi) (2)

where R is a uniformly distributed random number over
[0,1]. The obtained offspring individual replaces the worst
of its two parents.

Mutation with normal perturbation was used for the ex-
periments performed in current paper – a gene i of an indi-
vidual P is changed with a probability pm according to:

Pi = Pi + R ∗ (bi − ai)/ms (3)

where R is a random number with normal distribution , bi

and ai are the upper and lower bounds of the i-th attribute
in the data set and ms is the mutation strength parameter.
As the intervals for the values of the attributes in the data
set have different sizes, we have to refer to the size of the
interval for each attribute when we perturb the values of the
genes through mutation.

We can not imagine any obstacle for using any other
crossover or mutation operators.

3.2.4 Stop Condition

As stop condition of the EA, a fixed number of generations
for the evolutionary process was set.

3.3 Rule Interpretation

We have as many populations of individuals (rules) as
many classes the classification problem encodes. The test
process takes place in a similar manner to the score based
evaluation of an individual during the evolution process

(changes are emphasized in Algorithm 4) and computes
how many samples from the corresponding set are correctly
classified.

Algorithm 4 Application of rules to the test set
for each sample s in the test set do

set the score for each possible outcome of s to 0;
end for
for i = 1 to n do

select a random collaborator from each population;
for each sample s in the test set do

find the rule r from the set of all collaborators that is closest
to s; increase the score of r’s class for s by one;

end for
end for
correct = 0;
for each sample s in the test set do

if the real class of s equals the class that had the higher score
for s then

s is correctly classified;
correct = correct + 1;

end if
end for
accuracy = 100 * correct / number of test samples;

4. Experimental Results

The widely used benchmark problem of Fisher’s Iris data
set [1] is used for experiments. Each sample has four at-
tributes – width and length of the sepals and petals of the
flower. There are three classes, i.e. three types of Iris flow-
ers. There are 150 samples in the data set of which 100 were
used for training and the rest for the test phase.

Random training and test sets are selected in each run of
the algorithm with the aim of avoiding the chances to pick
very well suited (or very unlucky) training and/or test sets
and to be able to directly compare obtained accuracy with
results reached by other different techniques.

Two ways of choosing collaborators are considered
within the experiments: they are either randomly picked or
chosen by fitness proportional selection. All the collabo-
ration credit assignment types are used in the experiments.
The value for the collaboration pool size parameter is varied
from 1 up to 5.

The manually tuned parameters of the EA behind CCC
are presented in Table 1. The population size parameter in
the first column refers to one population only (all popula-
tions have the same cardinal). As there are three populations
that coevolve, the overall number of individuals that appear
in the algorithm is 450. The last parameter represents the
predefined number of generations.

For each choice of the cooperative coevolutionary pa-
rameters, we performed 30 runs of the algorithm and com-



Table 1. CCC (EA) parameter values
Population size pc pm ms No. of generations

150 0.4 0.6 150 300

puted the average accuracy on the test set and the standard
deviation, as well as the number of fitness evaluation calls
and the number of times mutation and crossover took place.
Results from Table 2 are approximations of the average ob-
tained after 30 runs with one collaborator, either randomly
or fitness proportionally chosen. Only very minor differ-
ences were noticed when more collaborators were consid-
ered.

Table 2. CCC descriptors independent of the
collaboration parameters

Fitness evaluations Times mutation Times crossover

189 000 130 000 27 000

Table 3 contains the results obtained when collaborators
were selected randomly. When one collaborator is consid-
ered, multiple assignments are impossible. In this case, re-
sults showed an average of 93.1% in 30 runs with a runtime
of about 12 seconds and a standard deviation equal to 4.2%.
In the table, n stands for the collaborator pool size param-
eter. Results are presented for optimistic, pessimistic and
hedge credit assignment, as well as for the fitness based on
scores. Avg represents the average accuracy on the test set
after 30 runs and SD is the standard deviation.

There is a trend to gain accuracy with the increase in the
value of the collaboration pool size parameter. Naturally, a
higher number for this parameter also brings a higher value
for the runtime, reaching around 1 minute for 5 collabora-
tors. The best average accuracy was reached for 5 collabo-
rators when a hedge credit assignment was used.

However, there is not a general rule that more collabora-
tors lead to better results, as a very good result is reached
in the case when n = 3 and the assignment based on scores
is employed. The suitability of the score based fitness for
the CCC algorithm is proven by the observation that the al-
gorithm was more stable when this assignment was chosen,
which is demonstrated by the fact that the smallest values
for standard deviation were obtained when this type of eval-
uation was used.

Table 4 presents the average test accuracy obtained af-
ter 30 runs when fitness proportional selection was used for
choosing the collaborators. In the first generation of the al-
gorithm, for the first evaluation, we selected the collabora-
tors randomly, but in the next generations the collaborators
were selected upon their previous fitness values.

Table 3. Average results obtained after 30
runs for random selection of collaborators

Collaboration credit assignment
n Optimistic Pessimistic Hedge Score

Avg SD Avg SD Avg SD Avg SD

2 92.9 3.8 92.5 3.9 92.6 4.8 93.3 2.5
3 93.7 3.7 93.3 3.3 93.9 3.5 94.4 2.4
4 93.4 4 93.8 3.8 93.8 3.8 93.7 2.7
5 93.5 3.9 93.9 3.1 94.7 3.2 93.4 2.6

Overall, the results obtained in this case outperform
those when random selection for collaborators was used.
The best result was obtained again when the hedge credit
assignment was used, but this time for n = 3. The smallest
values for the standard deviation were again obtained for
the score based fitness.

There seems to be a curious tendency that the better re-
sults are obtained when an odd number of collaborators is
used, i.e. for n = 3 or n = 5.

Table 4. Average results obtained after 30
runs for fitness proportional selection of col-
laborators

Collaboration credit assignment
n Optimistic Pessimistic Hedge Score

Avg SD Avg SD Avg SD Avg SD

2 94 3.9 93.6 3.7 94 4.2 94.5 1.9
3 94.2 3.2 93.3 2.6 95.4 3 93.7 2.5
4 93.1 3.6 93.3 3.6 93.3 3.1 94.2 2
5 94.2 3.4 94.1 3.5 94.8 2.3 93.9 1.9

For both ways of selecting collaborators, the most ap-
propriate credit assignments were the hedge one, as it yield
the best accuracies, and the fitness based on scores, as it
provided stability to the algorithm.

4.1 Comparison to Other Approaches

Other results on the same data set provided by different
techniques in literature are outlined in Table 5. The four
results of the table are reported in [2]; a similar way of se-
lecting the training and test sets was used. The difference
to our approach is that 80% of the samples from the Iris
data were used for training and the rest for testing and that
average accuracies are obtained after 500 runs. Different
techniques like nearest neighbor estimators (kNN), nearest-
neighbor on the Random Recursive Partitioning dissimilar-
ity matrix (RRP), classification trees and logistic regression
were employed in order to reach outlined results.



Table 5. Results obtained for Fisher’s Iris data
set by other algorithms

Technique Accuracy Std. dev.

kNN 95.63 3.3
RRP 93.47 4.2
Classification Trees 94.96 4.1
Linear Regression 96.31 3.4

When directly confronted, results obtained by CCC are
comparative to the ones obtained by the other techniques on
this data set, which indicates CCC as an significant tool for
multi-class classification.

5 Conclusions

A classification technique based on cooperative coevolu-
tion is presented in the current paper. CCC is tested against
a widely known benchmark problem and obtained results
are outlined.

The best choice of attributes pertaining to CCC is dis-
cussed and experimentalized. The maximum considered
value for the collaboration pool size was 5 as runtime also
increases with the rise in the number of collaborators, on the
one hand, and, on the other hand, too high values for this pa-
rameter eventually drive evolution to some minor decrease
in accuracy. A possible explanation for this fact is that ex-
ploitation of the solutions space is put above its exploration.
This affirmation relies on the fact that the EA selection is
too severe and does not leave space for some weaker solu-
tions that may vanish in the near vicinity of some promising
regions. All three canonical types of collaboration credit
assignment together with a novel score based fitness evalu-
ation are tested. Results demonstrate that best classification
accuracy is achieved when a hedge assignment is employed,
while best stability is reached when the score based one is
used. Finally, fitness proportional selection as the collab-
orator selection pressure outperforms a random choice of
cooperations.

The evolution of more than one rule for one class, i.e.
the use of a multimodal algorithm instead of a canonical EA
for each population, represents a possibility to considerably
improve proposed classifier and constitutes a task for the
near future.

Automated tuning of the parameters of the EA might also
enhance results.
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