
Considerations of Budget Allocation for
Sequential Parameter Optimization (SPO)

Thomas Bartz–Beielstein†, Mike Preuss

Dortmund University, 44221 Dortmund, Germany,
http://ls11-www.cs.uni-dortmund.de/people/

Abstract. Obviously, it is not a good idea to apply an optimization al-
gorithm with wrongly specified parameter settings, a situation which can
be avoided by applying algorithm tuning. Sequential tuning procedures
are considered more efficient than single-stage procedures. [1] introduced
a sequential approach for algorithm tuning that has been successfully ap-
plied to several real-world optimization tasks and experimental studies.
The sequential procedure requires the specification of an initial sample
size k. Small k values lead to poor models and thus poor predictions for
the subsequent stages, whereas large values prevent an extensive search
and local fine tuning. This study analyzes the interaction between global
and local search in sequential tuning procedures and gives recommen-
dations for an adequate budget allocation. Furthermore, the integration
of hypothesis testing for increasing effectiveness of the latter phase is
investigated.

1 Introduction

This work deals with a tuning procedure, the sequential parameter optimization
(SPO) [1]. It does not challenge applying tuning methods for experimental analy-
sis of optimization algorithms per se. Nor does it focus on any of the particular
questions such methods may help to answer as has been done elsewhere [2], al-
though our investigations shall lead to additional insight in this respect, too. Let
us assume that SPO is useful for obtaining, e.g., algorithm designs for (near-)
optimal performance and parameter interactions. However, the tuning proce-
dure itself is not as fixed as may seem: Integration of several techniques (Design
and analysis of computer models (DACE), space filling designs, noise reduction
by increase of repeats) left some of the interfaces in a rather provisional state.
Stated differently, we have to admit that even this parameter tuning method
does have parameters.

As neither theoretical results nor a long empirical tradition of applying SPO
exist, it remains unclear how appropriate the currently employed default meth-
ods and values are. The SPO tuning procedure is model-based and thus consists
of two subsequent phases: a) building a first model, and b) repeatedly locating
and evaluating points with maximal expected improvement. The latter phase
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shall lead to good solutions for the tuning problem and a better model at the
same time. Given that the tuned system usually contains nondeterministic opti-
mization algorithms, e.g. evolutionary algorithms (EAs), three questions emerge:

1. How much effort shall be put into obtaining the first model?
2. Which method shall be utilized for determining an initial set of design points?
3. How often shall second-phase design points be evaluated?

We consider it impossible to answer these questions in a too general context,
without further specifying the tuned algorithm–problem system. However, fo-
cusing on a very small number of cases implies the danger of generating results
without much practical value due to loss of transferability to other such systems.
We face this difficulty by selecting test problems that are different in their most
important properties, e.g., unimodal vs. multimodal and real-valued vs. binary
coded problems. Furthermore, the chosen algorithm-problem systems are well
known, thereby enabling to utilize the experience collected within the evolution-
ary computation (EC) community over years. But still, our study can by no
means be comprehensive; a certain arbitrariness remains and will only vanish
when much more experimental effort than practicable in this work has been put
into exploration and analysis of SPO performance. Although we restrict ourselves
here to SPO as the only employed tuning procedure, the obtained conclusions
may still be of interest for the application of other model-based methods, in
particular such that are built on regression techniques. These have to face the
same three questions enumerated above.

In the following section, we give a short summary of the SPO tuning proce-
dure, going into details only insofar as necessary for discussing our experimen-
tal results. Section 3 discusses initial designs issues, whereas Sect. 4 considers
second-phase points. The paper closes with a summary and an outlook in Sect. 5.

2 Sequential Parameter Optimization

SPO is a methodology for the experimental analysis of optimization algorithms to
determine improved algorithm designs1 and to learn, how the algorithm works. It
employs computational statistic methods to investigate the interactions among
optimization problems, algorithms, and environments. We consider each algo-
rithm design with associated output as a realization of a stochastic process. We
apply stochastic process models as introduced in [3], [4], and [5] to optimization
algorithms such as EAs and particle swarm algorithms (PSO). Consider a set of
m design points x = (x(1), . . . , x(m))T with x(i) ∈ Rd. In the DACE stochastic
process model, a deterministic function is evaluated at the m design points x.
The vector of the m responses is denoted as y = (y(1), . . . , y(m))T with y(i) ∈ R.
The process model proposed in [3] expresses the deterministic response y(x(i))

1These contain all parameter settings determining a specific algorithm instance,
whereas problem designs subsume parameters related to the optimization problem and
domain specific restrictions such as problem dimension or allowed function evaluations.
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Algorithm 1 Sequential parameter optimization
1: procedure SPO(DA, DP ) . Algorithm und problem design
2: Select p ∈ DP and set t = 0 . Select problem instance
3: X

(t)
A = {x1, x2, . . . , xk} . Sample k initial points, e.g., LHS

4: repeat
5: yij = Yj(xi, p)∀xi ∈ X

(t)
A and j = 1, . . . , r(t) . Fitness evaluation

6: Y
(t)
i =

Pr(t)

j=1 y
(t)
ij /r(t) . Sample statistic for the ith design point

7: xb with b = arg mini(yi) . Determine best point
8: Y (x) = F(β, x) + Z(x) . DACE model from Eq. 1
9: XS = {xk+1, . . . , xk+s} . Generate s sample points, s � k

10: y(xi), i = 1, . . . , k + s . Predict fitness from the DACE model
11: I(xi) for i = 1, . . . , s + k . Expected improvement, cf. [6]

12: X
(t+1)
A = X

(t)
A ∪ {xk+i}m

i=1 /∈ X
(t)
A . Add m promising points

13: if x
(t)
b = x

(t+1)
b then

14: r(t+1) = 2r(t) . Increase number of repeats
15: end if
16: t = t+1 . Increment iteration counter
17: until Budget exhausted
18: end procedure

for a d-dimensional input x(i) as a realization of a regression model2 F and a
stochastic process Z,

Y (x) = F(β, x) + Z(x). (1)

Note that SPO inherits this process model but utilizes it for the situation
of nondeterministic responses as these are usually obtained from the heuristic
optimization algorithms we want to investigate. Algorithm 1 [2] describes the
SPO in a formal manner. 3 The selection of a suitable problem instance is done
in the pre-experimental planning phase to avoid floor and ceiling effects (l.2).
Latin hypercube sampling can be used to determine an initial set of design points
(l.3). After the algorithm has been run with these k initial parameter settings
(l.5), the DACE process model is used to discover promising design points (l.10).
Note that other sample statistics than the mean, e.g., the median, can be used in
l.6. The m points with the highest expected improvement4 are added to the set
of design points, where m should be small compared to s. The update rule for the
number of reevalutions r(t) (l.13-15) guarantees that the new best design point
x

(t+1)
b has been evaluated at least as many times as the previous best design point

x
(t)
b . Obviously, this is a very simple update rule and more elaborate rules are

2Based on experiences from previous studies, quadratic regression models have been
used in our studies.

3A toolbox that implements SPO and provides additional material is available at:
http://www.springer.com/3-540-32026-1.

4A situation in which each point has the same expected improvement can occur if (i)
the objective function is constant and (ii) the optimization algorithm is deterministic.
However, these situations are only of theoretical relevance.



4

possible. Other termination criteria exist besides the budget based termination
(l.17).

3 Initial Designs

There is no simple or generic rule for choosing adequate initial designs. In classi-
cal design and analysis of experiments (DoE), this is a chicken and egg problem:
To determine a suitable regression model, design points are needed. But, the
choice of optimal design points depends on the model [7]. Experiments reported
in [8] indicated the superiority of space filling design over classical factorial de-
signs in the context of parameter tuning for stochastic search algorithms. There-
fore, we consider space-filling designs, which are nicely motivated in [4]. So, are
we lucky and can simply ignore the complex determination of adequate designs
by filling the design space randomly with design points? Unfortunately not, be-
cause even with space filling designs, certain design criteria can be chosen. We
will use Latin hypercube designs (LHD) for the following experiments. LHDs
haven been chosen because they are easy to understand and implement—and
not because they are proven to be superior to other space filling designs. [6,
p. 149] state: It has not been demonstrated that LHDs are superior to any de-
signs other than simple random sampling (and they are only superior to simple
random sampling in some cases).

In many real-world optimization scenarios, a limited budget, say time or
function evaluations, for performing the optimization task is available. At least
two situations, in which an allocation of the resources is possible, can be men-
tioned here: First, the distribution of the available resources among the tuning
phase and the optimization phase, and second, the allocation of the resources
to the initial design and the second phase (sequential steps) during tuning. We
will consider the latter problem in this paper. The analysis will be restricted
to the case where the number of initial repeats is very low, e.g., r = 2. This is
reasonable, because (i) in many real-world optimization scenarios large r values
are prohibitive and (ii) we are interested in a quick exploration of the search
space in the first step of this sequential procedure. So, the experimental goal can
be formulated in the SPO framework as follows:

Goal 1. For a given number of function evaluations, Nb, determine a number k
of initial points for the initial design as introduced in Step 3 of Algorithm 1.

Note, that this goal occurs in any sequential tuning procedure and is not re-
stricted to SPO. And, in general, sequential procedures are considered more
efficient than procedures that use the available budget at once [9]. Therefore,
we are considering the most interesting cases and our results are of interest for
other situations as well. The trade-off can be described as follows: Shall we use a
good initial design with only a few sequential steps or perform many sequential
steps based on a poor initial design?

A PSO was chosen to illustrate our approach and to generate some empiri-
cal data. The algorithm and results from experiments are outlined in [10]. Our
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PSO implementation is based on the PSOTOOLBOX, which was integrated
into the SPO framework. The PSO algorithm design is shown in Table 1. To
specify the problem design, the following parameters were considered (Table 2).
The experiment’s name, the number of runs n, the maximum number of func-
tion evaluations tmax, the problem’s dimension d, the initialization method, the
termination criterion, the interval [xl, xu] for the initialization of the object vari-
ables, as well as the optimization problem and the performance measure (PM)
are reported. The reader is referred to [2] for a discussion of these parameters.
Finally, we have to describe the SPO design (Table 3). If no sequential steps
were performed, nLHD design points can be evaluated. Note, that nLHD = Nb/r,
where Nb denotes the budget, i.e., the total number of algorithm runs, and r
is the number of repeats used in the first design. The SPO uses a quadratic
regression model and a Gaussian correlation function. Four design points with
the highest expected improvement and the best solution found so far are evalu-
ated in the sequential phase of the SPO run (m = 4).The experimental analysis
clearly demonstrated that the determination of a suitable initial design is of
crucial importance for the second phase, which performs a local tuning. To play
safe, we recommend increasing the number of initial design points. The number
of sequential optimization steps could be reduced in many situations without
a significant performance loss. Furthermore, experiments with several optimiza-
tion problems (Rosenbrock, Sphere, Rastrigin, Griewank, and problems from the
Moré test set) revealed that a small number of function re-evaluations is benefi-
cial. To give an example: The following best function values have been obtained
on the 30-dim Rosenbrock function (with tmax = 500 function evaluations for
the PSO and r = 2 reevaluations for the initial design): 223 with 15 initial LHD
samples, 324 with 100 initial samples, and 486 with 150 initial samples. If the
number of reevaluations was increased to r = 5, a function value of 1663 was
obtained with 15 initial LHD sample points and values of 403 (2776) with 30
(60) initial samples. All values reported here are averages from 100 repeats. 5

4 Evaluation of Second-Phase Points

SPO subsequently evaluates second-phase points (algorithm designs) for two rea-
sons: a) to find optimal designs, and b) to improve the model. In order to coun-
teract the nondeterministic nature of the modeled algorithm-problem system,
the standard procedure doubles the number of repeats performed of the current

Table 1. PSO algorithm designs. Swarm size s, cognitive and social parameters c1 and
c2, and witerScale, the percentage of the run, in which the inertia weight is decreased.

Design s c1 c2 witerScale

x
(0)
PSO 2 : 50 1 : 3 1 : 3 0.1:0.9

5Note, that [10] used 80 times more function evaluations to obtain similar results.
They used recommendations from theory to perform their experiments, e.g., theoreti-
cally derived values for c1 and c2.
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Table 2. Problem designs for the sphere function. Similar designs have been used for
the Rosenbrock, Griewank, and Rastrigin function. The maximum number of function
evaluations for one algorithm run is tmax, whereas n denotes the number of repeats for
each algorithm run. Altogether, n× tmax function evaluations were performed. See [10]

Design Init. Term. PM n tmax d xl xu

x
(0)
sphere DETEQ EXH MBST 100 500 {10, 20, 30} 15 30

Table 3. SPO algorithm designs for tuning the particle swarm optimization. “Merge”
denotes the statistic that was used to compare the performance of algorithm designs
with stochastically disturbed results, e.g., from EAs

Design LHDini Nb r merge

x
(0)
SPO 15:nLHD {100,300,1000} 2:5 {min, median, mean, max }

best point whenever an iteration fails to provide an improvement, cf. l. 14 from
Algorithm 1. Consequently, to enable fair comparison between the current best
and newly suggested point(s), SPO ensures that both have been sampled for the
same number of times. However, this procedure can become expensive in terms
of algorithm runs, resulting in rather low numbers of second-phase points if the
available budget is tight.

If we had means to decide which of the points (best or suggested) leads to
better performance without necessarily carrying out the suggested number of
repeats in full, algorithm runs could be saved, resulting in a higher number of
second-phase points without great loss of information. Concerning the search for
optimal designs, this is undoubtedly an advantage. However, it could be argued
that reducing the number of repeats also entails reducing the intended model
improvement. Nevertheless, we have to take into account that a) second-phase
points are usually evaluated much more often than first-phase points, b) only
clearly worse performing points can easily be rejected, and c) saved runs are
invested again into new points in the following iterations.

Assessing significant differences of two underlying systems represented by a
number of samples is the intended purpose of hypothesis tests. However, the
often applied t-tests require approximate normal distributions, a demand that is
usually not met by results obtained from heuristic optimization algorithms. As
an alternative, we therefore resort to bootstrap permutation tests ([11], section
14.5) which do not presume normality but instead anticipate identically shaped
distributions. Fortunately, permutation tests are robust against small differences
in shapes so that we regard this prerequisite as more realistic then to expect
normality.

Table 4. ES algorithm designs. The learning rate τ applies to the Rastrigin function,
the mutation rate pmut to the MMDP, resulting in 4 free parameters each.

Design µ κ λ
µ

τ pmut

x
(0)
ES 1 : 200 1 : 20 4 : 12 0.001 : 1.0 0.001 : 0.999
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Goal 2. Detect if integrating bootstrap permutation tests for early rejection of
bad algorithm designs can significantly improve SPO performance.

As test problems, we chose a real-valued and a binary coded one, the 30-
dimensional shifted Rastrigin function from [12], and the 20-dimensional (120
bits in 20 groups) massively multimodal deceptive problem MMDP [13]. On these,
a näıve evolution strategy (ES) as described in [14] is run, with gaussian mutation
and self-adaptation for the real-valued and bit flip mutation for the binary coded
problem. Additionally, the κ selection operator allows to switch between comma
and plus type selection by imposing a maximum age for any individual. SPO
is utilized to find good algorithm designs with a maximum run length of 104

evaluations and a budget of 1000 allowed algorithm runs, of which 200 (50 × 4
repeats) are used for the initial LHD.

Figure 1 presents box plots of the best found algorithm designs detected by
SPO in 20 independent runs, with and without integrating bootstrap permuation
tests. Note that the setting is deliberately chosen to be hard for the ES, so that
the global optimum (−330 for the Rastrigin problem, 20 for the MMDP) is
rarely attained. SPO obviously performs significantly better in both cases when
tests are used. A Wilcoxon rank sum test computes the probability (p-value) for
wrongly rejecting the null-hypothesis (both variants perform equally) to 0.01121
for the Rastrigin function, and 10−6 for the MMDP. This is suprising as we
expected that result distributions consisting only of discrete values were harder
to compare and thus the impact of testing for the ES on the MMDP would
be small. Nevertheless, these two cases only demonstrate that there can be a
positive effect. Further experimentation is necessary to find out if this result
correctly hints to a general trend.

5 Summary and Outlook

The choice of an appropriate initial design is important for SPO. Selection of
good algorithm parameter settings from initial designs produces the largest per-
formance gain. In some situations, e.g., where no complex stochastic process
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Fig. 1. Distribution of best algorithm design performances from 20 SPO runs of an ES
on the shifted Rastrigin function (left, minimization) and the discrete MMDP problem
(right, maximization), with and without applying bootstrap permutation tests.
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models are available (or desired), this first improvement can be sufficient. Se-
lecting the best point from a set of space filling design points—as used in the
initial phase of the SPO approach—can be regarded as a simple heuristic. This
heuristic works surprisingly well and should become a standard in experimental
research. It is of great importance to screen out worse algorithm design points.

Furthermore, SPO was able to improve the algorithm’s performance dras-
tically. For example, [10] report a mean best fitness value of y = 316 on the
30-dimensional Rosenbrock function after 40,000 function evaluations. We were
able to obtain an even slightly better result (y = 202) with 500 function evalua-
tions only. Problem instance selection plays an important role in the context of
SPO and active experimentation. First, it might be of interest to determine an
algorithm design that works well on a broad number of problem instances, i.e.,
it improves the robustness of the algorithm. Second, it is an invaluable tool in
the experimentalist’s arsenal for determining why an algorithm works.

As far we know is this the first analysis of the interplay between initial designs
and sequential steps for the optimization of stochastic search algorithms. Several
parameters, that have not varied in our study, are of interest for further investi-
gations, e.g., other stochastic process models can be used. Summarizing, we can
conclude that SPO is a robust tool for tuning (stochastic) search algorithms.
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