
Investigation of One-Go Evolution
Strategy/Quasi-Newton Hybridizations

Thomas Bartz–Beielstein†, Mike Preuss, Günter Rudolph

Dortmund University, 44221 Dortmund, Germany,
http://ls11-www.cs.uni-dortmund.de/people/

Abstract. It is general knowledge that hybrid approaches can improve
the performance of search heurististics. The first phase, exploration,
should detect regions of good solutions, whereas the second phase, ex-
ploitation, shall tune these solutions locally. Therefore a combination
(hybridization) of global and local optimization techniques is recom-
mended. Although plausible at the first sight, it remains unclear how to
implement the hybridization, e.g., to distribute the resources, i.e., num-
ber of function evaluations or CPU time, to the global and local search
optimization algorithm. This budget allocation becomes important if the
available resources are very limited. We present an approach to analyze
hybridization in this case. An evolution strategy and a quasi-Newton
method are combined and tested on standard test functions.

1 Introduction

Hybridizing evolutionary algorithms (EA) with local search techniques (LS) is
not exactly a new idea. In fact, several such approaches exist (e.g. genetic local
search, hybrid genetic algorithms) and nowadays, they are subsumed under the
term memetic algorithms (MA) that was invented by [13]. A recent overview is
given by [10], together with a suggested taxonomy.

Hovewer, MA usually do not treat EA and LS as coequal techniques. In-
stead, the local search methods are integrated into the evolutionary algorithm
framework. This is straightforward as EAs are considered to have global search
capabilities whereas LSs are prone to get stuck in the first local optimum they
approach. Nevertheless, we follow a different path by simply applying an evo-
lution strategy (ES) and a quasi-Newton (QN) method consecutively, without
any other information exchange besides communicating the best solution found
by the former into the latter. This scheme resembles the simplest possible of
such combinations, thereby implying that the EA is able to detect a region near
the global optimizer in one go which is then approximated by the local search
method. The working hypothesis of commonly used MA differs insofar as the
evolutionary algorithm is only required to step into the vicinity of any (possi-
bly local) optimizer before the LS method takes over. In stark contrast to the
situation investigated here, MAs mostly apply both techniques several times.

†corresponding author: Thomas.Bartz-Beielstein@udo.edu



2

The main motivation for hybridizing ES and QN by simply applying them con-
secutively only once is drawn from two sources:

– Combining a global and a local search technique is expected to result in
better performance than either of them alone, especially if at least one of
the techniques can be tailored to deliver what the other needs to proceed.

– Real-world applications as e.g. design problems enforce short runs: The avail-
able time poses hard limits onto the allowed number of evaluations, often less
than 104 can be afforded. Consequently, frequent switching between global
and local search techniques may be inappropriate for such problems.

In recent research, we observe two contradictory trends: (i) to develop more
and more new algorithms or (ii) to analyze and understand existing heuristics
and to add new features only when necessary. With this work, we lean against
the second trend by taking two existing algorithms and combining them in a very
simple fashion. However, we do not add new features but rather try to adapt an
EA to work well in combination with a QN-algorithm by tuning its parameters
and adjusting the fraction of shared resources it is allowed to consume.

The paper is organized as follows: Section 2 introduces the algorithms that
will be hybridized: an evolution strategy and a QN-method, followed by a brief
description of the resulting hybrid algorithm. The experimental methodology
is introduced in Sect. 3. It relies on the sequential parameter optimization ap-
proach, which has been applied to several optimization tasks from industrial
optimization and theoretical computer science. Experiments are presented in
Sect. 4. Our focus lies on optimization problems with limited resources. Sec-
tion 5 analyzes the experimental results, and Sect. 6 summarizes the conclusions
drawn from this study.

2 Algorithms

2.1 Evolution Strategies

An ES-algorithm run may be characterized as follows: The parental population is
initialized at time (generation) g = 0. Then λ offspring individuals are generated
in the following manner: For each offspring individual, a parent family of size ρ is
selected randomly from the parent population. Recombination is applied to the
object variables and the strategy parameters. The mutation operator is applied
to the resulting offspring vector. After evaluation, the next parent population is
determined by means of a selection procedure. The populations created in the
iterations of the algorithm are called generations or reproduction cycles. Unless
a termination criterion is fulfilled, the generation counter (g) is incremented and
the process continues with the generation of the next offspring. We consider the
parameters or control variables from Table 1. This table shows typical param-
eter settings. Bäck does not recommend using “standard” without reflection.
Considering the no-free lunch debate and current results from experimental re-
search, it is obvious that problems exist where these “standards” fail. Thus it is
necessary to adjust the parameters to the specific optimization problem. SPO,



3

Table 1. Default settings of exogenous parameters of a “standard” evolution strategy
[1]. The ES parameters can be described as follows: The symbols µ and λ denote par-
ent and offspring population sizes, respectively. The offspring-parent ratio is defined as
ν = λ/µ, σ(0) denotes the initial standard deviation, which is used for mutation. Let d
be the problem dimension. Then between nσ = 1 and d different standard deviations
can be used. c0 and c1 denote multipliers for the global and local learning rates, re-
spectively, as described in Equation (27) in [4]. Note, [4] use the same c, i.e., c1 = c2

for global and local learning rates. The parameter ρ describes the number of parent
individuals used in recombination and rd and ri denote discrete and intermediary re-
combination, respectively. Intermediate recombination has been used for both object
and strategy parameters in our experiments. The symbol κ is the maximum lifespan
of an individual, the so-called comma strategies use κ = 1, whereas plus strategies use
κ = ∞. Parameters, that are tuned, are printed in boldface.

Symbol Parameter Range Default

µ Number of parent individuals N 15
ν Offspring–parent ratio R+ 7

σ
(0)
i Initial standard deviations R+ 3

nσ Number of standard deviations {1, 2, . . . , d} 1
c0 Multiplier for the global learning rate R+ 1
c1 Multiplier for the local learning rate R+ 1
ρ Mixing number {1, 2, . . . , µ} 2
rx Recombination operator for object variables {ri, rd} rd

rσ Recombination operator for strategy variables {ri, rd} ri

κ Maximum age N 1

as described in Sect. 3.2, provides one possible technique to avoid poor results
caused by wrongly specified parameters. The reader is referred to [2] and [4] for
detailed descriptions of these parameters.

2.2 Quasi-Newton Methods

The variable metric method utilized for the experiments in this study is a QN-
method. Quasi-Newton methods build up curvature information. Let H denote
the Hessian, c a constant vector, and b a constant, then a quadratic model prob-
lem formulation of the form minx

1
2xT Hx+ cT x+ b is constructed. If the partial

derivatives of x go to zero, i.e., ∇f(x∗) = Hx∗ + c = 0, the optimal solution
for the quadratic problem occurs. Hence x∗ = −H−1c. Quasi-Newton methods
avoid the numerical computation of the inverse Hessian H−1 by using informa-
tion from function values and gradients. The MATLAB function fminunc uses
the formula of [5], [7], [8], and [18] to approximate H−1.

2.3 ES/QN-Hybrid

The ESQN algorithm combines the ES and QN by running them consecutively
and initializing the latter with the result of the former. The parameter ES2QN



4

distributes the available resources to the algorithms, i.e., it defines the percentage
of function evaluations for the ES: ES2QN ∈ [0.0, 1.0]. The remainder is assigned
to the QN-strategy. For example, if ES2QN is 0, the ES receives no function
evaluation and the ESQN is a canonical QN-method. Allotting more time for
the ES cuts down resources available to the QN-algorithm and vice versa.

3 Experimental Methodology

3.1 Problem and Algorithm Designs

The concept of experimental designs is crucial for our approach. On the one hand,
search heuristics such as the Nelder-Mead simplex strategy, genetic algorithms,
or particle swarm optimization require the specification of exogenous parameters
before the algorithm is started. On the other hand, endogenous parameters can
evolve during the optimization process, e.g., in self-adaptive evolution strate-
gies. We will consider exogenous parameters in the following. By varying the
values of the exogenous parameters the experimenter can get some insight into
the behavior of an algorithm. This procedure can be described as active experi-
mentation in contrast to passive experimentation, where the experimenter only
observes some phenomena. Passive experimentation predominated experimental
research in evolutionary computation until recently. Nowadays, more and more
active experimental approaches are developed.

Exogenous parameters will be referred to as design variables in the context
of statistical design and analysis of experiments. The parameter values chosen
for the experiments constitute an algorithm design XA. Let DA denote the set
of all possible parameter settings for one algorithm. A design point xa ∈ DA

represents one specific parameter setting. Algorithm tuning can be understood
as the process of finding the optimal design point x∗a ∈ DA for a given problem
design XP . Tuning leads to results that are tailored for one specific algorithm-
optimization problem combination. To discuss the behavior of an algorithm the
underlying problem has to be taken into account. A problem being GA easy may
be ES hard, and vice versa. Tuning enables a fair comparison of two or more
algorithms that should be performed prior to their comparison. This should
provide an equivalent budget—for example, a number of function evaluations or
an overall run time—for each algorithm.

It is crucial to formulate the goal of the tuning experiments precisely, because
in many real-world situations, it is not possible or not desired to find the opti-
mum. A good solution, i.e., a robust solution, is often preferred. This discussion
is also relevant for the specification of performance measures (PM) in evolu-
tionary computation. There are many different measures for the goodness of an
algorithm, i.e., the quality of the best solution, the percentage of runs terminated
successfully, or the number of iterations required to obtain the results.

3.2 Sequential Parameter Optimization

Sequential parameter optimization (SPO) is a methodology for the experimen-
tal analysis of optimization algorithms to determine improved algorithm designs



5

Algorithm 1 Sequential parameter optimization
1: procedure SPO(DA, DP ) . Algorithm und problem design
2: Select p ∈ DP and set t = 0 . Select problem instance
3: XA(t) = {x(1), x(2), . . . , x(k)} . Sample k initial points, e.g., LHS
4: repeat
5: y

(i)
j = Yj(x

(i), p)∀x(i) ∈ XA(t) and j = 1, . . . , r(t) . Fitness evaluation

6: Y
(i)

(t) =
Pr(t)

j=1 y
(i)
j (t)/r(t) . Sample statistic for the ith design point

7: xb with b = arg mini(y
(i)) . Determine best point

8: Y (·) = F(β, ·) + Z(·) . DACE model
9: XS = {x(k+1), . . . , x(k+s)} . Generate s sample points, s � k

10: y(x(i)), i = 1, . . . , k + s . Predict fitness from the DACE model
11: I(x(i)) for i = 1, . . . , s + k . Determine expected improvement, cf. [17]
12: XA(t + 1) = XA(t) ∪ {x(k+i)}m

i=1 . Add m points with the highest I(·)
13: if xb(t) = xb(t + 1) then
14: r(t + 1) = 2r(t) . Increase number of repeats
15: end if
16: t = t+1;k=k+m . Increment counters
17: until Budget exhausted
18: end procedure

and to learn, how the algorithm works. It employs computational statistic meth-
ods to investigate the interactions among optimization problems, algorithms,
and environments. We consider each algorithm design with associated output
as a realization of a stochastic process and use interpolation method to predict
unknown values. Our presentation follows concepts introduced in [16], [9], and
[11].

Consider a set of m design points x = {x(1), . . . , x(k)} with x(i) ∈ Rd. In the
design and analysis of computer experiments (DACE) stochastic process model,
a deterministic function is evaluated at these design points. The vector of the
k responses is denoted as y = (y(1), . . . , y(k)) with y(i) ∈ R. The process model
proposed in [16] expresses the deterministic response y(x(i)) for a d-dimensional
input x(i) as a realization of a regression model F and a stochastic process Z.
Algorithm 1 describes the SPO in a formal manner. The selection of a suitable
problem instance is done in the pre-experimental planning phase to avoid floor
and ceiling effects (l.2). Latin hypercube sampling can be used to determine an
initial set of design points (l.3). After the algorithm has been run with these
k initial parameter settings (l.5), the DACE process model is used to discover
promising design points (l.10). Note that other sample statistics than the mean,
e.g., the median, can be used in l.6. The m points with the highest expected
improvement are added to the set of design points, where m should be small
compared to s. The update rule for the number of reevalutions r(t) (l.13-15)
guarantees that the new best design point xb(t + 1) has been evaluated at least
as many times as the previous best design point xb(t). Obviously, this is a very
simple update rule and more elaborate rules are possible. Other termination
criteria exist besides the budget based termination (l.17). Figure 1 illustrates



6

a typical situation from SPO. Here, small population sizes and high selective
pressures are beneficial.

Fig. 1. Typical results from the sequential parameter optimization of the ES. Left:
Interactions between population size and selective pressure Right: Plots of the single
effects

A toolbox that implements the sequential parameter optimization is avail-
able under the following link: http://www.springer.com/3-540-32026-1. Ad-
ditional material, e.g., the implementation of the evolution strategy used in the
following experiments can be downloaded, too. Furthermore, we will provide
interfaces to SPO for commonly used search heuristics such as particle swarm
optimization, genetic algorithms, or commercial optimization-software packages.

4 Experiments

4.1 Problem Design

We decided to use the deterministic initialization scheme DETEQ, see [3]. It
uses one single starting point, i.e., x0, so that the same initial conditions are
used by both algorithms and the hybrid approach.1 This is a disadvantage for
the population based ES because it is forced to spread search points of its initial
population (by applying the mutation operator) within a tight cloud around the
starting point, rather than distributing them throughout the whole search space.
However, our main focus does not lie on a direct comparison of the algorithms,
but on the effect of the hybridization.

To check for floor and ceiling effects, the number of function evaluations
was varied during the pre-experimental planning phase. This ensures that the
problem design is not too easy or to hard for the algorithms under consideration.
Floor and ceiling effects are discussed in [6, 3]. To enable a fair comparison, we

1Note, x0 should not be confused with x(0) defined in Algorithm 1. The former
describes the starting point for one algorithm run, the latter is one parameter set of
the optimization algorithm.



7

have chosen tmax, i.e., the maximum number of function evaluations, as 100
× problem dimension. This value appears to be very small ES, because ES
need a certain amount of function values to adapt they step sizes. However, our
experiments reveal some interesting insight into the ES performance that might
correct some typical prejudices against ES.

4.2 Algorithm Designs

A suitable algorithm design has to be determined. Clearly, for this specific situa-
tion, “standard” parameter settings from the literature are not adequate. There-
fore, SPO was used to detect suitable algorithm designs for the ES. Due to the
small number of function evaluations, population sizes between 1 and 10 in-
dividuals have been used. The selective pressure was chosen from the interval
]0, 10]. The region of interest for the learning parameters c0 and c1 was defined as
the interval [0.1, 3]. The related ES algorithm designs for the selected functions
from [12] are summarized in Table 3. Note, that the parameters from the tuned
algorithms show no directly observable patterns, so that no general recommen-
dations can be given for an ES algorithm design that works equally well on every
function from the [12] test set.2

4.3 Experiments on Moré’s Test Problems

Due to the limited space, function definitions are omitted. The reader is referred
to [12] and [14] for a full description of these functions. We have included some
plots to illustrate some characteristics.

Rosenrock The Rosenbrock function is the first function from the collection
described in [12] [15]. Minimum x∗ = (1, 1). Optimum f∗ = 0. Starting point
x0 = (−1.2, 1). This is the famous two-dimensional “banana valley” function.

Experiments with the canonical ES and QN for Rosenbrock’s function showed,
that QN and ES are able to solve this problem in principle. Now we will tackle the
central question from this paper: does it pay to hybridize ES and QN? Therefore,
we have generated a series of ES2QN plots, e.g., in Fig. 2 (right). These plots
enable a direct comparison of the canonical ES and QN algorithms: if ES2QN is
0 (0 % ES, but 100% QN), the average performance for n = 10 runs of the QN
algorithm is shown. If ES2QN is 1 (100% ES), the performance of the ES can
be seen. Intermediate ES2QN values, i.e., ESQN ∈]0, 1[, show the performance
of hybrid approaches. In addition to the mean value from ten runs, the mini-
mum, maximum, and the bestof function values are plotted, because they have
a great practical relevance. The bestof value is determined from n values as fol-
lows: determine the minimum value from m random draws (with replacement)
out of n (m < n). This procedure is repeated very often, say 1,000,000 times,
and the average value is reported. The bestof value is larger than the minimum,
but smaller than the mean value. We have chosen m = 5, because 5 repeated

2The QN-method was not tuned, because MATLAB does not provide any interfaces
to adjust exogenous parameters.



8

Table 2. Problem designs for the experiments performed on the [12] test suite. The
DETEQ initialization method, the EXH termination criterion, and n = 10 repeats are
used for all experiments. The experiment’s name, the maximum number of function
evaluations tmax, the problem’s dimension d, the starting point x0 for the initialization
of the object variables are reported

Problem design tmax d x0

x
(1)
rosen 200 2 (−1.2, 1)

x
(1)
froth 200 2 (0.5,−2)

x
(1)
bscp 200 2 (0, 1)

x
(1)
bscb 200 2 (1, 1)

x
(1)
jensam 200 2 (0.3, 0.4)

x
(1)
osborne2 200 11 see [12]

x
(1)
meyer 300 3 (0.02, 4000, 250)

runs represent a realistic situation in many real world optimization scenarios.
We did not show plots with error bars (or confidence intervals), because for our
purpose, the mean, min, max, bestof (MMMB plots) provide more information.
A comparison of both representations is shown in Fig. 7.

Table 3. ES algorithm designs. Further ES parameters remained constant as described
in Sect. 2.1. Rosenbrock: x

(1)
ES , Freudenstein and Roth: x

(2)
ES , Powell badly scaled: x

(3)
ES ,

Brown badly scaled: x
(4)
ES , Jenrich and Sampson: x

(5)
ES , Meyer: x

(6)
ES , and Osborne 2: x

(7)
ES .

Algo. design µ ν c1 c2

x
(1)
ES 1 1.5646 0.315154 0.102151

x
(2)
ES 1 4.35957 0.215921 2.10074

x
(3)
ES 6 1.09798 2.93576 2.94653

x
(4)
ES 4 2.29763 1.66219 2.90905

x
(5)
ES 8 4.70181 1.87773 0.27439

x
(6)
ES 9 1.239 0.792342 1.93755

x
(7)
ES 2 6.94046 1.71284 0.537968

Figure 2 clearly indicates that QN outperforms ES and that hybridization
worsens the performance for this setting. This result is in accordance with results
reported in [14], where the QN algorithm reached a function value of 1.15e− 10
with 150 function evaluations only.

Freudenstein and Roth Minimum x∗ = (5, 4). Optimum f∗ = 0. Starting
point x0 = (0.5,−2). This is function 2 from the [12] test set. Figure 3 shows a
3 dimensional and contour plot. It indicates that hybridization is beneficial and
that ES performs slightly better than QN. The ES generates solution candidates



9

Fig. 2. Rosenbrock. Left: The gray arrow depicts the starting point x0 = (−1.2, 1),
the black arrow the optimizer x∗ = (1, 1).Right: Results from the hybridization (n =
10 repeats, this value was used in the following plots, too) clearly demonstrate that
hybridization does not improve the algorithm, because QN outperforms ES

that “jump over the saddle (y ≡ 2)”, and QN can fine tune these solutions. Best
results are obtained if approximately 3/4 of the budget is assigned to the ES.

Powell Badly Scaled Minimum x∗ = (1.098 . . . 10−5, 9.106 . . .). Optimum
f∗ = 0. Starting point x0 = (0, 1). This is function 3 from the [12] test set.
Figure 4 shows a 3 dimensional and contour plot. This plot illustrates that com-
paring mean values alone tells not the whole story. Hybridization can improve
the performance, but this is not guaranteed. However, it might be a good strat-
egy, if the user can select the best result from several runs (as modeled in the
performance measure bestof). SPO proposed a 6+6-ES, see Table 3. The follow-
ing situation could be observed in some runs: The ES was able to detect values
close to the optimizer after 3 generations, which could be improved by QN.

Brown Badly Scaled Minimum x∗ = (106, 2·10−6). Optimum f∗ = 0. Starting
point x0 = (1, 1). This is function 4 from the [12] test set. Figure 5 shows a 3
dimensional and contour plot. A first look at the results leads to the conclusion

Fig. 3. Freudenstein and Roth. Left: The gray arrow depicts the starting point x0 =
(0.5, 2), the black arrow the optimizer x∗ = (5, 4).Right: Experimental results indicate
that hybridization can improve the algorithm’s performance



10

Fig. 4. Powell Badly Scaled. Left: The white arrow depicts the starting point x0 =
(0, 1), the gray arrow the optimizer x∗ = (1.098 . . . 10−5, 9.106 . . .).Right: Results from
the hybridization.

Fig. 5. Brown Badly Scaled. First row, left: The white arrow depicts the starting point
x0 = (1, 1), the gray arrow the optimizer x∗ = (106, 2 · 10−6). Right: Results from the
hybridization, tmax= 200. Second row, left: tmax= 400, right: tmax= 800. Some curves
end abruptly, because the plotted values are zero, which is the known minimum



11

that QN performs better than the ES, cf. the right graph in the first row. How-
ever, this result depends heavily on the number of available function evaluations,
i.e., tmax. If tmaxis increased, ES performs better than QN. Hybridization has
no positive effect, it is better to use the canonical algorithms. The ES needs
some time adapting the step width, but was able to detect the minimizer. QN
finds suboptimal solutions with fewer function evaluations. QN could not detect
the optimizer, even if tmaxwas increased as can be seen from the graphs in the
second row of Fig. 5.

Fig. 6. Jenrich and Sampson. Left: The white arrow depicts the starting point x0 =
(0.3, 0.4), the gray arrow the optimizer x∗ = (0.2578 . . . , 0.2578 . . .).Right: Results from
the hybridization illustrate that hybridization worsens the algorithm’s performance

Jenrich and Sampson Minimum x∗ = (0.2578 . . . , 0.2578 . . .). Optimum f∗ =
124.362 . . .. Starting point x0 = (0.3, 0.4). This is function 6 from the [12] test
set. Figure 6 shows a 3 dimensional plot and contour plot. Both algorithms
perform equally well, there is no benefit in hybridization. Hybridization worsens
the performance in some settings, see Fig. 6.

Fig. 7. Osborne 2. Left: Results from the hybridization.Right: Results from the hy-
bridization illustrate that hybridization does not improve the algorithm’s performance



12

Osborne 2 Osborne 2 was included into the test function set, because it the
11-dimensional function. The test suite from [12] contains 6 two, three, and four
dimensional, 1 five, six, and nine dimensional, 9 ten dimensional, and 1 eleven
dimensional test function. [14] reports some results from optimization attempts
with the MATLAB optimization toolbox: This 11 dimensional problem could
not be solved by MATLAB’s BFGS without supplying gradient information.
And, even with gradient information, more than 10,000 function evaluations were
required for finding a point in the vicinity of the global optimizer. 3 Osborne 2 is
function 19 from the [12] test set. Figure 7 nicely illustrates the trade off between
deterministic (QN) and stochastic (ES) search algorithms. If the user needs a
good result with a high reliability, she should use the QN. If she can afford several
runs, then ES is the correct choice. There is no guarantee that ES detects a better
solution, but a hight probability. Hybridization is not recommended. The plot
on the right shows the same data as on the left, but uses error bars.

Fig. 8. Meyer. Left: Results from the hybridization with 400 function evaluations.Right:
Results from the hybridization with 1000 function evaluations

Meyer Meyer’s function was added to our test set, because it is a three di-
mensional function on which MATLAB’s BFGS method failed. [14] reports a
function value of 3.4675e+007 at solution found after 10,002 function evalua-
tions , whereas the best known minimum reads f∗ = 87.9458. This is function
10 from the [12] test set. Figure 8 suggests that QN performs better than ES.
But this is an artefact, because both algorithms failed. They did not find a value
in the vicinity of the optimizer. Hence, the problem is too hard for both algo-
rithms. Increasing the computational budget, i.e., tmax, does not lead to better
results. Therefore, the difference is statistical significant—but not scientifically
relevant.

3We have obtained slightly different, i.e., better, results, because we used a newer
MATLAB release (R14).



13

5 Analysis

The main research goal of our study addresses the question “Are there situations
in which the hybridization of ES and QN methods improve their performance ?”
The analysis of the experiments produced no clear picture. QN is more robust
than the ES in the traditional definition of robustness, i.e., low standard devia-
tions. This robustness can be seen as an disadvantage, e.g., if the optimization
practitioner can afford several runs from which she chooses the best.

Looking at local run properties reveals that the performance improvement
is caused by the following effect: The ES explores the search space and de-
tects a suitable starting point that is passed to the QN, which performs a local
fine tuning. This is superior to the global search behavior of the ES alone and
the local strategy of the QN-methods. However, we could not derive general
guidelines, e.g., “choose an ES2QN value of 0.31415 to improve the algorithm’s
performance”. The hybrid approach has also some advantages compared to an
approach that performs a sampling of the search space in the first phase and runs
a QN method in the second phase, because the region of interest is not known in
many situations. The ES jumps to a promising region in the first steps, so that
the additional refinement with the QN can be performed efficiently. A compar-
ison to multi-start techniques is of great interest and has not been done in our
study.

As expected and mentioned in the abstract, hybridization can improve algo-
rithm’s performance, even if the resources are very limited. Restricted resources
are standard situations in industrial optimization, because function evaluations
are very costly or results must be available immediately, i.e., in optimization
via simulation or in real-time optimization scenarios, respectively. We observed
the following results that might be transferable to other situations as well: Al-
gorithms that are specialized for certain (simple) optimization scenarios cannot
benefit from hybridization. This is understandable, because these algorithms
need a certain budget to adapt their internal model, e.g., step sizes in ES or the
gradient and Hessian approximation for QN-methods. Switching to another algo-
rithm is costly, it might be beneficial only if no progress can be obtained with the
current strategy. Results from Rosenbrock’s function support this assumption.

It is important to tune the ES, i.e., to determine suitable algorithm designs.
SPO, or related tools, can provide a quick overview of suitable parameter set-
tings. Evolution strategies with standard setting from the literature failed in our
scenarios. Not only the algorithms have to be tuned before the experiment is
started—it was crucial to find an experimental setup that is neither too hard
nor too easy for the algorithms as can be seen from Meyer’s function.

6 Summary

No general recommendations—especially for real-world optimization problems—
can be given here, because several factors influence the algorithm’s performance.
Consider the computational budget: Modifications lead to different results. SPO



14

or related techniques can be applied in this situation, because they can improve
the performance significantly. There is no need for hybridization if well tuned
algorithms on simple test functions are considered. Only if the problem structure
is complex, the combination of global, stochastic search and local, gradient-
based strategies is useful. The hybrid ESQN communicates only the best found
solutions between its two parts. It may however be beneficial to take over the
already learned internal model of the EA (mutation strengths) into the QN-
method. Investigating this remains as a task for future research.

Acknowledgment The research leading to this paper was supported by the
DFG (Deutsche Forschungsgemeinschaft) as part of the collaborative research
center “Computational Intelligence” (531) and by project grant no. 252441,
“Mehrkriterielle Struktur- und Parameteroptimierung verfahrenstechnischer Pro-
zesse mit evolutionären Algorithmen am Beispiel gewinnorientierter unscharfer
destillativer Trennprozesse”.

References

1. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York NY, 1996.

2. Thomas Bartz-Beielstein. Experimental analysis of evolution strategies—overview
and comprehensive introduction. Interner Bericht des Sonderforschungsbere-
ichs 531 Computational Intelligence CI–157/03, Universität Dortmund, Germany,
November 2003.

3. Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation—
The New Experimentalism. Springer, Berlin, Heidelberg, New York, 2006.

4. H.-G. Beyer and H.-P. Schwefel. Evolution strategies—A comprehensive introduc-
tion. Natural Computing, 1:3–52, 2002.

5. C. G. Broyden. The convergence of a class of double-rank minimization algorithms.
Journal of the Institute of Mathematics and Its Applications, 6:76–90, 1970.

6. Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cam-
bridge MA, 1995.

7. R. Fletcher. A new approach to variable metric algorithms. Computer Journal,
13:317–322, 1970.

8. D. Goldfarb. A family of variable metric updates derived by variational means.
Mathematics of Computing, 24:23–26, 1970.

9. D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

10. Natalio Krasnogor and Jim E. Smith. A Tutorial for Competent Memetic Algo-
rithms: Model, Taxonomy and Design Issues. IEEE Transactions on Evolutionary
Computation, 5(9):474–488, 2005.

11. S.N. Lophaven, H.B. Nielsen, and J. Søndergaard. DACE—A Matlab Kriging Tool-
box. Technical Report IMM-REP-2002-12, Informatics and Mathematical Mod-
elling, Technical University of Denmark, Copenhagen, Denmark, 2002.

12. J. J. More, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software, 7(1):17–41, 1981.



15

13. Pablo Moscato. On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent
Computation Program, Report. 826, California Institute of Technology, Pasadena,
California, USA, 1989.

14. Arnold Neumaier. “Results for moré/garbow/hillstrom test problems”, 2006. http:
//www.mat.univie.ac.at/~neum/glopt/results/more/moref.html. Cited 19 Mai
2006.

15. H.H. Rosenbrock. An automatic method for finding the greatest or least value of
a function. Computer Journal, 3:175–184, 1960.

16. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409–435, 1989.

17. T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Com-
puter Experiments. Springer, Berlin, Heidelberg, New York, 2003.

18. D. F. Shanno. Conditioning of quasi-Newton methods for function minimization.
Mathematics of Computing, 24:647–656, 1970.


