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Abstract- Sequential parameter optimization is a heuris-
tic that combines classical and modern statistical tech-
niques to improve the performance of search algorithms.
To demonstrate its flexibility, three scenarios are dis-
cussed: (1) no experience how to choose the parame-
ter setting of an algorithm is available, (2) a comparison
with other algorithms is needed, and (3) an optimization
algorithm has to be applied effectively and efficiently to
a complex real-world optimization problem. Although
sequential parameter optimization relies on enhanced
statistical techniques such as design and analysis of com-
puter experiments, it can be performed algorithmically
and requires basically the specification of the relevant
algorithm’s parameters.

1 Introduction

Modern search heuristics involve a set of parameters that
can affect their performance drastically. We propose an ap-
proach for determining adequate parameters of optimiza-
tion algorithms, tailored for the optimization problem at
hand. The proposed approach employs a sequential tech-
nique from computational statistics and statistical experi-
mental design.Sequential parameter optimization(SPO)
can even be applied to search algorithms that produce sto-
chastically disturbed results, especially evolutionary algo-
rithms (genetic algorithms, evolution strategies, genetic
programming, or newer approaches such as algorithmic
chemistries and particle swarm optimization).

To show universality of this approach we tackle opti-
mization scenarios in which

• unknown (newly developed) algorithms are applied to
a well-known problems (Section 3.1), or

• well-known algorithms are applied to well-known
problems (Section 3.2), or

• well-known algorithms are used to optimize un-
known, complex real-world optimization problems
(Section 3.3),

These scenarios have one thing in common: They are defin-
itively too complex, to allow for reliable manual parameter
tuning, because the number of different parameter combi-
nations grows exponentially with the number of algorithm
parameters—even worse: If quantitative or continuous pa-
rameters are considered, as in the following, there are infini-
tively many combinations.
The major differences between SPO and other approaches
that have been proposed to solve these problems, e.g. meta-
heuristics, can be described as follows: SPO keeps the com-

putational cost for determining an improved parameter set
relatively low. Furthermore, the optimization practitioner
can learn—but she is not forced to learn—from experi-
ments; the method is semi–automatic, the course of the tun-
ing process is subject to change. And, this is probably the
most important difference, SPO can be applied in an algo-
rithmical manner, it requires the specification of very few
parameters and no additional programming effort.
Our aims in this paper are

• to demonstrate its usefulness for very different al-
gorithms and optimization tasks and explain how it
works (what)

• and to shed light on possible SPO use cases, the ques-
tions it can help to answer, and the expected results
(why), and

The paper is structured as follows: Section 2 introduces Se-
quential parameter optimization. Next, we present three ap-
plication scenarios (Sect. 3). The paper closes with a dis-
cussion and an outlook.

2 Sequential Parameter Optimization

Designs are the key elements of an algorithmic SPO de-
scription, thus we provide some definitions first. Anal-
gorithm designDA is specified by defining ranges of val-
ues for the design variables. A design pointx ∈ DA is
a vector with specific settings of the considered algorithm,
see e.g. Tab. 1. We will consider quantitative factors only.
How qualitative factors can be included into the experimen-
tal analysis is discussed in [1].Problem designsDP provide
information related to the optimization problem, such as the
available resources, e.g. the number of function evaluations
tmax, or initialization and termination criteria. Anexperi-
mental designD consists of a problem designDP and an
algorithm designDA. We do not consider problem designs
here, but regard the run of a stochastic search algorithm as
an experiment with stochastic outputY (x), with x ∈ DA.
If random seeds are specified, the output would be deter-
ministic. This case will not be considered further, because
in practice it is not common to specify the seed that is used
in an optimization run.

SPO can be interpreted as a search heuristic optimizing
the performance of non–deterministic algorithms. There-
fore it includes methods to cope with stochastically dis-
turbed results, while keeping the number of required steps
(algorithm runs) as low as possible. In most cases, time con-
straints rule out grid search, exhaustive local search meth-
ods, or even (evolutionary) meta–optimization algorithms:
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Figure 1: SPO consists of 3 iterative stages. The first stage deter-
mines design points. Latin hypercube sampling and model based
selection is used to chose new points. The best point found so far
is reevaluated. During the second stage designs points are evalu-
ated by running the algorithm using the proposed setting. During
the third stage a model is build, to estimate the algorithms per-
formance for untested settings. Results of second and third stage
may be of interest to the user. As experimental results are obvi-
ously interesting for the user, also the model could show insightful
properties of parameters and their relation.

This is where SPO may help.
Figure 1 illustrates the interaction of the three key com-

ponents of SPO:

I Experimental analysis of a set of design points

II Estimation of algorithm performance my means of a
stochastic process model, and

III Determination of additional design points.

These components will be discussed in the following.
Assume, that an initial set of design pointsI has been de-
termined already (how to determineI will be described in
Section 2.3.1).

2.1 Experimental Evaluation

Experiments are performed to estimate the performance of
a design pointx ∈ DA of an algorithm design for a given
problem design. LetI(t) denote the set of design points
to evaluate at sequential stept andx∗

a(t) be the best design
point at sequential stept. Due to the stochastic nature of
the search algorithms considered here, performance for each
design point is evaluated by means of several repeats. The
best design point from the previous iterationx∗

a(t − 1) is
included in the setI(t) and re–evaluated, thereby doubling
its number of repeats.

SPO enforces fair comparison to the current best design
point; newly generated design points are tested as often as

the best design point has been. Incrementing the number
of repeats by factor 2 each iteration gradually decreases the
estimation error between the mean of measuredY (x) values
and the trueY (x) of a design pointx.

2.2 Modeling

Following [2], the response is modeled as a realization of a
regression model and a random process. A Gaussian corre-
lation function and a regression model with polynomial of
order2 have been used. Hence, the model reads

Y (x) =

p
∑

j=1

βjfj(x) + Z(x), (1)

whereZ(·) is a random process with mean zero and covari-
anceV (ω, x) = σ2R(θ, ω, x), and the correlation function
was chosen as

R(θ, ω, z)

d
∏

j=1

exp
(

−θj(ωj − xj)
2
)

.

2.3 Design Point Determination

We use Latin Hypercube Sampling (LHS) [3] to determine
new design points. Such points could be calculated sys-
tematically for every numberk of desired design points and
every dimension sized. Additionally this approach enables
a good coverage of the design space.

To determinek design points we have to divide range of
each dimension intok equally sized intervals. For each de-
sign point we map a range in each dimension one–to–one
and draw a random value within this range. If parameter as-
signed to this dimension requires values to be inN rounding
happens afterwards.

2.3.1 Initial and Sequential Design Points

The initial design points are chosen by a LHS design as de-
scribed above. The number of parameters in the stochas-
tic process model from Equation 1 determines the minimal
number of design points. The set of design point in sequen-
tial steps comprehends the best point found so far and a set
of expected good designs, whereby expectation is based on
the model created in previous SPO step.

Therefore we first create an additional set of design point
candidates. This set is typically much larger than initial set
of design points. Computing the candidates model value,
the generalized expected improvement criterion is deter-
mined next [4]. In short, this criterion takes into account,
that we are uncertain about unknown design points and es-
timates probability of a candidate of being better than the
known best so far, by taking the models error into account.
So we select those design point candidates, that possess the
highest probability of being better than the best.

Choosing an appropriate number of design points candi-
dates exploration and exploitation can be balanced. If the
number of candidate design points is too small, the model
based exploration of the search space is not satisfying be-
cause many parameter combinations remain unconsidered.



• Algorithm specific parameters

• parameters: range & type

• optimization criterion

• SPO specific parameters

• initial design: size & samples per design point

• sequential step:

• number of candidates (LHS)

• number of new and old selected design points

• termination criterion

Figure 2: Parameters required to optimize an algorithm using se-
quential parameter optimization.

On the other hand, if number of design point candidates is
very high, exploration is quite good, but as selection hap-
pens, candidates selected for real experimentation may be
next to each other which can lead to a “waste” of experimen-
tation effort on a small region just expected but not ensured
to be good.

2.4 Configuration

We distinguish two aspects of configuration. The first aspect
considers settings regarding the algorithm to be optimized,
the second aspect considers settings of the SPO approach.
The algorithm interface requires the specification of an al-
gorithm design as shown in the first 4 columns of Tab. 1. For
each parameter the user has to specify minimal and maximal
values and a parameter type. SPO allows quantitative fac-
tors only, because it uses space filling designs and Kriging
methods. By rounding decimals we additionally allow inte-
ger values. Rounding happens right after creating a new de-
sign point using a space filling design, so prediction, mod-
eling, and execution is based on rounded values.

Additional we have to specify a performance criterion,
e.g. the average fitness of best individual or worst fitness of
best individual on optimizing an online algorithm. Our SPO
implementation is based on the DACE toolbox developed by
Lophaven et al. [5] and extends heuristics (e.g. the expected
improvement) proposed by Schonlau [6].

Furthermore, there are some parameters needed by the
sequential approach. The number of initial design points
and the number of samples per point can be mentioned here
as well as the number of design points that will be evalu-
ated in each sequential step. The determination of the latter
is based on the stochastic process model (the expected im-
provement) and the number of best evaluated points out of
those we choose for real experimentation. Additionally we
need to choose the number of best so far design point we
want to run further experiments in the next sequential step.
Finally, a termination criterion has to be selected, e.g. a
number of sequential steps or number of repetitions for the
best setting. Figure 2 lists required configurations.

3 Application

3.1 Algorithmic Chemistries

3.1.1 Algorithm

Algorithmic Chemistries are Artificial Chemistries that aim
at algorithms. An Algorithmic Chemistry is a multiset of in-
structions, which consist of an opcode and three addresses
targeting sources and destination register. Instructionscan-
not be accessed in a specific order. To execute an algorith-
mic chemistry they are drawn randomly and executed in an
environment containing a common set of registers. We dis-
tinguish two kinds of registers. Instructions interact with
each other via connection registers, by reading results of
other instructions and feeding their computation into regis-
ters possibly read by one or more other instruction. A sec-
ond, readonly set of registers contains input values. At the
end of execution a predefined connection register is inter-
preted as the chemistry’s output.

While different multisets are considered as different pro-
grams, different executions of a single program show dif-
ferent behavioral variants due to random execution order.
Concentration of instructions mainly influences variant’s
probability. If two instructions share the same register as
their target register and one of both is necessary to com-
pute a desired value, chemistries can increase their chance
for successful execution by increasing the frequency of the
required instruction or by decreasing/removing the not re-
quired one.

We use Genetic Programming (GP) to adjust these con-
centrations by selecting those chemistries that show prefer-
able variants. An GP individual consist of an Algorithmic
Chemistry and the address of the register interpreted as the
individuals output. Individuals are initialized by generating
a random set of valid instruction.

As we use a(µ, λ)–strategy, a set ofµ parents produce
λ offsprings. Crossover rate determines the proportion of
offsprings generated by recombination. To recombine two
individuals, the offspring’s chemistry is formed by a ran-
dom subset of both parents chemistries and the address of
the result register is randomly take by on of both parents.
Remaining offspring are generated by reproducing a ran-
dom parent.

Before offsprings are evaluated, they get mutated. With
a probability called mutation rate we change each entity un-
der evolution independent from one another by setting it to
random, valid value.

Evaluation happens by executing an Algorithmic Chem-
istry on a set of fitness cases. Thereby the randomized way
of execution introduces a new source of noise. To reduce
noise we simply increase the set of fitness cases used for
evaluation. If number of fitness cases is small, we increase
training set by duplication. Apparently this increases the
computational costs of evaluation, so we want to keep the
number of fitness cases as low as possible.

For a detailed description von Algorithmic Chemistries
see [7, 8].



Table 1: Algorithm design for Genetic Programming of Algorith-
mic Chemistry solving the 4–Bit odd parity problem.

Parameter N/R Min Max 4–Bit

Population Sizeµ N 1000 5000 4651
Selection Pressure (λ/µ) R 2 20 10.8
Crossover Rate R 0% 100% 2.6%
Mutation Rate R 0.1% 10% 2.6%
Initial Length N 1 50 29
Connection Registers N 10 50 28
Training Size N 16 256 117

3.1.2 Design Considerations

The first time we used GP to evolve Algorithmic
Chemistries we tried to adopt as many settings as possi-
ble from a linear GP systems. As random execution of in-
structions differs much from executing linear individuals,
we soon felt uncomfortable with simply adopting settings.

So we tried a to improve performance by adjusting set-
tings more or less systematically. In [7] we use an iter-
ative latin hypercube sampling designs to adjust parame-
ters. In each iteration we narrow the parameters ranges by
examining the results manually. Obviously its difficult to
grasp complex interactions between parameters this way.
As problems became more difficult, ranges of good set-
tings decreases and importance of parameter interactions in-
creases, so iterative latin hypercube designs where not suit-
able anymore. Starting with [8] we use SPO to adjust para-
meter settings.

Table 1 shows parameters, that are part of our algorith-
mic design and their range of values. The first four para-
meters are well known from other evolutionary algorithms,
so we do not explain in detail, why they belong to out algo-
rithm design. To ensure that design points do not violate the
µ < λ constraint, we adjust population sizeµ and selection
pressure (λ/µ) with λ/µ > 1. Further we adjust mutation
and crossover rate. In following paragraphs, we explain the
reason for considering the three other parameters and the
optimization criterion we use.

If initial chemistry size is too small, initial diversity is
small. If initial size is large, probability of a single instruc-
tion to be drawn is low, an individuals number of behavioral
variants increases and results are less reproducible. There-
fore we design for initial size too.

Obviously we need a minimum number of connection
registers to organize chemistry’s data flow, but an increasing
number of connection registers also increases search space.
So its necessary to find an adequate number of connection
registers

Training set size determines the number of fitness cases
used to evaluate an individual and is a part of our algorithms
design. As we terminate runs after a limited number of ex-
ecuted instruction, there is an implicit pressure for smaller
training set sizes. While smaller sets increase noise, they
also decrease the number of executed instruction per gener-
ation and therefore increase the number of possible genera-
tions if number of instruction executions is limited.

The task (problem design) has been to evolve a boolean

function returning true iff parity of 4 input bits is odd.
Evolving parity functions using operation set{AND, OR,
NAND, NOR} is known as one of the most difficult boolean
functions to evolve. While we first tried to optimize for suc-
cess rate, it soon turns out, that success are very rare events
within the initial designs, unable to guide the further opti-
mization process. Therefore we adjust the problem design
by optimizing for the proportion of correctly classified in-
puts, which leads to24 fitness levels instead of a single one.

In spite of this “understated” optimization criterion SPO
has been able to detect very promising designs (probability
of success: 80%) for evolving a perfect solution of the 4–
bit odd parity problem. The last column in Tab. 1 shows the
best setting found during optimization process.

3.2 Classical Test Suites

Two important aspects in optimization will be discussed in
this section: (i) effectivity and (ii) efficiency. First, wewill
demonstrate how SPO can improve the effectivity of algo-
rithms. Effectivity can be characterized as the algorithm’s
ability to obtain the best goal for a given resource limit (bud-
get), e.g. maximum number of function evaluationstmax.
Efficiency is the ability to reach a pre-specified goal, e.g. the
known best function value, with the least amount of re-
sources.

It is still a common practice in evolutionary computation
not to tune the parameters of each heuristic for each prob-
lem. Some authors claim that the parameter settings used in
their experimental study are based on experience and turned
out to yield very satisfying performance results for a broad
class of optimization problems (some authors have become
more cautious because of (Almost) No Free Lunch theo-
rem).

SPO has the capability to tune even complex optimiza-
tion algorithms during the pre-experimental planning phase.
The choice of an adequate experimental setup—and this
includes algorithm parameters that have been chosen with
respect to the optimization problem—is as important as a
sound statistical interpretation of the experimental results.
Why should I compare an algorithm with parameter settings
that are totally inadequate for this problem?

3.2.1 Particle Swarm Optimization

As there are no theoretical results for many evolutionary al-
gorithms availabale, “default” settings from the literature
are chosen as starting points. We will analyze the parti-
cle swarm optimizer (PSO) [9]. Assume ad-dimensional
search space,S ⊂ R

d, and a swarm consisting ofs parti-
cles. Thei-th particle is ad-dimensional vector,

xi = (xi1, xi2, . . . , xid)
T ∈ S.

The velocity of this particle is also ad-dimensional vector,

vi = (vi1, vi2, . . . , vid)
T .

The best previous position encountered by thei-th particle
(i.e., its memory) inS is denoted by,

p∗i = (p∗i1, p
∗

i2, . . . , p
∗

id)
T ∈ S.



Table 2: Default algorithm design of the PSO algorithm. Similar
designs have been used in [11] to optimize well–known bench-
mark functions. Some authors usexmaxas an additional para-
meter, that specifies the search interval in the objective variable
space, e.g.xi ∈ [−xmax, xmax]. Default and tuned values are
shown in Tab. 4.

Parameter N/R Min Max

Swarm size:s N 5 100
Cognitive parameter:c1 R+ 0 4
Social parameter:c2 R+ 0 4
Starting value of the inertia weightw: wmax R+ 0.5 1
Final value of w in percentage ofwmax:
wscale

R+ 0 1

Percentage of iterations, for whichwmax is
reduced:witerSc

R+ 0 1

Velocity, maximum value:vmax R+ 10 1000

Assumeb to be the index of the particle that attained the best
previous position among all the particles in the swarm, and
t to be the iteration counter. Then, the resulting equations
for the manipulation of the swarm are [10],

vi(t + 1) =wvi(t) + c1r1 (p∗i (t) − xi(t))

+c2r2 (p∗b(t) − xi(t)) , (2)

xi(t + 1) =xi(t) + vi(t + 1),

wherei = 1, 2, . . . , s; w is a parameter called theinertia
weight; c1 andc2 are positive constants, called thecognitive
and social parameter, respectively; andr1, r2 are vectors
with components uniformly distributed in[0, 1]. All vec-
tor operations are performed componentwise. Usually, the
components ofxi andvi are bounded as follows,

xmin 6 xij 6 xmax,

−vmax 6 vij 6 vmax, j = 1, . . . , n,

wherexmin andxmax define the bounds of the search space,
andvmax is a parameter that was introduced in early PSO
versions to avoid swarm explosion. Table 2 summarizes the
design variables of particle swarm optimization algorithms.

3.2.2 SPO to Improve Effectivity

Our first comparison is based on the results from an exper-
imental study of particle swarm optimization that compre-
hends four different benchmark problems to show that PSO
is “a promising optimization approach”[11]. We report re-
sults from the dimension 10, results from other dimensions
are similar. The first design comprehends 80 points that
have been generated with Latin hypercube sampling. Each
design point represents one parameter setting and has been
initially evaluated two times. Several evaluations are nec-
cessary because of the stochastic nature of the PSO algo-
rithm. This number can be kept low, because only a few
evaluations are necessary to detect worse design points that
should not be considered further. A design correction mech-
nism was included to prevent outliers that disturb the analy-
sis. It ensures that the relationc1 + c2 6 4.0 holds. We re–
implemented a PSO based on the description given in [11].

Table 3: A comparison of the results published in [11] using de-
fault settings(Default I), own experimental results using these set-
tings (Default II), and results from the tuned version of the PSO.
Note, that [11] report only four digits after the decimal and no
standard deviations. The standard deviation for the results from
the Rosenbrock function is 298.3827.

Problem Default I Default II Tuned

Sphere 0 2.82e-09 1.66e-21
Rosenbrock 96.17 148.84 4.20
Rastrigin 5.56 10.43 0.98
Griewangk 0.09 0.12 0.07

Table 4: A comparison of the default and the tuned parameter set-
tings. Tuned parameters for the Rosenbrock and Rastrigin function
are identical.

Problem s c1 c2 wmax wscale witerSc vmax

Default 20 2 2 0.9 0.44 1 100
Sphere 29 0.75 2.49 0.73 0.34 0.64 6.64
Rosenbrock 5 0.69 3.32 0.76 0.48 0.85 1.54
Rastrigin 5 0.69 3.32 0.76 0.48 0.85 1.54
Griewangk 32 1.80 2.20 0.86 0.45 0.53 9.66

Table 3 shows results published in [11] denoted by “De-
fault I”, the results from our impementation are denoted by
“Default II”. Due to PSO’s stochastic nature (and the ex-
perimental setup) the variances of the experimental data are
relatively high.

However, the performance improvements caused by SPO
are significant. Are there any explanations for these sig-
nificant differences between results from default and tuned
algorithm designs? Comparing the default and the tuned
algorithm designs (Tab. 4), the following observations can
be made. Smallc1values are preferable, that means that
the influence of the local best position should be reduced.
The influence of the global best position is rather strong.
The default and the tunedvmaxvalues show the most strik-
ing difference: smaller values are definitively better. This
is not a big surprise—it is a consequence of the experi-
mental setup that avoids search positions outside the inter-
val [−xmax, xmax], the algorithm is “forced to be good”.
Results from this experimental setup are biased and highly
questionable. Other designs should be preferred [12]. SPO
was able to reduce the variance in the results drastically,
therefore the tuned parametrizations are only better but also
more robust than the default settings. Compared to other al-
gorithms (evolution strategies or classical optimizers such
as Quasi–Newton methods) the performance of the PSO
is rather poor. For example, a function value of 4.2 after
10,000 function evaluations for Rosenbrock’s function is
not efficient. However, sequential parameter optimization
can reduce this value as will be demonstrated next.

3.2.3 SPO to Improve Efficiency

SPO is an integrated approach that combines several meth-
ods from classical and modern statistics. Results can be
used to (i) generate new design points and to improve the
algorithm’s performance and (ii) to understand how the al-



gorithm works. Results from the previous experiments will
be used to generate run–length distributions (RLD). Fig-
ure 3 illustrates how SPO improves the efficiency: only
2000 function evaluations are necessary to nearly complete
100 % of the runs successfully, the default configuration re-
quires more than 10,000 function evaluations to complete
less than 80 % of the runs successfully. Imagine an ex-
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Figure 3: RLD comparing the default and the tuned PSO on the
Rosenbrock function. This is only one example that demonstrates
how SPO improves the efficiency of search heuristics. Consider
the arrow: 80 % of the runs from the tuned algorithm were able
to complete the run successfully after 1000 function evaluations,
whereas none of the PSO with the default configuration was able
to reach the pre–specified goal with the budget.

perimental setup withtmax = 5000 function evaluations.
Based on the parameterization of the PSO the experimenter
can demonstrate, that (a) PSO fails completely, or (b) PSO
is able to solve the problem in any case. Both experimen-
tal results are statistically sound—however, whether the re-
sults are scientifically meaningful is another question. The
new experimentalism provides tools to tackle these ques-
tions [13].

3.3 Evolutionary Algorithms

Evolutionary algorithms are direct search heuristics and
thus easily applied to all kinds of optimization problems.
Their enormous flexibility is also one of their weaknesses
because it stems from utilization of many different opera-
tors that come together with a lot of parameters. However,
it is difficult to choose the right operators and/or parameters
when problem knowledge is very limited.

In this section, the optimization problem is a simplified
real–world problem from the chemical engineering domain:
the design of a non–sharp separation sequence. Such a sep-
aration process is needed if the available feed stream (raw
material) is a mixture of different substances of which only
some combinations are acceptable for further processing. A
descriptive example in this context is crude oil; it is parti-
tioned into several fractions, e.g. kerosene, gas, and diesel
oil. One way to perform separation is by distillation where
the feed is heated and pumped into a column (large vertical

tube), so that materials with lower/higher boiling point drift
to the top/bottom and can be extracted as separate streams.
The columns are laid out such that minimum requirements
concerning cleanness of the products are fulfilled, these 2
design variables are refered to as light key and heavy key
recovery. In previous work, separation has often been con-
sidered ideal (sharp), resulting in pure products. However,
in many industrial environments, absolute cleanness is not
necessary and remixing pure components after first produc-
ing them requires very expensive equipment; this is clearly
not desirable. We therefore already take the non–sharpness
into account during optimization of the separation sequence
design. This problem and the appropriate simulation tech-
niques have been provided by the Chair of Technical Ther-
modynamics of the RWTH Aachen.
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Figure 4: Used separation problem: The feed (F) is split into two
product streams P1 and P2 by use of 2 columns. Numbers indicate
optimization variables controlling column requirements (1-4) and
stream divider proportions (5-9).

The problem instance dealt with in the following has
been described by Aggarwal and Floudas [14] and tackled
with several deterministic algorithms (mainly MINLP). A
three–component feed stream has to be separated into two
three–component products with defined component propor-
tions. We use two columns and 4 stream dividers, resulting
in 9 real–valued optimization variables. The optimization
task is to minimize the yearly cost of a facility that performs
this separation (see Fig. 4).

Search points generated by the EA are first put into a
shortcut simulator that computes the layout and checks if
the described process is possible at all. E.g., column pres-
sures cannot exceed certain limits, and mass and heat bal-
ances must be valid. If so, the design can be evaluated rigor-
ously with a much more time consuming commercial sim-
ulator. But even at this stage simulation can fail unexpect-
edly, meaning that the suggested design is not realizable.
The problem is thus heavily constrained: only one inequal-
ity constraint can be given in arithmetic form but 18 others
are hidden in the shortcut simulator.

As can be expected, it is not easy for an EA to gener-



Table 5: Algorithm design for optimizing the separation problem
with an ES, other parameters are kept at default values. Original
values correspond to manually tested parameter settings, the best
found configuration (last column) is well beyond these ranges for
three parameters.

Parameter name N/R Min Max Original Best

Population sizeµ: N 10 100 10-20 98
Maximum ageκ: N 1 100 1-20 1
Selection pressureλ/µ: R+ 0.1 10 1-5 7.76
Learning rateτ : R+ 0.0 1.0 0.05-0.2 0.6

ate valid solutions at all. To enable testing different para-
meters without spending much time on simulation, we uti-
lize the non–linear fitness function defined in [14] for search
points regarded as valid by the shortcut simulator. In fact,
first tests with a multi–membered evolution strategy (ES)
and several default parameter settings (column original in
tab. 5) revealed that the valid search space volume is small
and seemingly unconnected (non–convex). Although dis-
cretized penalties had been added, the ES mostly failed to
generate even one valid solution throughout a whole opti-
mization run.

Random search delivers estimates for the probability to
generate a valid solution by chance (ρ metric, see [15]), it is
below10−5 for this problem. At this point, we applied SPO
to obtain a set of ES parameters — if any — that guarantees
valid solutions with high probability. Table 5 enumerates
minimum and maximum values for algorithm designs tried
by SPO. Note that chosen ranges are quite large to allow for
testing non–standard parameter settings. The remaining ES
parameters are kept at standard values (discrete recombina-
tion, one step size, initial mutation strengths0.25) through-
out all runs. We used the mean best fitness of all runs of
a design point as experiment outcomeY , whereas each run
was assigned a budget of10000 evaluations which is quite
large considered that the shortcut simulator is able to per-
form only≈ 20 evaluations per second.

After only three sequential steps with25 initial design
points (152 runs alltogether), SPO found that despite the
small budget allowed, relatively large population sizes and
high selection pressures work best (last column in Tab. 5).
The most surprising finding is that tuned self–adaptation
learning rates are much higher than recommended values
τ = 1/

√
2N ≈ 0.24 [16] for multimodal functions. The

best found variant employsτ = 0.6, other good configura-
tions chooseτ ∈ [0.3, 0.5].

A possible explanation for these values is that large se-
lection pressures and high learning rates together enable fast
response to better (lesser constrained) newly found search
points, their neighborhood is explored more intense. The
increased population size probably helps maintaining diver-
sity much longer than with default valuesµ ∈ [10, 20].

We also performed a control experiment to verify that the
new parameter settings are not an artifact of ’lucky’ sam-
pling. Of 40 runs, the tuned ES found valid solutions26
times, corresponding to a65% success rate, compared to a
success rates of less than10% for the manually tested para-
meters.

4 Discussion and Outlook

In the previous section, we have presented three different
applications of SPO. They are different in the following
sense: in section 3.1, the algorithm-problem interaction is
unknown because the technique is relatively new; however,
the test problem is well-known. In section 3.2, compari-
son of different algorithms has been the main task. Even
though both problems and algorithms have been tested thor-
oughly before, their interaction is obviously not understood
well. Otherwise, good parameter values could have been
estimated beforehand. In section 3.3, the problem features
are relatively unknown so that the interaction is once more
unpredictable. In all three cases, SPO found parameter val-
ues that led to increased performance, thereby utilizing the
algorithms potential to a much higher extent.

Summarizing, we can state that whenever parameters
for an algorithm-problem combination have not been thor-
oughly searched before, application of SPO makes sense
because otherwise one cannot be sure to have a competi-
tive parameter set. As bad configuration of an optimization
method can lead to drastic performance losses, it can render
a whole empirical study worthless.

The remainig question is: are there useful alterna-
tives to SPO? Our experience indicates that classical re-
gression techniques such as linear models can be applied
too [17]. Some approaches exist to automate classical sta-
tistical methods. But these methods are much more com-
plicated compared to SPO. A visualization of the response
surface may indicate where linear regression models fail:
the response surface may be highly multi-modal or even
chaotic. Systematic (grid) search is also not an option be-
cause its cost increases exponentially in the number of pa-
rameters.

However, there are some drawbacks, too. SPO is con-
strained to decimal and integer values which is an obvious
limitation. If number of combinations of nominal or ordinal
parameters is low, you can optimize for each combination
and choose the best one. Nevertheless, sometimes it is pos-
sible to transform nominal or ordinal scales into continuous
ones, e.g. a(µ, κ, λ)–strategy allows a stepwise transition
from (µ, λ) to (µ + λ)–selection. Another difficulty when
applying SPO stems from the fact that it also requires the
specification of some — fortunately few — parameter val-
ues. Concerning this issue, there are currently no theoretical
results available, so that one has to rely on experience from
previous experimental studies.

It is often easy to find algorithm designs that do not
work—or, alternatively, to find a problem instance that dis-
turbs the algorithm’s performance. However, SPO makes
the determination of working algorithm designs for specific
problems easy, too. Thereby, it enables fair comparisons be-
tween algorithms, hopefully resulting in increased knowl-
edge gain for empirical studies in Evolutionary Computa-
tion yet to come.
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