
60 acm Inroads 2015 December • Vol. 6 • No. 4

CONTRIBUTED ARTICLES

Creating AP®
CS Principles:
Let Many Flowers
Bloom

• Marie desJardins •

Computer Science Principles (CSP) is a new curricu-
lum framework that was designed collaboratively by

Computer Science (CS) faculty, high school teachers, and
the College Board. CSP was initially designed with sup-
port and leadership from the National Science Foundation
(NSF), with the intent of creating rigorous, engaging, high-
quality CS courses that would be available to all high school
students in the United States. One of the primary goals of
CSP is to broaden participation in high school and college
computer science courses [4]. The curriculum is specifically
designed to appeal to a more diverse population of students
than are traditionally seen in CS courses, particularly fe-
male students and underrepresented minorities. Results
from the CSP pilot offerings showed that significantly
greater percentages of women and underrepresented mi-
norities were attracted to the courses than are seen in tradi-
tional CS courses [5], and anecdotally, the instructors of the
offerings described here are observing the same increased
diversity. The professional development courses that train
the teachers focus on active, inquiry-directed pedagogies,
and the course has few prerequisites, reducing the barriers
to entry compared to AP® CS A, and increasing the poten-
tial for attracting a diverse population of students.

The CSP curriculum framework emphasizes compu-
tational thinking, creativity, and the impact of comput-
ing and computer science. CSP goes beyond traditional
programming-focused CS courses by including tradi-
tional topics of algorithms and programming as just two
of the seven “big ideas” in computer science (the others
being creativity, abstraction, data and information, the
Internet, and global impact) [2]. Each of the nine courses
described in this article provides a solid introduction to
algorithm design and programming within this curricu-
lum framework.

The College Board has made CSP an official Advanced
Placement® course, with the first AP exam to be offered
in May 2017. The CSP creation effort has gone hand-in-
hand with NSF’s “CS10K” program, whose goal is to train
10,000 high school teachers to teach CSP and other rigor-
ous, academically challenging CS courses.

CSP is defined by a curriculum framework [3] that is
structured around six Computational Thinking Practices and
seven Big Ideas of Computing. As discussed later in the ar-
ticle, each Big Idea is expanded through Essential Ques-
tions (27 in all), Enduring Understandings (23), Learning
Objectives (42), and Essential Knowledge (307) statements
that articulate specific concepts and knowledge that stu-
dents completing the course should be able to demonstrate.
The AP exam will include two components: a written ex-
amination that assesses students’ mastery of the Essential
Knowledge, and electronically submitted student work that
constitutes a through-course assessment including both col-

2015 December • Vol. 6 • No. 4 acm Inroads 61

CONTRIBUTED ARTICLES

laboratively and individually produced work on two performance
tasks: the Create task and the Explore task.1

Within this curriculum framework, there is broad scope for
creating courses that are structured around different themes, use
different pedagogical methods, present the required information
in different ways, and use different programming languages and
computational tools. Many different CSP courses have been devel-
oped and piloted, and professional development opportunities are
available for many of these courses. To date, thousands of teachers
have completed professional development in these different “fla-
vors” of CSP.

This paper presents an overview of the CSP curriculum frame-
work, then describes and compares nine of the different CSP
courses that have been developed by universities and nonprofit
organizations: Beauty and Joy of Computing (BJC), Code.org
CS Principles (Code.org), CS50 for AP CSP (CS50), CS Mat-
ters in Maryland (CS Matters), CS Principles for High School
(CSP4HS), Computing in Secondary Schools (CISS), Mobile CS
Principles (Mobile CSP), Project Lead the Way Computer Science
and Engineering (PLTW), and Thriving in Our Digital World
(TODW). The College Board is developing a formal endorse-
ment model for CSP projects that will include the BJC, Mobile
CSP, TODW, Code.org, and PLTW courses. The other projects
will likely be endorsed as the formal model expands. Moreover,
there are other courses that already are in development or could be
created in the future, so the options for delivering the course will
continue to grow.

COMPUTER SCIENCE
PRINCIPLES

The six Computational Thinking Practices appear in Sidebar 1.
These practices are designed to emphasize the type of work that
CS professionals engage in, and help students to understand the
methods and techniques that are needed to perform the work re-
quired for the class and the AP exam. Each of the Learning Objec-
tives (see below) is directly connected with one of the Computa-
tional Thinking Practices.

The seven Big Ideas appear in Sidebar 2. Each Big Idea is as-
sociated with several Essential Questions; for example, “How do
people develop and test computer programs?” (Big Idea 5: Pro-
gramming) and “How are vastly different kinds of data, physical
phenomena, and mathematical concepts represented on a comput-
er?” (Big Idea 2: Abstraction). The concepts and knowledge that
students should understand by the end of the course are specified
in a hierarchical structure that elaborates on each of the Big Ideas.
Specifically, there are three or four Enduring Understandings associ-
ated with each Big Idea. Each of these Enduring Understandings
is associated with one to three Learning Objectives that are assessed

on the AP CSP performance tasks and written exam. The Learning
Objectives each integrate a specific Computational Thinking Prac-
tice with particular course content, and specify how students will
be asked to demonstrate their knowledge in that area. Finally, each
Learning Objective is expanded by a list of one to seventeen Es-
sential Knowledge statements that specify facts and content required
in order to successfully demonstrate the student’s knowledge of the
corresponding Learning Objective. Some Learning Objectives and
Essential Knowledge include Exclusion Statements to limit or con-
strain the scope of the expectations for student mastery.

Big Ideas of Computing

BI1: Creativity. Students design creative solutions to
problems, and learn how computation can enable creative
expression of ideas.

BI2: Abstraction. Students learn how abstraction is used
to represent data, to organize knowledge, and to design
computational artifacts.

BI3: Data and Information. Students learn how data
and information are collected, processed, visualized, and
understood to solve problems and create knowledge.

BI4: Algorithms. Students study, design, analyze, and
evaluate algorithms.

BI5: Programming. Students write and test programs to
solve problems and express creative ideas.

BI6: The Internet. Students learn how the Internet works,
how it is used to support communication and collaboration,
and the importance of cybersecurity solutions for privacy and
security.

BI7: Global Impact. Students explore how computing
enables innovation, augments human interaction, and leads
to beneficial and harmful

Computational Thinking Practices

P1: Connecting Computing. Students learn to understand
the effects of computing on people and on society.

P2: Creating Computational Artifacts. Students create
computational artifacts that represent creative solutions to
problems.

P3: Abstracting. Students use abstractions to develop and
analyze models and simulations.

P4: Analyzing Problems and Artifacts. Students evaluate,
improve, and analyze the correctness of proposed solutions
to problems.

P5: Communicating. Students describe, explain, and justify
computational artifacts, behaviors, and results.

P6: Collaborating. Students work together in diverse teams
to solve problems, produce

1 The information in this article about the curriculum framework and performance
tasks is current as of September 2015. Small changes to the performance tasks may
be made as part of the piloting process, but the curriculum framework itself is fixed.

Creating AP® CS Principles: Let Many Flowers Bloom

62 acm Inroads 2015 December • Vol. 6 • No. 4

CONTRIBUTED ARTICLES

may also offer examples of PT artifacts, and may help monitor
progress on the tasks, but cannot select or assign topics to stu-
dents, nor may they revise, correct, or evaluate students’ work on
the tasks. Each of the courses described here incorporate practice
PTs that offer the students the opportunity to go through the
creation process with supervision and feedback, before they inde-
pendently undertake the actual PTs.

The Explore PT requires students to identify and research
a computational innovation, responding to specific prompts by
writing about the innovation, its beneficial and harmful effects,
the data generated by or associated with the innovation, and oth-
er specific learning objectives related to the student-chosen in-
novation. Students also submit a computational artifact related to
the innovation such as an infographic, video, or audio artifact and
reflect on the purpose of the artifact and the process of creating it.

The Create PT requires students to design and create a pro-
gram that demonstrates creativity or solves a problem the stu-
dent has identified. The Create PT requires both collaborative
(in pairs) and individual contributions to the work. In addition to
the program itself, students must submit a video that shows how
the program works, and must respond to prompts discussing the
purpose of the program, its operation, the development process,
and how collaboration was used in the creation of the program.

CSP COURSES
The following chart gives a high-level comparison of the nine
CSP courses reviewed in this article.2 The descriptions of the
courses in the following sections were provided by the course
development teams, and edited for consistency and clarity. The
different emphases in the course descriptions reflect the variety
of goals of the development teams. Each course has a distinc-
tive flavor or unique characteristic that is summarized in the first
column of the table. The courses use a variety of programming
languages and computational tools, as indicated in the second
column. All of the courses except PLTW have online course ma-
terials that are publicly accessible; the stage of development varies
and is summarized in the third column. (Most courses distribute
their course materials through a Creative Commons licensing
agreement.) Most development teams are offering professional
development (PD) to interested teachers, either online, in person,
or in a hybrid format. Although this article does not review the
PD approaches in depth, most of the courses emphasize active
learning, student engagement, and inquiry-directed pedagogi-
cal methods. The availability of PD opportunities (and whether
they are limited to specific partner schools or school systems) is
indicated in the last column. Most PD opportunities are free,
and some offer a stipend to participating teachers; exceptions are
noted in the table.

An example of a “slice” through the CSP curriculum hierarchy
shows the relationships between the different levels of curriculum
design [3].

BI 4: Algorithms

 EU 4.2: Algorithms can solve many, but not all, computational
problems.

 LO 4.2.2: Explain the difference between solvable and
unsolvable problems in computer science. [P1]
Exclusion Statement (for LO 4.2.2): Determining whether a
given problem is solvable or unsolvable is beyond the scope
of this course and the AP Exam.

 EK 4.2.2B: Heuristics may be helpful for finding an
approximate solution more quickly when exact methods
are too slow.
Exclusion Statement (for EK 4.2.2B): Specific heuristic solutions
are beyond the scope of this course and the AP Exam.

CSP ASSESSMENT: AP EXAM
The AP CSP Exam will be administered during the two-week
AP exam period in early May each year, and will include multi-
ple-choice questions built on the learning objectives and essential
knowledge statements of the CSP curriculum framework. The
number of multiple-choice questions and the time allowed for
completion of the exam are being finalized; current estimates indi-
cate between 60-80 questions given in roughly two hours.

CSP ASSESSMENT:
PERFORMANCE TASKS

AP CSP is unusual in that it will include a through-course as-
sessment of student work as part of the assessment process. The
purpose of the through-course assessment is to assess learning
objectives that are difficult to assess with a fixed-response/mul-
tiple choice exam and to provide for student-centered work that
can both broaden the appeal of a course with a high-stakes exam
and provide valid results for generating college credit and/or
placement. Each of the two Performance Tasks (PTs) in the port-
folio covers multiple big ideas and learning objectives, and each
requires the student both to create artifacts and to describe and
analyze the creation process. The student work for the PT will be
submitted online directly to the College Board for assessment as
part of the AP exam.

To ensure that students can complete the PTs, guidelines are
provided with each task that ask teachers to provide a specific
number of in-class hours for work on the tasks. Teachers are
allowed to provide guidance about the submission process and
about expectations, including the rubrics that will be used to as-
sess the PTs as part of the AP exam scoring process. Teachers

2 All information provided about these courses is current to the best of the author’s
knowledge as of the writing of this publication. All courses are undergoing continual
development and the specifics are subject to change.

2015 December • Vol. 6 • No. 4 acm Inroads 63

CONTRIBUTED ARTICLES

Beauty and Joy of Computing
http://bjc.berkeley.edu
Contacts: Dan Garcia (ddgarcia@berkeley.edu),

Tiffany Barnes (tmbarnes@ncsu.edu)
Collaborator: Brian Harvey
Eight Units: Introduction to Computational Thinking;

Developing Complex Programs (Fun Programming Project);
Lists and Algorithms; Algorithmic Complexity (followed by
the CSP Explore PT); Data; The Internet (followed by the
CSP Create PT); Trees and other Fractals; Recursive and
Higher-Order Functions

Languages/Tools: Snap!; optional module on Python
Beauty and Joy of Computing (BJC) uses the Snap! visual pro-

gramming language, includes deep CS ideas (functional program-
ming, recursion, and higher-order functions), and addresses the so-
cial implications of computing. The course “meets students where
they are, but doesn’t leave them there.”

A transformative and empowering experience comes when one
learns how to program a computer, to translate ideas into code.

This course teaches students how to do exactly that, using Snap!
(based on Scratch), a user-friendly “block” programming language
that is purely graphical: programming involves simply dragging
blocks around, and building bigger blocks out of smaller blocks.
BJC’s browser-based environment allows for cloud storage of proj-
ects, exploration of internet APIs, and the ability to use it on all
mobile devices—one of the earliest examples shows how to make a
“whack Alonzo” mobile app in 90 seconds.

BJC also focuses on CSP’s “Big Ideas” of computing, includ-
ing abstraction, design, concurrency, simulations, and the limits
of computation. There are daily “computing in the news” discus-
sions, and optimism about technology in general is balanced with
a critical stance toward any particular technology. Throughout the
course, relevance is emphasized: relevance to the student and to
society. The overarching theme is to expose students to the “beau-
ty and joy” of computing: to empower them to create meaning-
ful projects, to see that code itself can be beautiful, and to have
fun! BJC is especially focused on bringing computing (through
this course) to traditionally underrepresented groups in comput-

3 Italicized languages and tools are included in optional course modules.

Unique
Characteristic

Programming
Languages and Tools3

Availability
Professional

Development

BJC (Beauty
and Joy of
Computing)

Advanced, rigorous
programming, mobile apps,
Internet APIs

Snap!; Python Eight units available,
with continued
development planned

Free online support through wiki and
Piazza; crowd-funded 6-week PD to be
available in 2016

Code.org Daily lesson plans, App
Lab Widgets, Code Studio,
discovery-based instruction

JavaScript, Internet
Simulator, App Lab
persistent data storage

Units 1 and 2 available;
additional units to be
rolled out in 2015-16

15-month in-person/online PD with teacher
stipend in partner districts (matching funds
required)

CISS (Computing
in Secondary
Schools)

Peer instruction pedagogy Alice, Excel, Internet
Simulator

Complete and available
through website
registration for teachers
who have completed PD

Free in-person intensive training over 14
months or free online course on content
and teaching methods

CS50 Advanced, rigorous
programming with an
emphasis on community

Scratch, C, PHP, SQL,
JavaScript; Linux

2015-16 rollout in “real
time”

Free two-day in-person workshop (with
certificate from Harvard) and online
community

CS Matters in
Maryland

Daily lesson plans
emphasizing data creation,
analysis, and understanding

Python, Excel; EarSketch,
NetLogo, Bokeh,
DataQuest.io

All six units are available
freely on the project
website

Free hybrid online/in-person training for
Maryland teachers

CSP4HS Inquiry-based learning;
scalable blended PD

Snap! Six PD units available on
MOOC portal

Six weeks of free online instruction for all
teachers; one week face-to-face; year-long
community of practice

Mobile CSP Mobile app development App Inventor Complete and available
through website
registration

Free six-week online PD for all teachers

PLTW (Project
Lead the Way)

Exposure to a wide range
of professional tools and
programming languages

Scratch/App Inventor,
Python, PHP/SQL/HTML/
CSS/JavaScript, Linux,
NetLogo

Available to PLTW
teachers and districts
only

Intensive two-week in-person training for
teachers in PLTW districts (fee required for
districts)

TODW (Thriving
in Our Digital
World)

Project-based learning and
blended delivery using
online materials

Scratch, Processing AP version in
development; scheduled
for completion in
Summer 2016

PD for dual enrollment version offered
annually; PD for AP CS with teacher stipend
to be offered beginning Summer 2016

Creating AP® CS Principles: Let Many Flowers Bloom

64 acm Inroads 2015 December • Vol. 6 • No. 4

CONTRIBUTED ARTICLES

and the ComPASS project. CISS uses the Alice programming lan-
guage to address topics of Abstraction, Algorithms, Creativity, and
Programming. Students explore a variety of programming concepts
and constructs in Alice, and complete the Create performance task
by creating an original program in Alice. The course includes eleven
Alice modules that provide broad coverage of programming topics,
including sequencing, conditionals, looping, objects and methods.
Students spend a significant amount of time on planning and sto-
ryboarding their programs, with a substantial emphasis on creative
aspects of program design.

The course uses Microsoft Excel or Google spreadsheets as
a platform to teach students how to understand and compre-
hend Data and Information. The course includes two modules
on spreadsheets and data. Students use publicly available datasets
from the internet that they analyze and use to produce infographics
as part of the Explore performance task.

The course also uses a variety of “unplugged” activities that ad-
dress the Global Impact of computing. Course materials are avail-
able through a Blackboard site that requires a free registration pro-
cess, after completing free professional development modules.

In 2014-15, five teachers taught the CS Principles course across
Ohio. In Summer 2015, two of the teachers from the first cohort
returned as master teachers to work with the CISS team to train
18 more teachers, who will all be teaching CS Principles in their
schools. At the end of the 2015-16 school year, all curriculum ma-
terials will be made available for free, in time for the AP course to
be launched in 2016-17.

CS50 for AP CSP
https://cs50.harvard.edu/ap
Contact: Doug Lloyd (ap@cs50.harvard.edu)
32-36 Weeks: Topics include abstraction, algorithms, data

structures, encapsulation, internet technologies, resource
management, security, software engineering, and real-world
impacts thereof.

Languages/Tools: Scratch, C, PHP, SQL, JavaScript, Linux
CS50 is Harvard University’s introduction to the intellectual

enterprises of computer science and the art of programming for
students at all experience levels. “CS50 AP” is a free adaptation for
high schools that satisfies the new AP CS Principles curriculum
framework by translating CS50’s thirteen-week college curriculum
to a pace that is more suitable for high school audiences.

CS50 AP offers a rigorous experience, but is also designed to be
accessible to all students, whether or not they have previous program-
ming experience. Largely using programming as a vehicle, students are
introduced to the “big ideas” of the CS Principles curriculum, along
the way learning valuable problem-solving techniques. These tech-
niques will help them not only when studying for the AP Exam, but
also for their careers beyond, whether or not they continue on a profes-
sional computer science track. At the end of the course, students are
challenged to create a project entirely of their own design, providing an
opportunity to creatively explore what most interests them.

Students and teachers alike can leverage CS50’s existing online
communities to support their learning—in particular, teachers can

ing, i.e., women and ethnic minorities. BJCx, a four-part year-long
MOOC on edX, will be launched on Labor Day 2015; as of this
writing, more than ten thousand learners have signed up for the
first “MOOClet.” All of BJC’s course materials are freely avail-
able on BJC’s website, under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license.

Code.org
http://code.org/educate/csp
Contacts: Baker Franke (baker@code.org), Brook Osborne

(brook@code.org), Pat Yongpradit (pat@code.org)
Five Units: Digital Information, The Internet, Programming,

Data, Performance Tasks
Languages/Tools: Code Studio, App Lab (JavaScript IDE)

Code.org’s CSP course is a year-long high school course with
four core units of study and a fifth unit devoted solely to work-
ing on Performance Task projects. The curriculum contains lessons
and projects that encourage students to construct their own mental
models and computational artifacts that address the 7 Big Ideas
of CSP. For example, students model the layers of the internet by
developing their own sets of protocols to encode and send increas-
ingly sophisticated types of information between computers.

A goal in constructing the course was to provide teachers with
a rich set of instructional resources that includes daily lesson plans,
computational widgets, videos, rubrics, assessments, a teacher dash-
board, and an “answer viewer” for teachers to view student work.
The “App Lab” JavaScript programming environment is a powerful
learning tool that allows students to create interactive web applica-
tions, toggle back and forth between block and text-based modes
while programming, easily create databases for persistent data stor-
age, and use a drag-and-drop HTML/CSS editor for quickly con-
structing and styling the app’s user interface.

Successful delivery of this course is not built around a teacher
in the role of content expert. Instead, materials emphasize student
discovery, and lessons include diverse support materials for teach-
ers to choose from, based on what is appropriate for their students.
For those teachers looking for more guidance with the curriculum,
Code.org offers a 15-month long professional development pro-
gram focused on the instructional practices and concepts that make
up this course. Code.org’s course materials are publicly available
and distributed under a Creative Commons license.

Computing in Secondary Schools (CISS)
http://www.csedohio.org/
Contact: Nigamanth Sridhar (n.sridhar1@csuohio.edu)
Collaborators: Debbie Jackson, Santosh Misra, Karla Hamlen,

Beth Simon
Four Units: Programming using Alice; developing complete

programs with special emphasis on creative aspects of program
design; exploring the internet and impact of computing;
understanding the nature and use of data and information.

Languages/Tools: Alice, Excel, Internet Simulator
The CISS CS Principles curriculum is based on the course de-

veloped by Dr. Beth Simon at University of California at San Diego

2015 December • Vol. 6 • No. 4 acm Inroads 65

CONTRIBUTED ARTICLES

join a network of fellow CS50 AP educators. Course materials will
be available online as they are rolled out during the 2015-16 school
year. All materials are licensed as OpenCourseWare, and educators
are encouraged to use, remix, and share the course’s resources.

CS Matters in Maryland
http://csmatters.org
Contacts: Marie desJardins (mariedj@cs.umbc.edu),

Jan Plane (jplane@cs.umbc.edu),
Joe Greenawalt (jgreenawalt@ccboe.com)

Collaborators: Dianne O’Grady-Cunniff, Christina Morris,
Jennifer Smith

Six Units: Your Virtual World, Developing Programs,
Information and the Internet, Data Acquisition, Data
Manipulation, Data Visualization

Languages/Tools: Python, Excel; optional modules for
EarSketch, NetLogo, Bokeh, Dataquest.io
The CS Matters in Maryland CS Principles AP course incorpo-

rates a focus on active, inquiry-based learning. CS Matters includes
detailed daily lesson plans and offers numerous extensions and ad-
aptations to meet the needs of diverse learners. The curriculum was
created in summer 2014 and is undergoing continued development
and improvement. Fourteen master teachers worked with the CS
Matters team to develop the course, using a collaborative curricu-
lum development process within a novel web-based collaborative
curriculum building software system that the CS Matters team is
planning to make publicly available. The curriculum development
process included ongoing team review of all course materials, fo-
cusing on alignment with the CSP learning objectives and essential
knowledge, Common Core math and science standards, inclusive
instructional practices, and active learning pedagogies.

The structure of the course is designed to meet all of the CSP
learning objectives, to prepare the students for the two CSP Perfor-
mance Tasks and written exam, and to spread out the work on these
tasks over the course of the year. The overarching theme of the course
is data: the nature and variety of data on the internet; algorithmic
methods for processing and managing data; and ways in which data
can be analyzed, visualized, and interpreted to increase human under-
standing and solve challenging real-world problems. Programming
concepts are taught using Python. Units 1-3 are publicly available
on the project website. Units 4-6 are in beta distribution: they are
available by request, and will be made publicly available by Fall 2015.

CSP4HS
https://csp-cs4hs.appspot.com
Contact: Jeff Gray (gray@cs.ua.edu)
Collaborators: A+ College Ready/NMSI (Mary Boehm and

Carol Crawford), CS4Alabama teachers
Six Units: Paving the Way; The Power of Bits and Bytes;

Programming is a Snap!; Abstraction and Algorithms; The
Internet Makes the World All Flat; The Big Deal about Data

Languages/Tools: Snap!
The CSP4HS course was developed in 2011 as a College

Board Pilot CSP course at the University of Alabama, with a

special focus on preparing pre-service Secondary Math Educa-
tion students. The course was then adapted for CS4Alabama, an
NSF CE21 project that is training 50 teachers across Alabama
in multi-year professional development across several teacher
cohorts. CSP4HS is driven by Teacher Leaders, who mentor
and develop shared curriculum resources. With support from
Google’s CS4HS program, the training has evolved to a large-
scale online professional development effort (training over 1,000
teachers from 47 states and 12 countries in 2015), freely available
to anyone interested in teaching CSP.

CSP4HS provides a “gentle introduction” to CSP, with a focus
on helping teachers and students understand the CSP Curriculum
Framework and Performance Tasks. The target audience is high
school teachers who may be considering the course as a first offer-
ing at their school, and who may not enter the training with the
content knowledge needed to teach the course. Pedagogical sug-
gestions for teaching the content are also offered throughout the
course, with a particular emphasis on cooperative learning struc-
tures to help infuse diversity and improve student engagement.

The CSP4HS training materials include: (1) training modules
for the CSP Curriculum Framework and Performance Tasks; (2)
over 120 videos for teachers and students; (3) lesson plans devel-
oped by Alabama Teacher Leaders; (4) lesson slides; (5) quizzes
and exams; (6) a pacing guide and syllabus; and (7) a Piazza-based
community of practice for teachers participating in the course.
Six states are using CSP4HS for their online content and provid-
ing their own face-to-face training based on the CSP4HS topics.
Course materials are available to teachers through a web portal af-
ter a free registration process.

Mobile CSP
http://mobile-csp.org
Contact: Ralph Morelli (ralph.morelli@trincoll.edu)
Collaborators: Jen Rosato, Chery Takkunen, Chinma Uche
Eight Units: Preview and Setup (Pre Course); Mobile computers

and Mobile Apps; Graphics and Drawing; Animation,
Simulation, and Modeling; Algorithms and Procedural
Abstraction; Lists, Databases, Data and Information; The
Internet; AP CSP Exam Prep

Languages/Tools: App Inventor
Mobile CSP is organized around the Big Ideas of AP CSP.

The course includes more than 30 detailed tutorials covering pro-
gramming topics in App Inventor, and more than 30 lessons on
computer science topics such as algorithms, binary numbers, and
computer security. Each lesson includes interactive exercises with
immediate feedback, ranging from simple quiz questions to live-
coding exercises. Live-coding exercises in App Inventor reinforce
understanding of basic programming concepts and improve prob-
lem solving skills. Readings from Blown to Bits [1] ask students to
reflect on some of the major societal issues that characterize 21st
century computing, such as privacy, security, and social networking.

Mobile CSP is a project-based course. Students complete two
collaborative programming projects and an individual research and
writing project on the impact of a recent, computing innovation

Creating AP® CS Principles: Let Many Flowers Bloom

66 acm Inroads 2015 December • Vol. 6 • No. 4

CONTRIBUTED ARTICLES

that appeals to the student. These projects conform to the Explore
and Create Performance Tasks. Course materials are freely avail-
able following a free website registration process.

Project Lead The Way Computer Science
and Software Engineering
https://www.pltw.org/our-programs/pltw-computer-

science/pltw-computer-science-curriculum
Contact: PLTW School Support Team

(schoolsupport@pltwo.org)
Four Units: Algorithms, Graphics, and Graphical User

Interfaces; The Internet; Raining Reigning Data; and
Intelligent Behavior

Languages/Tools: Scratch/App Inventor, Python, PHP/SQL/
HTML/CSS/JavaScript, Linux, NetLogo
Project Lead The Way’s CSE course focuses on computational

thinking and real-world applications of computer science. Students
learn Python as a primary tool and engage in projects and problems
including app development, visualization of data, cybersecurity,
and simulation. CSE also incorporates a wide range of additional
tools and platforms to expose students to different modes of
computational thinking. Using a fee-based partnership model
with school systems, PLTW offers comprehensive professional
development for teachers, day-to-day lesson plans and resources,
and school and technical support. Unlike the other eight courses
covered in this article, PLTW has a strict licensing agreement, and
course materials are only available to teachers in partner districts
who have paid for and completed the PLTW training.

Thriving in Our Digital World
http://www.cs.utexas.edu/~engage/
Contacts: Calvin Lin (lin@cs.utexas.edu), Bradley Beth (bbeth@

cs.utexas.edu)
Six Units: Impact, Programming, Representation, Digital

Manipulation, Big Data, Artificial Intelligence
Languages/Tools: Scratch, Processing

Thriving in Our Digital World (TODW) is rooted in the
inquiry-based pedagogies of project-based learning. The inquiry-
based, student-centered approach to instruction engages diverse
student populations with computer science content that is both
rigorous and relevant to their lives. Each of the six modular units
combines an authentic problem or scenario, structured team col-
laboration, student-centered activities, and engaging multimedia
and narratives. Teaching and learning are supported through a va-
riety of scaffolds including rubrics, group contracts, and intermit-
tent checkpoints for formative feedback.

The dual enrollment nature of TODW has helped to attract
a more diverse student population than is typically found in AP
courses, and has led to a close partnership between UT faculty and
high school teachers. The dual enrollment version of the course
has been offered since 2012, with accompanying professional de-
velopment for teachers. TODW is now working with the UTeach
Institute—responsible for helping 43 universities start UTeach
STEM teacher preparation programs—to develop an AP version

of the course and to train hundreds of teachers to offer the new
course. TODW’s course materials are under development and will
be made available on the project website.

CONCLUSIONS
AP CSP represents an exciting new opportunity for high school
students to be exposed to a broad view of computational thinking
concepts and practices, and to apply these ideas in hands-on, col-
laborative, active learning environments. The widespread adoption
and availability of CSP as an AP high school course has the poten-
tial to reach many more students than have previously had the op-
portunity and inclination to take CS at the high school level. The
diversity of CSP courses surveyed here highlights the flexibility of
the CSP curriculum framework to be met by different courses that
meet the needs of diverse student populations. Ir

Acknowledgements

This work was supported by NSF award #1339265. Many thanks to Owen Astrachan, Bradley Beth,
Bennett Brown, Baker Franke, Joe Greenawalt, Jeff Gray, Calvin Lin, Doug Lloyd, Ralph Morelli, and
Nigamanth Sridhar for their inputs and comments on this paper.

References

 [1] Abelson, Hal, Ken Ledeen, and Harry Lewis, Blown to Bits: Your Life, Liberty, and Happiness
After the Digital Explosion. Addison-Wesley Professional, 2008; http://www.bitsbook.com/
wp-content/uploads/2008/12/B2B_3.pdf. Accessed 2015 August 15.

 [2] Astrachan, Owen, “The CS Principles Project.” ACM Inroads 3, 2 (2012).
 [3] College Board, AP Computer Science Principles Curriculum Framework 2016-2017; https://

secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-
curriculum-framework.pdf. Accessed 2015 August 15.

 [4] Cuny, Jan, “Transforming High School Computing: A Call to Action.” ACM Inroads 3, 2 (2012).
 [5] Snyder, Lawrence, et al. “The First Five Computer Science Principles Pilots: Summary and

Comparisons.” ACM Inroads 3, 2 (2012).

MARIE DESJARDINS
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle
Baltimore Maryland 21250 USA

mariedj@cs.umbc.edu

DOI: 10.1145/2835852

Copyright held by author. Publication rights licensed to ACM. $15.00

The widespread adoption and
availability of CSP as an AP high
school course has the potential
to reach many more students
than have previously had the
opportunity and inclination to

take CS at the high school level.

