
	
	

An	Introduction	to	Programming	
	

A	Pencil	Code	Teacher’s	Manual	
	

	
	

	
	
	
	

By	Deepa	Muralidhar	
and	David	Bau	

Dedication
This book is dedicated to my mother - Late Smt. Rajam Krishnan and my mother - in -law Smt. Malathi
Raman for instilling grit and resilience while shaping me, and to the educational team at Google
which has done so much inspiring work in bringing computer science to students.

Table of Contents

1. Introduction to the Pencil Code environment
1.1 An introduction to the environment

2. Lines and Points
2.0 Chapter Introduction
2.1 Lesson Plans
2.2 Resources

3. Input / Output Statements
3.0 Chapter Introduction
3.1 Lesson Plans
3.2 Resources

4. Loops
4.0 Chapter Introduction
4.1 Lesson Plans
4.2 Resources

5. Functions
5.0 Chapter Introduction
5.1 Lesson Plans

6. Selection Statements
6.0 Chapter Introduction
6.1 Lesson Plans
6.2 Resources

7. Learning a Second Language: JavaScript
7.0 Chapter Introduction
7.1 Lesson Plans

8. Introducing Lists and One-Dimensional Arrays
8.0 Chapter Introduction
8.1 Lesson Plans

9. Nested Loops
9.0 Chapter Introduction
9.1 Lesson Plans
9.2 Resources

10. Recursion
10.0 Chapter Introduction
10.1 Lesson Plans

11. Building a Website Using HTML, CSS
11.0 Chapter Introduction
11.1 Lesson Plans

12. Traversing Data Using JQuery
12.0 Chapter Introduction
12.1 Lesson Plans

Appendix A: Pencil Code - Recommended coding standards
Appendix B: Links to the list of programs used in the manual
Appendix C: Pacing Guide (1 semester)

Foreword
I saw Pencil Code in 2015 SIGCSE. I realized that it was a tool that would be an excellent fit to teach
programming in the high school classroom.

Students find block programming languages a non-intimidating way to start programming; however,
blocks can eventually come in the way of productive learning. Pencil Code has a very nifty ability to
switch between blocks and text code. When it comes to trying try a new concept or to understand the
structure of a program to spot a bug, block code is very useful. But when it is time to write a quick
program to solve a problem, text coding can be the better approach. I could see that the ability to
smoothly transition between block and text mode could reduce the frustration and intimidation that
students encounter while learning to program.

David and I have been working for the last 10 months to put together a teacher’s manual to guide
teachers and students to be able to use Pencil Code effectively. This manual is a reflection of our work as
David as a computer scientist at Google and MIT and my 16 years of experience as a high school
teacher.

All this work would not be possible if not for the contributions of many outstanding dedicated individuals.

First of all we would like to thank Google for the financial contributions in making this Pencil Code
teacher’s manual a reality. In particular Chris Stephenson for her vision and direction in making this
manual a useful resource for the teachers and students, and Maggie Johnson and Steve Vinter for
continuing support of Pencil Code and other computer science education efforts.

We would also like acknowledge the people who put Pencil Code together. Pencil Code is an open
source project with many contributors. David’s son Anthony Bau created the block-mode editor (Droplet).
Pencil Code was developed by testing it in Citizen Schools classrooms taught by Google engineers Ethan
Apter, Yana Malysheva and James Synge. And Pencil Code has been the beneficiary of many open-
source contributions, in particular from students supported by Google Summer of Code.

We would like to thank the Programming for Novices course at Middlebury College, created by Professor
Amy Briggs for providing us with relevant well illustrated examples to use in our manual.

We would like to acknowledge Visa Thiagarajan, Subject Expert Teacher, BASIS Independent Silicon
Valley at for her ideas on some of the examples illustrated in the manual.

We would like to acknowledge Pradyumna Bhattar, IT Analyst, Bank of America for his ideas on how to
illustrate algorithm development in the most simplistic manner.

And we would like to thank Googlers Phil Wagner and Matt Dawson and our other reviewers for their
valuable input and recommendations. Any remaining errors in these pages our our own.

- Deepa Muralidhar and David Bau

Chapter 1: Introduction to the Pencil Code Environment
In this manual we will show how to use Pencil Code to explore programming. Pencil Code is a free
programming tool available at pencilcode.net. Pencil Code was developed by Google engineer David Bau
together with his son Anthony Bau, with open-source contributions from many others.

Two Ways of Looking at a Program

There are two ways of viewing a program. A computer user sees a program by looking at its output. A
programmer works with a program’s source code. In Pencil Code, the screen is split into two halves, with
the source code on the left and the output on the right. You run programs by by pressing the “play” button
in the middle.

The Pencil Code interface splits the screen,
showing source code on the left and output on the right.

The play button in the center runs the code and produces output.

Languages and Libraries in Pencil Code
Pencil Code supports code in both blocks and text using mainstream web programming languages and
useful libraries including:

• HTML, the standard HyperText Markup Language for the web.

• JavaScript, the standard programming language of web browsers.

• CSS, the standard Cascading Style Sheet language for visual styles on the web.

• jQuery, a popular library that simplifies programming interactive websites.

• CoffeeScript, a language that lets you do more with less typing than JavaScript.

• jQuery-turtle, which extends jQuery to simplify graphics and animation for novices.

With Pencil Code, students can use these technologies to create web applications with global visibility
and impact while exploring fundamental concepts in computational thinking.

We will discuss all these topics in later chapters of this Pencil Code teachers’ manual.

A Web Page is a Program

Every web page is a program, and has both source code and output.

The source code is sent to your computer when you request a web page. It may contain a combination of
different languages, like HTML and JavaScript. The output is what you see when your browser interprets
the source code.

Source code may include languages such as
HTML, JavaScript, and CSS. See this example in
your browser at view-source:http://www.loc.gov/.

Output is the result of your browser interpreting
the source code.

Encourage your students to explore the source code of different websites by looking for hidden messages
contained in the webpage sources. Go to www.ebay.com, www.flickr.com, or www.mozilla.org. To view
source, press Ctrl-U. (On a Mac, the keyboard command is Command-Option-U, and on Safari, “view
source” needs to be enabled first using Advanced Preferences.)

Every Pencil Code Program is a Web Page

In Pencil Code, every program is a web page. At the top the editor are a few details to help control how a
page is published. In the upper right are buttons for saving and sharing the program, as well as buttons
for managing your website and getting help. The upper left shows the name. Rename a program by
clicking on the name in brown and editing it.

The name sets the URL web address for the program, as shown in the examples in the table below.

Account name Project name Output URL

coolsite first https://coolsite.pencilcode.net/home/first

david example/posterize https://david.pencilcode.net/home/example/posterize

Hovering over the “output” icon in the blue bar on the upper right will provide an “open window” link that
opens a new tab showing just the output of the program as it would appear to users visiting the webpage.
It does not show code. (This link is available only after logging and saving a program.) It is valuable to try
running your programs full-screen, and from there use Ctrl-U to “view source” on your own webpage.

Clicking the open window button will run the program
in full-screen mode, without showing source code.

In Pencil Code, the full-screen output URLs have the word “/home/” in them. These addresses can be
linked, emailed, or embedded anywhere. Changing the “/home/” to “/edit/” will make a URL to show the
Pencil Code editing UI, revealing the source code for any program on Pencil Code.

What is a Programming Language?

Pencil Code allows the programmer to use “block-mode” to drag and drop blocks to design a program.
The blocks in Pencil Code are a direct representation of an underlying text language: CoffeeScript,
JavaScript, or HTML. Although the blocks look different from text code, they are just a visual way to view
and edit instructions in a programming language.

Viewing Source Code in Block Mode

Viewing Source Code as Text

A programming language is any language that is precise enough for a machine to interpret, while also
being understandable by people. The words “run this over and over” in English mean the same thing as
the Intel Pentium opcode “1110101111111110”. But the English words are too ambiguous for a computer
to follow, and the machine opcodes are too obscure for a person to read. A programming language is
written in readable words, but in a way that follows precise patterns, called a syntax, that a computer can
follow precisely.

When viewing JavaScript or CoffeeScript in block-mode in Pencil Code, the syntax of the programming
language is shown through the block structure. For example, when words are part of different commands,
they are shown as different blocks. When one command is under the control of another, the blocks show
the commands nested within one another.

Switching Between Blocks and Text

In Pencil Code, block-mode and text-mode are perfectly equivalent in power and expressiveness. Blocks
are a just a visual view of the syntax of JavaScript, CoffeeScript, or HTML, and students can switch
between blocks and text freely.

This yellow tab with a gray arrow is a toggle
button that switches between text and blocks.

The toggle button on the yellow tab on the lower-left edge of the editing area lets the programmer switch
from block to text and from text to block-mode. Hover on the tab to see the tab expand to a button that
says either “click for blocks” or “click for text”.

When to Use Blocks

When should a student use blocks or text?

The best time to use blocks is when a student is learning a new function or command. Blocks are
organized on the palette with the right syntax to use and shapes that snap together correctly. They make
it easy to try a new idea because you only need to recognize a block to use it.

The best time to use text is after a student knows functions and commands well enough that to type them
from memory. Once students become familiar with the parts of the language they need for a project, they
will find that typing can be faster and more fluid than dragging blocks.

In Pencil Code, the blocks contain code that exactly matches the syntax for the language being used. For
example, when using CoffeeScript, the block to move the turtle forward by 100 pixels will read “fd 100”,
which is exactly the same code to type in text mode. If students modify or add code using text mode, they
can switch back to block mode to see how their code looks as blocks.

Students should feel free to work in either blocks or text, clicking the button to switch at any time. In early
sections we assume students will be working with mostly blocks. As students become more familiar with
the syntax of a language by remembering the syntax within the blocks, they will often want to type code
directly as text, switching to blocks when trying something new, or when trying to understand work that
they typed. Most students will naturally move from blocks to text as they become familiar with the
functions and commands in the language they are using.

Beginning with CoffeeScript
Pencil Code supports both JavaScript and CoffeeScript natively, but the default language in Pencil Code
is CoffeeScript, and we recommend students start with CoffeeScript.

CoffeeScript is a professional language that is used by many tech companies including Github and
Dropbox. Its power and speed are equivalent to JavaScript. CoffeeScript, however, has a simpler syntax
(similar to Python) that uses meaningful indents and less boilerplate punctuation. The simpler syntax
requires less typing when students make the first tricky leap to a text language. It also clarifies the code
for concepts such as functions, nesting, loops, input, and arrays.

pen(red);
for (var i = 0; i < 20; i++) {
 fd(i);
 if (i < 10) {
 rt(90);
 }
 dot(blue);
}

JavaScript is the standard programming language
of the web, but the punctuation in the language

can be overwhelming to a novice.

pen red
for i in [0...20]
 fd i
 if i < 10
 rt 90
 dot blue

CoffeeScript is a popular language used by
professionals to abbreviate JavaScript. It requires

less punctuation than JavaScript.

In this manual we will use CoffeeScript up to Chapter 7, after which we will introduce JavaScript.

Comments

A note on comments: to create a comment in the code in block, first create an empty block by pressing
the “Enter” key and then type in the block starting with the # sign. The comment block now looks
something like this:

The # symbol is the CoffeeScript comment symbol. To create a comment in JavaScript, use “//”.

	

Switching Languages - CoffeeScript, JavaScript, HTML, and CSS
To switch from CoffeeScript to JavaScript, click on the” gear icon” in the blue bar. From this box, choose
between the two scripting languages and optionally add panes for either or both of the layout languages
HTML and CSS. You can also enable or disable the main turtle here, which is helpful if you are making a
program that does not use the turtle.

The gear button opens a settings panel
that allows switching languages and libraries.

Settings in this panel will be remembered next time you create a new program. To switch settings again,
just use the gear button again.

The Test Panel
One way to explore commands is by typing them in first to try them. The test panel in the lower-right side
of the screen lets you type individual commands in CoffeeScript or JavaScript. For example, if you type
“dot red, 100” and press enter, the command will be run right away so you can see what it does.

The test panel. If the test panel is not visible,
it may be necessary to open it by dragging the gray divider.

Type a command by itself in the test panel, without any arguments, to get a bit of help about it. (See
below for an example of getting help about “label”.) If the test panel is too small to see the help, the dark
gray bar at the top of the panel can be dragged to increase it or decrease it.

You can also click the examples highlighted in yellow in the help text to try them out right away.

Debugging Using the Test Panel

You can use the test panel can to debug the variables in a program. For example, try running a
program in the left-hand panel that reads “x = 42” as follows (if using blocks, find the variable assignment
operator under the “Operators” panel).

Then type “x” in the test panel and press enter to see the value of x. If the test panel says “x is not
defined,” it means that the program has not run yet - just press the “play” button, and then interact with
the program after it has run to see the value of x is 42.

There is a special “debug” command that can be used to produce output directly to the test panel without
interfering with the main part of the web page (find the debug block under the “Text” panel). Try creating a
program that reads “debug ‘hello’” as follows. The word “hello” needs to be in quotes.

When you run it, the test panel will say hello! (Debug is an abbreviation for the “console.debug” command
often used by web programmers, which will also work the same way.)

The Pencil Code Library

 An experienced programmer may ask “what functions are available to a Pencil Code program?”
About 100 of the functions that can be used in Pencil Code are listed on the block palette but Pencil Code
provides a large open-ended library of functions that goes far beyond what is listed in the palette.
Basically, anything that a web page you can do in Pencil Code.

Only a small fraction of these functions will be discussed in this teacher’s manual, but armed with
the names of the libraries below, you can find many examples and tutorials on the Internet with code that
can be used in Pencil Code. The libraries available to every Pencil Code program include:

1. The Web Document Object Model (DOM). Standardized by international committee, these
functions are available to every page on the Internet.

2. jQuery. The most widespread web page library on the Internet, used by most popular websites.
We will introduce the workings of the jQuery library in Chapter 11.

3. jQuery-turtle. The turtle library for Pencil Code is an extension to jQuery. It provides all the
simple-to-use functions that we will take advantage of in the first part of this manual. Most of the
functions on the block palette are from this turtle library.

4. socket.io. This is a real-time communications library that enables immediate communication
between browsers..

Exploring the Vast Library Beyond Turtle Functions

Although the web programming world has too many features to cover in a single manual, all the
objects available to a Pencil Code program can all be explored using the test panel. For example, type
“location” to view the DOM “location” object, and they expand it by clicking on the triangle. The test panel
shows that “location” contains many functions and pieces of data including “href”: a program could use
this with the variable location.href.

Web programming functions are widespread enough that there are pages on the Internet about almost
every one of them. A Google search for “location.href” will bring up excellent pages that explain it.

How to Use This Book

Goals and Standards:

This teacher’s manual is designed to help students learn the basics of programming. It is intended to
assist a teacher in teaching an Introduction to Programming one semester course.

This manual shows how to take students step-by-step through the Pencil Code environment and start
writing simple programs. The chapters are organized around the fundamental programming constructs,
starting with basic concepts and then moving on to more advanced concepts. The manual also shows
how to transition students from block coding to text coding: programming for beginning students can be
intimidating, and starting with block-mode can reduce the level of intimidation. While the focus is on
learning programming, many of the programs are aimed at problem solving.

The content for this teacher’s manual is based around the CSTA K-12 Standards. Every chapter consists
of a section that does a crosswalk of the lesson plans to specific standards of the framework. The lessons
are based on programs designed by David and Deepa, many of which are available on
guide.pencilcode.net.

How should this book be read?

This manual is intended primarily for teachers who would like to teach programming using Pencil Code.
There are several sections in each chapter to help the teacher in each topic. The key concepts section
give the teacher a quick technical overview of the topic. The key terms identify important words / terms
that are used in the chapter. Finally the lesson plans guide the teacher through each program. A teacher
new to teaching programming can follow the lessons and teach the students as suggested in the manual.
The more experienced teacher can use the programs and use the lesson plans as suggestions on how to
teach the various concepts. Every program represents an idea on how to solve problem and how the
programming construct that is be taught can be used solve it. Teachers are encouraged to use the lesson
plans they find useful in the classroom and modify them to fit the needs of their students.

There is a suggested pacing for each lesson in the Suggested timeline section. Note that each chapter
has several lesson plans spanning over a couple of class periods. There is a separate pacing guide
(Appendix C) that gives the sequence and pacing on how the material provided by the manual should be
used.

While this is intended to be a teacher’s manual, an advanced student can peruse through the various
programs and use them as resources to funnel their creativity as they create their projects on Pencil
Code.

What grade level students is the material in the book appropriate for?

This manual is intended for a high school, an introduction to programming course. Students 9th, 10th and
possibly 11th graders would benefit from taking this course. An advanced 8th grade student could take this
course. A typical math pre-requisite of pre-algebra would be sufficient to take this course.

 2.1

Chapter 2: Lines And Points

2.0.1 Objectives

In these lessons, we introduce straight-line programs that use turtle graphics to create visual output. A
straight line program runs a series of directions in the same order each time the program is run. Students
will learn how to plan, create, and debug a sequence.

2.0.2 Topic Outline

2.0 Chapter Introduction
2.0.1 Objectives
2.0.2 Topic Outlines
2.0.3 Key Terms
2.0.4 Key Concepts

2.1 Lesson Plans
2.1.1 Suggested Timeline
2.1.2 CSTA Standards
2.1.3 Lesson Plan I on using the Move Blocks
2.1.4 Lesson Plan II on using the Art Blocks
2.1.5 Lesson Plan III on using the Arcs
2.1.6 Lesson Plan IV on using the Assignment operator

2.2 Resources
2.2.1 Videos
2.2.2 Useful links
2.2.3 Additional exercises

2.0.3 Key Terms

Sequencing Algorithms

Bugs Pen

Cartesian geometry Deterministic

Turtle geometry Trace

2.0.4 Key Concepts

A program defines a sequence of actions for a computer to take.

 Straight line programs run a sequence of actions from top to bottom without making choices.
These simple programs are deterministic: they always take the same actions in the same order
every time they run, and the sequence of actions can be read directly by reading the program.

 Even a deterministic program can have bugs. A bug is any behavior the user or the programmer
does not want, for example, a program that draws a different shape than the one you want.

 To debug a program, it is helpful to trace (carefully follow) the programs steps as they run. Each
step is called a different state of the program.

The programs we have used so far created graphics on the screen. There are two types of commands for
creating graphics that we have used:

 Turtle geometry, which draws lines, angles, and other shapes by controlling the direction and
movement of a screen object.

 2.2

 Cartesian geometry, which draws lines or other shapes by using (x, y) coordinates to navigate
the screen. For example, the moveto command moves the turtle using Cartesian geometry.

Drawing at a Point

The simplest drawing is a single a dot or a box at the current location of the turtle.

dot blue, 100

The dot command draws a colored
circle of a specified size directly

at the location of the turtle.

The number is the diameter in pixels. (In the case of a box, the number is the side length.) There are

about 100 pixels in an inch (about 40 pixels in a centimeter), with the exact scale depending on the

device being used. Many colors are available for drawing: there are 140 standard CSS color names

including common names like "red" and uncommon ones like "gainsboro." A full table of color names,

together with as a list of useful function names, can be found on the Pencil Code one-page reference

sheet at http://reference.pencilcode.net/.

Drawing a dot or a box does not move the turtle. If a second dot is drawn, that dot is drawn at the same
location as the first dot. Order matters: the second dot will cover the first one, and if it is larger, it can
completely hide the first dot.

dot blue, 100
dot orange, 50

Order is important: drawing a second
dot will draw it on top of the first one.

Motion and Lines

The turtle can move forward and backward in a straight line using the fd and bk commands. A row of

three dots can be created by moving the turtle between each dot.

dot pink, 25
fd 25
dot pink, 25
fd 25
dot pink, 25

The turtle moves forward using fd.

The turtle can also draw with a pen as it moves using the pen command. The pen has a color and

thickness, chosen the same way the color and diameter of a dot are chosen. Once the pen is chosen, it
will draw the path everywhere the turtle goes. Use pen off to turn the pen off again.

 2.3

pen purple, 10
fd 25
pen off
fd 25
dot aqua, 25

The turtle creates a line using pen.

Turning and Angles

Pivot the turtle to the right by using rt, and left using lt. These commands turn in units of degrees.

pen red, 5
lt 90
fd 100
rt 90
fd 100
rt 30
fd 100

Turning and making angles using rt and lt.
Notice that small turns create obtuse angles.

Notice that a 30 degree turn creates a 120 degree angle! When the turtle changes direction by only a
small amount, the angle created is very large. A mathematician would say that the amount of change in
turtle direction (30 degrees) is the the exterior angle measure, whereas the angle you get (120 degrees)
is the interior angle measure.

To create a thin acute angle, the turtle must turn sharply and change its direction by more than 90
degrees. A 180 degree turn Is the sharpest turn possible, turning the turtle around backwards.

Debugging with Dots and Arrows

When working with a complicated program that creates a drawing, it can be helpful to add a dot before or
after a line of code being investigated. The dot itself will not move the turtle, so it is useful for recording
where the turtle is located when the program runs that line of code. There is also an arrow drawing

command which can be used to draw the current direction of the turtle without moving the turtle.

bk 100
pen red, 5
lt 90
fd 100
dot blue, 25
rt 90
fd 100
arrow blue, 50
rt 30
fd 100

Using a blue dot and arrow to help
debug the execution of code.

 2.4

Adding extra output to record the state of the program at a given line of code is the most common
debugging technique used in all sorts of programmers.

For example, if one angle in a drawing is not correct, the first step of the solution is to find the specific line
of code responsible for that angle. Adding dots and arrows help to identify what the turtle was doing when
the program arrived at a specific step, and can help to narrow the problem. Once the problematic line is
found and fixed, the extra dots and arrows can be removed.

Using Other Images

It is possible to change the turtle to any image on the internet. To output a “dog” image, try using the
“wear” block:

wear 'dog'

The wear command outputs an image
by changing the appearance of the turtle

to an image from the internet

The wear command changes the turtle appearance to any image URL that your browser can load. When

you use a short name such as “dog,” Pencil Code loads the image using special image URLs starting with

http://pencilcode.net/img that find an image using a creative-commons image search. These URLs

showing freely reusable images matching the name after the /img, such as showing a mountain for

http://pencilcode.net/img/mountain. If you ask for an image starting with t- such as 't-dog', it will provide an

image with some transparency.

The image can be moved by moving the turtle. For example, use the following to move the turtle to a
point 200 pixels to the right and 100 pixels above the origin:

moveto 200, -100
The moveto command moves the image to a

location using Cartesian coordinates.

The moveto command is different from the turtle motion commands such as fd and rt, because it is an

absolute motion, locating a point in Cartesian coordinates, whereas the turtle motion commands are

relative motions, making motions relative to the current location and direction of the turtle.

Moving a Second Image Using a Variable

To create a second image on the screen, use the “img” command. It can be moved (or manipulated in

any way that a turtle can) by using a variable, and using dot notation:

w = img 't-watermelon'
w.moveto 150, 150

This code creates a new image showing a
watermelon with transparency, then using the
variable w, moves it to the location 150, 150.

 2.5

The code above introduces two of the most important concepts in programming: it assigns a variable, w,

using the “=” operator, and it directs commands to it using the dot notation “.”.

A variable is a name defined by a program to represent some object or data, and can be chosen to be

any word that is memorable for the programmer. For example, the variable “w” above was chosen to

represent an image of a watermelon. Another sensible name might have been “wm” or “melon” or simply

“watermelon”.

The “=” operator in w = img 't-watermelon' is slightly different from the “=” used in math class. It does

not mean that w is known to be equal to the image. It is an assignment. The “=” assigns the meaning of

the variable w to refer to the image of the watermelon. If, prior to the assignment, w had some other

meaning, then that old meaning is discarded after the assignment.

The “.” operator in w.moveto 150, 150 directs the w object to execute the moveto function, instead of

telling the turtle to move. Images can be moved like turtles, so “.” operator can be used together with any

turtle function. In the example below, c is a variable for a cat image, and c.rt 45 tilts it right 45 degrees.

c = img 'cat'
c.moveto 0, 0
c.rt 45

This code uses the variable c for a cat image,
then moves the cat to the origin,

then tilts the cat right by 45 degrees.

2.1.1 Suggested Timeline: 1 55-minute class period

Instructional Day Topic
1 Day Lesson Plan I

1 Day Lesson Plan II

2 Days Lesson Plan III & IV

2.1.2 Standards

CSTA
Standards

CSTA Strand CSTA Learning Objectives Covered

Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Explain how sequencing, selection, iteration and recursion
are building blocks of algorithms.

Level 3 A
(Grades 9 – 12)

Computing
Practice &
Programming
(CPP)

Apply analysis, design, and implementation techniques to
solve problems.

Level 3 A
(Grades 9 – 12)

CPP Use Application Program Interfaces (APIs) and libraries to
facilitate programming solutions.

2.1.3 Lesson Plan I

This lesson will give students an overview of Pencil Code and the Move block palette.

 2.6

Note: Make sure you are in block mode. Type in the code (switch to block-mode if needed) and click the

play arrow to demonstrate the results.

Content details Teaching Suggestions Time
Use the resources and the
narrative in Chapter 1 as
guide.

Give an overview of Pencil Code. Demonstration:
10 minutes

Line
pen red
fd 50
rt 90

Square
pen blue
fd 50
rt 90
fd 50
rt 90
fd 50
rt 90
fd 50
rt 90

Code:

Triangle
pen black
fd 200
rt 120
fd 200
rt 120
fd 200
rt 120

Demonstrate
Line,

Square

and Triangle (Move block).
Output

pen from the Art Block actually draws the pattern on

the grid. Different colors can be picked from the pen
option.

Demonstration:
10 minutes.

Encourage creativity by asking
students to explore the
different colors and thickness
of the lines of the pen.

Students will work on their own to create their lines,
square and triangle.

Student Practice:
15 minutes

Students who are unable to
complete this work in class can
finish it home as homework.

Students will start experimenting with House and
lighthouse

Student Practice:
20 minutes

2.1.4 Lesson Plan II

This lesson introduces the block palette Art.

 2.7

Content Details Teaching Suggestions Time
Code:
Dot Row
rt 90
dot lightgray
fd 30
dot gray
fd 30
dot()
fd 30

Simley
speed 10
dot yellow, 160
fd 20
rt 90
fd 25
dot black, 20
bk 50
dot black, 20
bk 5
rt 90
fd 40
pen black, 7
lt 30
lt 120, 35
ht()

Demonstrate Dot Row and Smiley (Art Block)

Show the use of the speed block

Output

Output

Note: Take your time as you demonstrate the smiley
face. Ask the students to help you locate the position of
the black eye.

What does function ht() (last line in the Smiley code),

do?

Explain that sequencing is a key computational thinking
practice.

Demonstration:
15 minutes

Design your own…
Encourage students to
experiment with Dot diameter,
pen color, etc.

Have the students will design their own versions of the
Smiley face and Dot Row.

Student
Practice:
10 minutes

Students will work on creating a BullsEye artifact.
Here is the code (solution)

speed 2
x = 20
dot black, x*5
dot white, x*4
dot black, x*3
dot white, x*2

Notes:
1. Encourage students to make it of various sizes and
colors.

2. Walk around the class and express satisfaction on
demonstrations of personal expression.

Student
Practice:
15 minutes

2.1.5 Lesson Plan III

This lesson introduces the block palette Art and Move.

 2.8

Content Details Teaching Suggestions Time
Using this link
http://gym.pencilcode.net/draw/#/draw/filled.ht
ml
Do the following:
Change the color
Change the angles and radius in the rt and lt
commands.
Watch how the figure changes shape.

Have the students experiment with the
crescent.

Encourage them to make modifications
that allow for artistic expression as well
as mathematical manipulations.

Student Practice:
10 minutes

Code:

Turtle
speed 100
pen green
rt 360, 10
lt 45, 30
rt 360, 8
lt 90, 50
rt 360, 8
lt 90, 30
rt 360, 8
lt 90, 50
rt 360, 8
lt 45, 30

 Output

Demonstrate the Turtle program.
Explain how angles work using this tool:
http://guide.pencilcode.net/edit/explaine
r/turns

Explain the rt(degrees) block using

CoffeeScript: rt pivots right by degrees.

Explain how arcs work with rt(dg,rad)

block, which turns with a turning radius
http://guide.pencilcode.net/home/explai
ner/curves

lt block does the same in the counter-

clockwise direction.
Note: The code shown here is in text-
mode. Encourage students to switch
between block and text to “look under
the hood” whenever they code.

Student Practice:
20 minutes

http://activity.pencilcode.net/home/worksheet/fl
ower.html

Students can now implement the
drawing of the turtle on the grid.

Print and hand out paper copies of the
two worksheets (Flower and Car. Ask
them to complete and share the
exercise with you before end of class.

You could also use this assignment as
a filler until the end of class, a warm-up
activity, or a homework assignment.

You could offer the students a
completion grade when they share the
completed assignment with you.

Student Practice:
30 minutes

2.1.5 Lesson Plan IV

This lesson the idea of using the img-bot to create interesting scenes and give students an opportunity for
creative expression.

 2.9

Teaching Notes: There are two concepts that have to be taught. First, the assignment operation. Pencil
Code allows you to create a variable and assign anything including images. Next, using the img-bot to
find a fun image on the internet the student uses the ‘moveTo’ block to move to a specific spot.

Content Details Teaching Suggestions Time
Code:(Text Mode)

speed .1
pic1 = (img 'lily')
pic1.moveto -225, -35
pic1 = (img 'tulips')
pic1.moveto 50, 190
pic1 = (img 'gardenia')
pic1.moveto 50, -35
pic1 = (img 'sunflower')
pic1.moveto -200, 200

Block-Mode:

Copy / paste the program from the left-
column into Pencil Code editor.
Explain the function of img – i.e. it
searches the internet and finds the first
image that matches the word in quotes and
displays it.
Explain the ‘=’ assignment statement and
the ‘.’ notation. (refer to Key concepts.)
Explain that the image is assigned to the
variable pic1. Now pic1 can be moved to a
location as specified in the moveTo block.
The Speed block helps give the animation
effect.
Demonstrate to students that by trial and
error to find the right location on the screen
to get the collage effect.
Now ask students to create their own
collage.
They can explore locations, images and
animation effects to produce their own
unique artifact.

The program code can be found here.

A good end of project activity is a reflection
exercise. Ask students to write in about
200 words the process of creating a
collage and their expression of creativity
incorporated in the collage they have
created.

Output

Demonstration Time:
15 minutes
Practice Time: 30 minutes

 2.10

2.2 Resources

Videos:

Lines: https://www.youtube.com/watch?v=edN07wcbj2w

Arcs & Angles: https://www.youtube.com/watch?v=xUTPb0ozy8M

Useful links:

http://gym.pencilcode.net

Tutorial of angles: http://pencilcode.net/material/measuring.pdf
Tutorial of arcs: http://pencilcode.net/material/arcs.pdf
Book: book.pencilcode.net

Additional exercises:

Exercises – Add turtle Tail to turtle

Understand the use of ‘Move’ by making this stick figure:

http://activity.pencilcode.net/home/worksheet/stick_figure.html

3.1

Chapter 3: Input / Output

3.0.1 Objective

Modern computers use a rich variety of forms of input and output. In this unit, students will explore output
of images, text, speech, and music, and they will explore input of mouse clicks, buttons, text, voice, and
keypresses. Although programs that combine input and output can be created with just a few lines of
code, these simple programs can be among the most interesting and engaging for students. Any form of
input can be attached to any form of output, so creating connections between input and output provides a
large range of creative possibility.

3.0.2 Topic Outline

3.0 Chapter Introduction
3.0.1 Objectives
3.0.2 Topic Outlines
3.0.3 Key Terms
3.0.4 Key Concepts

3.1 Lesson Plans
3.1.1 Suggested Timeline
3.1.2 CSTA Standards
3.1.3 Lesson Plan I on using the Text and Sound block
3.1.4 Lesson Plan II on using the Button block
3.1.5 Lesson Plan III on using the Click block and the /img bot
3.1.6 Lesson Plan IV on in class lab activity.

3.2 Resources
3.2.1 Important links

3.0.3 Key terms

Input Output

Human Computer Interaction (HCI) Event Objext

Event Handler Event Binding Function

Say, Play Await

Spiral assignment Assignment statements

Variables

3.0.4 Key Concepts

Computers are most interesting when used to interact with the world.

● Input brings data into the computer, e.g., when you type on a keyboard.
● Output sends data out of the computer, e.g., when you see things on the screen.

Together, input and output are sometimes called I/O. There are many types of I/O including human
interfaces, network interfaces, storage interfaces, and robotic interfaces. There is a lot of commonality in
how a computer program deals with all these types of input and output, regardless of whether the
interaction is with a person, a file, or some other device. User can learn important I/O techniques just by
learning how to create user interfaces.

3.2

Common Forms of Human Computer Interaction

This section focuses on human-computer interaction (HCI). When creating a user interface in a Web
application, programmers deal mainly with keyboard and mouse input, and with screen and audio output.
Here are some examples:

 Input Output

Graphical Mouse, keypress Graphics

Text-Oriented Keyboard input HTML

Audio Microphone Music, Speech

An Overview of I/O Concepts to Teach

Introduction to input and output:

● Output of graphical images, as seen in Chapter 2
● Simple input of mouse clicks
● Combining input and output

Expanding to different types of input and output:

● How to output text
● How to output speech, and music
● How to input from keys and buttons
● How to input text and speech

Special input strategies:

● Using CoffeeScript “await” to wait for input
● Using “pressed” to poll for input

Events for Mouse Click Input

In a graphical environment, the simplest way to collect input is to listen to events. An event is an object
created by the system that represents a single unit of input. For example, every time the mouse is clicked,
an event object is created representing the click. The event object has properties representing details of
the input such as the position, time, and which mouse button was clicked.

Event e

e.type = 'click' The kind of event

e.x = -195 X position of click

e.y = 40 Y position of click

e.which = 1 Which mouse button

e.timestamp =
 1454775914487

Number representing
the time of the click.

An event object has properties representing details
of the input, such as its position and time, and

which button was used. Not all properties of the
click event are shown here.

Clicking the mouse creates an
invisible event object.

3.3

Event objects are created by the system whenever user input occurs. A program can respond to events

by creating event handlers, explained next.

Creating Event Handlers

An event handler is a piece of code that runs to process an input event. It looks something like this:

click (e) ->
 moveto e.x, e.y

An event handler to process a click event.
Each time a mouse click occurs, the handler runs
and moves the turtle to the location of the click.

There are three key parts of the code in the set up for an event handler.

The (e) is the event object parameter. When the input happens, the event object (containing the

location of the click on the screen) is made available in the variable e. The variable name can be chosen
to be any convenient name. It is conventional to use the name “e”, or “event” for an event object.

All together, the (e) -> moveto e.x, e.y is the event handler function, which is the code to run when

the event happens. Any number of lines of code can be indented after the arrow, and they will all be part
of the same event handler. (An event handler happens to be a function, which we will talk more about in
Chapter 5.)

The click command is an event binding function that means “listen to clicks”. It is a command that

connects the event handler to the system so that the handler is triggered when there is a click.

Combining Input and Output

The magic of input and output lies in creating new effects by combining them. For example, a new image
can be created for each click with this:

click (e) ->
 img 't-watermelon'

Combining input and output by creating
a new image within a click event handler.

A watermelon is drawn for each click.

As students learn different types of input and output, it is helpful to have them try combining input and
output in different ways. Have students try the following:

click (e) ->
 w = img 't-watermelon'
 w.moveto e.x, e.y

In addition to making an image, move it to
the clicked location.

w = img 't-watermelon'
click (e) ->
 w.moveto e.x, e.y

Move only a single watermelon image
instead of making a new one for each click.

pen purple
click (e) -> Draw a line between clicks.

3.4

 moveto e.x, e.y

Students can create a simple drawing program using just click events. They can do even more if they
combine different kinds of input and output.

Output of Text

To write text output on the screen, use the write command like this:

write 'Hello. My name is Compy.'

Writing a line of text output.
The write command writes text from top

to bottom, not at the the turtle.

When text is written to the screen using “write”, it appears from top to bottom on the screen, under all the
written text so far (not, for example, where the turtle is). The “img” command also puts new images at the
end of all written text and images so far.

Just like img, it is possible to use a variable to remember a text object and move it on the screen:

t = write 'Hello'
t.moveto 50, 100
t.rt 180
t.grow 2

By using a variable with written text,
text can be moved, turned, and grown.

To create text on the screen at the location of the turtle, the “label” command can be used:

label 'Turtle was here'

The label command makes text
at the location of the turtle.

Labels can also be moved in the same way as text with write and images, by using a variable.

Output of Speech and Music

The screen is not the only output device on a computer! The computer can also output using audio. There
are two interesting ways to do this: using speech or using tones.

The say command utters speech audibly.

say 'Hello. My name is compy.'

The say command utters speech aloud.

3.5

To hear a program that uses speech, the browser needs to support speech synthesis. Chrome, Safari,
and Opera do, and browser support for speech standards may increase over time. The webpage
http://caniuse.com/#feat=speech-synthesis lists current browser versions that support speech.

The play command plays a song using ABC notation, which represents each musical note with the letter

that musicians use for the note.

play 'EDCDEEEzDDDzEEE'

The play command uses ABC notation
to play musical notes.

In ABC notation, the letters A-G are used for notes. Uppercase is an octave higher, and the letter z rests
silently for a beat.

There are many other things that can be done with ABC notation (which you can read about by searching
for “ABC notation” on Google). For example, put a number “2” or fraction “1/2" after a note to change the
number of beats of that note, or put a “^” or “_” before a note to make it “sharp” or “flat”, or a comma after
a note to make it an octave lower.

The play command will sequence notes and wait its turn before beginning a song, but sometimes in an
interactive program, it is useful to play a note right away (without sequencing). To play a tone right away
without sequencing, use the “tone” command:

tone 'C'

Use tone to make a sound immediately.

Together, these are all the tools needed to make the computer say something or play a song or a tone or
write or utter a word when you click the mouse. Have students experiment with the different types of
output to create different types of interactions. Students should experiment to understand the difference in
timing between using “play” and “tone” when responding to multiple mouse clicks.

Input from Keyboard and Buttons

The mouse button is only one of the buttons a computer has: a typical computer will have another 100 or
so buttons on a keyboard!

An event handler can be used to collect input from those buttons using two other event binding functions:
keydown and keyup.

keydown 'A', ->
 tone 'C'

Pressing the A on the keyboard sounds a C.

The program above will sound the C tone whenever the user presses down on the “A” key.

The comma after the key name is necessary. The comma is used because keydown is an event binding

function that is using two arguments instead of one: the first argument is the name of the key, and the

second argument is the event handler. Like any other command with two arguments, a comma must be

used between the arguments.

There is also a keyup event binding function. For example, to silence the C note when the user lets go of

the key, use this trick for sounding a zero-duration C when you release the A key:

3.6

keydown 'A', ->
 tone 'C', 0

Releasing the A on the keyboard silences the C.

Many keydown and keyup event handlers can be combined create a whole piano or to create other
effects. For example, it is possible to create event handlers to attach turtle movements to specific keys
and make a system for steering the turtle around. Notice that the letter keys have obvious names, but
there are also names for the arrow keys: you can listen to the “up” arrow by saying keydown 'up', and
similarly for “down”, “left”, and “right”.

keydown 'up', ->
 fd 100

The up arrow key moves the turtle forward.

An alternative to using physical keyboard keys is to use on-screen buttons. The “button” command is

used for this:

button 'forward', ->
 fd 100

An on-screen button labelled “forward”
moves the turtle forward.

The advantage of on-screen buttons is that the user can see exactly what controls are available. With
good labels, they are self-explanatory. The disadvantage is that they take space on the screen.

Input of Text and Speech

When collecting text input from a user, listening to a single keypress at a time can be done, but it is very
inconvenient! That is why user interfaces use text input elements for entering text. The input element is a
box that shows text, and when it has focus, all keypresses automatically turn into text in the box.

To use a text input box in Pencil Code, use the read command, like this:

read 'Your name?', (n) ->
 write 'Hello, ' + n

The handler is triggered after
text is entered and submitted.

As with click or button or keydown, the read command calls an event handler after the user has finished

providing input. There are a few differences between read and click:

● Instead of waiting for a single small action, read waits for a whole series of keystrokes and then
finishes when the user presses “Enter” (or clicks submit).

● The event handler for read is called just once. After the input, the input box goes away.

● Instead of binding the variable to an event object that has properties like x and y, read sets it to
the text value that was input (n in the example above).

3.7

To enter a number, consider the special variant readnum, which constrains the input to just digits.

readnum 'Your age?', (n) ->
 write 'Next year you will be ' + (n + 1)

readnum constrains input to a number.

A keyboard is not the only way to enter text. Another option is to use voice input, which can be done

using “listen”. That function works just like “read”:

listen 'Say something', (t) ->
 say 'You said: ' + t

listen accepts spoken voice input.

A few tips for working with voice: Currently voice recognition and speech synthesis work only on Chrome.

Before a webpage attempts turns on the microphone on Chrome, it must obtain the user’s permission. If

using the https (secure) version of Pencil Code, Chrome will remember the permission after it is given first

time so it does not need to ask every time.

When a page listens to the microphone, the browser asks for permission.

If the page is loaded over https, the permission is remembered.

Using CoffeeScript await to Wait for Input

Sometimes a program needs to read a sequence of inputs. To do this, chain the event binding functions
inside one another like this:

readnum 'Right triangle side a?', (a) ->
 readnum 'Right triangle side b?', (b) ->
 c = sqrt(a*a + b*b)
 write 'The hypotenuse is', c

Using a sequence of input by
chaining event handlers.

This nesting makes the program look more complicated than it is, and make it difficult to use a loop.

The version of CoffeeScript used in Pencil Code has a pair of keywords “await” and “defer” that can

help in this situation by putting a program on hold while waiting for an event to occur. You put the word
“await” before the command that you want to pause, and “defer” in the place of an event handler along

with any variables that would have been event handler parameters:

await readnum 'Right triangle side a?', defer a
await readnum 'Right triangle side b?', defer b
c = sqrt(a*a + b*b)
write 'The hypotenuse is', c

3.8

Await and defer have a subtle relationship with function calls, so before putting await inside a user-
defined function, find understand the Web pages about “Iced CofeeScript” (if using await inside a
function, that function should also return its results using callbacks).

However, await is very straightforward and useful when used together with loops. Here is an example:

await readnum 'How many numbers to average?', defer count
total = 0
for j in [1..count]
 await readnum 'Enter #' + j, defer val
 total += val
write 'The total is ' + total
write 'The average is ' + (total / count)

This style of code is called “blocking i/o”, because the program blocks (stops) its progress while waiting

for an input or output to occur. Blocking i/o is the traditional way to teach Python or C input/output, but it is

very different from the way UI events are typically handled in JavaScript or Java GUIs, where input is

done using event handlers. Iced CoffeeScript’s await allows teaching both styles in the same system,

and even in the same program.

The await keyword is so useful that a version of it is on track to be added to a future version of the

JavaScript standard. However, it is not in the language right now, so you cannot use await in JavaScript

today. Instead, you must use function definitions (see Chapter 5) to achieve similar effects.

Polling Keyboard State Using pressed

So far we have seen two styles of input: “event handling”, and “blocking i/o.” A third style of input, called
polling, is often used in video games and real-time systems such as robots and you can also try it with
Pencil Code. A program using polling repeatedly checks the input state (of the keyboard) by asking a
question such as “is the key pressed down right now?”

Here is how Pencil Code does polling (usually in combination with the “forever” command).

forever ->
 if pressed 'W'
 fd 2
 if pressed 'D'
 rt 2

Inside a forever block, the function pressed
can be used to poll the keyboard state.

The “pressed” command is the polling command. It is true if a key is pressed and it is false if the key is

not pressed. The “if” can be used decide whether to take an action based on the state of a key. With

“pressed,” it is even possible to support “chording”, that is, making a program that responds to two keys

pressed at the same time. Students can experiment with this effect in the program above.

Polling is an advanced technique and there are several subtleties for getting it to work correctly that are
handled by the “forever” command. A “forever” loop differs from a traditional loop in several ways.

Inside a “forever” loop, the speed of turtles is automatically set to Infinity to avoid animation delays. Also,
a “forever” loop will also automatically put a short delay between each repetition so that you can see the
effects of the repetition over time. You can change the framerate of the “forever” loop by adding an extra
number argument. For example, “forever 10” will do 10 frames per second.

3.9

forever 10, ->
 if pressed 'space'
 fd 1
 rt 1

The frequency of a forever block,
adjusted to 10 repetitions per second.

Combining Ideas

This unit on input and output covers a lot of powerful concepts, but the real power comes from finding
creative new ways to combine input and output. By combining graphics, text, and audio, students can
create applications such as calculators, games, conversational assistants, interactive drawing programs,
or musical instruments.

Each application may require a particular i/o model. The most common models are: event-based i/o,
blocking i/o, and polling. Sometimes the same application can be built in a different way using a different
i/o model so it is worth having students experiment with more than one model to learn how they work.

3.1.1 Suggested Timeline: 1 55-minute class period

Instructional Day Topic
1 Days Lesson Plan I: Text and Sound Blocks

1 Day Lesson Plan II: Use of Buttons and Click (e) controls to show input

1 Day Lesson Plan III- Demonstrate the use of the /img bot

2 Day Lesson Plan IV Lab Activity – choose between a shape bot or paint bot

3.1.2 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Describe how computation shares features with art and
music by translating human intention into an artifact.

Level 3 A
(Grades 9 – 12)

Computers and
Communication
Devices (CD)

Describe the principal components of computer
organization (e.g., input, output, processing, and storage).

Level 3 A
(Grades 9 – 12)

CD Compare various forms of input and output.

3.1.3 Lesson Plan I

This lesson focuses on using the Text, Sound and Control block palettes. Click on the Text, Sound and
Operators block to show students that input/output statement commands are located under these
palettes. Read and type the code as shown below and demonstrate the output to the students.

Note: Make sure you are in block mode. Type in the code (switch to block-mode if needed) and click the

play arrow to demonstrate the results.

Content details

Teaching
Suggestions

Time

Demonstrate write and say (Text & Sound block).

Write_Say
write 'Hi'
write 'Hello.'
write 'Can you say hello world?'

These are the output
statements.

Demonstration
10 minutes

3.10

Content details

Teaching
Suggestions

Time

say 'Hello World!'

Type in the code and
click the play arrow to
demonstrate the
results.

Displaying expressions

name = 'David Bau'
write 'Good to meet you ' + name

Output

Show how write can

show the value of a
variable or an
expression.

Demonstration
10 minutes

The question bot is a simple program that asks questions
and displays responses in an intelligent manner.

Code:
questionBot
short interview with await..defer

await read 'What is your name?', defer name
await read ('What is your favorite food, ' + name) + '?',
defer food
await read ("Sounds tasty. What's so good about " + food)
+ ', ' + name + '?', defer response
write 'Fair. I might just go try me some ' + food + 'now.

Nice chat!'

Output

Input Statements:
Demonstrate Await -

Read, using Question

Bot (Text Block)

Await waits till an input

is received. It then
stores the input to the
variable declared next
to defer.

Demonstration
15 minutes

Code:
Question Bot using numbers
write 'Hello. Can you tell me your name
please?'
await read 'Your name?', defer name
write 'Hi '+ name
await readnum 'Can you tell me your age, ' +
name, defer age
write 'Hi ' + (name + ('. I have noted your
age '+ age))

Demonstrate Await –

ReadNum using

Question Bot (Text

Block).
Output

Demonstration
15 minutes

Students can now work on their version of Question Bot.

Encourage students to
express their own
individuality and
creativity and
experiment with using
“Say” in places where
“Write” is used. What
happens?

Student Practice
15 minutes

Look at exercises Using the Art, Move,
Text and Sound block

Student Practice
15 minutes

3.11

 3.1.4 Lesson Plan II

This lesson discusses the use of Buttons: the use of button clicks as input.
Note: Make sure you are in block mode. Type in the code (switch to block-mode if needed) and click the
play arrow to demonstrate the results.

Content details Teaching Suggestions Time

Code

button 'Press to see a BullsEye', ->
 x = 18
 dot black, x * 5
 dot red, x * 4
 dot black, x * 3
 dot orange, x * 2

Demonstrate Button

(‘Click’)

The Button option lets the

user label the button and runs
the code that is within the
block.
Output

Demonstration
20 minutes

Code:

keydown 'a', ->
 x = 18
 dot black, x * 5
 dot red, x * 4
 dot black, x * 3
 dot orange, x * 2

Demonstrate Keydown
The Keydown waits for the ‘a

‘key pressed to execute the
code within the block.
Output:

Code:

click (e) ->
 moveto e.x, e.y
 x = 18
 dot black, x * 5
 dot red, x * 4
 dot black, x * 3
 dot orange, x * 2

Demonstrate Click
The click will wait for a mouse
click and then execute the
code within the block.
The e variable represents the

click event, so

moveto e.x, e.y

moves to the location of the
click.
Output

Finish the lab exercise that was started the
pervious class period..

 Student Practice:
Use the remainder of
class period and
homework if needed.

3.12

3.1.5 Lesson Plan III

This lesson plan introduces the Buttons and the Click (e) capability along with wear and img blocks which

display images from the internet. The wear and img blocks are available under the Art panel.

Note: Make sure you are in block mode. Type in the code (switch to block-mode if needed) and click the

play arrow to demonstrate the results.

Content details Teaching Suggestions Time
Code:

wear 't-pencil'
button 'Grow Smaller', ->
 jumpxy 30, 20
 grow 0.5
button 'Grow Larger', ->
 grow 2.0

Output

Demonstrate how the wear

block works. Open the ImgBot
program.

Point out the use of Button and

Click (e) from the previous

lesson plans.

Explain how wear and img work

(refer to key concepts if
necessary).
Substitute other values for
pencil and show the kinds of
images that result.

Encourage students to play
with the wear and grow blocks.

Demonstration:
20 minutes

Student activity:
25 minutes.

3.1.6 Lesson Plan IV

This lesson plan provides instructions for designing the Shape Bot. Students Design a simple program

that draws geometric shapes such as a square, triangle, circle, etc. The program first asks the user for a

shape. It asks from the user to provide details such the number of sides, length of sides, and the radius of

the circle, etc.

3.13

Content details Teaching Suggestions Time
Code:

speed 100
pen black, 10
button 'Triangle', ->
 await read 'How long are the
sides?', defer side
 cs()
 fd side
 rt 120
 fd side
 rt 120
 fd side
 rt 120
button 'Square', ->
 cs()
 await read 'How long are the
sides?', defer side
 fd side
 rt 90
 fd side
 rt 90
 fd side
 rt 90
 fd side
 rt 90
button 'Circle', ->
 cs()
 await read 'How long is the radius',
defer radius
 rt 360, radius
 fd 10

Give the lab program to the
students. Encourage them to
experiment and improve the
design of the program. After
students have worked on it pull
up the Shapes Bot program
and start walking the students
through the program.
Encourage students to come up
and demonstrate their work.
Output

Student activity
55 minutes.

Demonstration
20 minutes

Encourage students to explore and understand their inclinations and strengths in programming by giving
various assignments to accomplish the same purpose. For example, consider a simulation of paint
splatter drawn as a collection of colored dots. This can be called the Paint Splatter Bot.

3.2 Resources

Important Links:

http://gym.pencilcode.net

Book: book.pencilcode.net

4.1

Chapter 4: Loops

4.0.1 Objectives

Repetition is a fundamental programming tool. This chapter introduces three types of loops, which are the
basic code building blocks used to repeat actions in a program. At the end of this unit, students should be
able to reason about the number of repetitions and terminating conditions of a loop, and they should be
able to apply for, while, and forever loops in their programs.

4.0.2 Topic Outline

4.0 Chapter Introduction
4.0.1 Objectives
4.0.2 Topic Outlines
4.0.3 Key Terms
4.0.4 Key Concepts

4.1 Lesson Plans
4.1.1 Suggested Timeline
4.1.2 CSTA Standards
4.1.3 Lesson Plan I on using While and For Loop in the Control block
4.1.4 Lesson Plan II on using the ability to switch between text-mode and block-mode.
4.1.5 Lesson Plan III on using the ‘for… each’ loop
4.1.6 Lesson Plan IV on creation of the Question Bot and the idea of a spiral assignment.
4.1.7 Lesson Plan V on using a ‘Forever’ loop

4.2 Resources
4.2.1 Lab extension

4.0.3 Key Terms

Control statements: repetition and iteration Fixed and variable repetitive statements

Terminating condition Increments

Infinite loops For loop

While loop Start value or beginning condition

4.0.4 Key Concepts

Iteration allows a short program to represent a long series of steps by including repeated sequences.

A part of a program that repeats commands is called a loop.

Every loop has two parts:

● The condition that controls how many times to repeat the loop.
● The body, which is a block of code that is repeated as long as the loop is running.

A loop that never stops repeating is called an infinite loop. An infinite loop will prevent a program from
ever finishing, so usually a program with an infinite loop is not desirable. Within a browser, an infinite loop
will even prevent a program from ever responding to mouse clicks, so Pencil Code will try to detect and
interrupt programs with infinite loops.

4.2

To avoid an infinite loop, the condition that controls how many times the loop is repeated must written
correctly. There are two main ways to make a looping condition in CoffeeScript:

● for repeats a block of code one for each item in an iterated list, and
● while repeats a block of code as long as the loop condition remains true.

Using Loop Blocks

The loop structure is located under the Control palette in the block. There are three types of loop
structures available:

for loop: Loops over a set of program statements for a fixed number of times in fixed increments. The

following loop writes the word “Hello” three times.

while: Loops over a set of program statements as long as the evaluating condition returns true. The

actual number of iterations is not known until execution time.

It is possible that, due to a logical error, the loop may be set to iterate through the block of code an infinite
number of times. This is very common with beginning programmers. Pencil Code prevents this by
generating an error and halting program execution. Internally, Pencil Code keeps a timer when inside a
loop. If a program remains stuck inside the loop for several seconds without processing input, Pencil

Code assumes the loop is stuck and interrupts execution.

Please see below for an example:

4.3

Since count will never reach 4, Pencil Code generates an error after drawing the square.

The fixed code looks like this:

forever: An ordinary while loop that loops forever will cause the browser to hang, which means it

freezes up the page so the user is unable to interact with it. To repeat a process forever, a program can
use a forever block which implements a loop by pausing briefly after every iteration to allow the browser

to process input. This pause makes the forever loop different from the for and while loops above. The

forever loop can be used to repeat something indefinitely without freezing the entire browser. The

number after forever controls the length of the pause: it is the number of times to repeat every second.

Using for Loops in Text

If students have not yet experimented with writing programs in text, this section is an excellent time to
suggest that they try out text coding. The examples below will all be shown in text. Several of the ideas in
loops are more convenient to work with in text-mode than in block-mode. For example, it is easier to
switch a for loop into a while loop or add or remove an iterator variable in a for loop in text-mode than

in block-mode.

There are several kinds of for loops, but they all work in the same general way, this is, each kind of for

loop repeats code once for each item in an iterated list. It is easiest to switch between these forms of the
for loop in text-mode.

4.4

for [1..3]
 write 'hello'

for x in [0...3]
 write 'hello', x

for x in ['alice', 'bob', 'carol']
 write 'hello', x

hello
hello
hello

hello 0
hello 1
hello 2

hello alice
hello bob
hello carol

All of these loops repeat their bodies three times because each of them iterates over a list with three
elements. The loops that use a variable “for x in” assign successive values for x each time around the

loop, and the loop body can use that variable to create slightly different output each time.

Here is some information about list notation. (Chapter 8 discusses arrays in greater detail.) A CoffeeScript
range array is enclosed in brackets, and [1..3] with two dots between integers indicating that the list of

integers starts at 1 and ends at (and including) 3.

To indicate a list that does not include the last item, use three dots [0...3]. This three-dot form is

particularly useful because (unlike the two-dot form) it can express an empty array such as [3...3] (a

list with no items). An array can also be written explicitly by separating elements using commas or by
writing each element on its own line.

Loops using for terminate automatically when they get to the end of their list, so it is more difficult to

make the mistake of creating an infinite loop using a CoffeeScript for. The only way to do so is to create

an infinite list to iterate!

Using while loops

A loop made with while checks a loop condition. If the loop condition is true, the loop runs the code in the

body of the loop then repeats the process, doing another check of the loop condition at the start of each
repetition. Since the loop condition must be false for the loop to terminate, it is very easy to mistakenly
create an infinite loop by writing a condition that never becomes false.

j = 0
while j < 3
 j += 1
 write 'checking', j
write 'finished'

roll = -1
while roll isnt 1
 roll = random(6)
 wrote 'got', j
write 'finished'

countdown = 3.5
while countdown isnt 0
 countdown -= 1
 write countdown
write 'finished'

checking 1
checking 2
checking 3
finished

got 4
got 0
got 5
got 5
got 1
finished

2.5
1.5
0.5
-0.5
-1.5
…. (an infinite list of numbers)
Oops!

The first two examples terminate, and the third is an example of a buggy program with an infinite loop. In
all these cases, the programmer has included three things in the looping program:

● A clear starting state (for example, j = 0, flip = -1, or countdown = 3.5).
● A loop condition that indicates that the loop should continue repeating. In the programs above,

the loop condition repeats the loop when j < 3, flip isnt 1, or j isnt 0.
● A state change that eventually leads to the loop condition becoming false. In the programs

above, the programs change j, flip, and countdown.

4.5

All these programs proceed using variable assignments that involve single-equals-assignment
operators.

● An assignment such as j += 1 increases the value of j by one.
● An assignment such as roll = -1 or roll = random(6) replaces the value of the variable roll.
● An assignment such as countdown -= 1 decreases the value of countdown by one. Notice that

the minus before the equals sign means “subtract from this variable and set the value.” It is
equivalent to countdown = countdown – 1.

In these programs, the successive variable assignments change the variables involved in the loop

condition. In the first two programs, the assignments eventually lead to the loop condition being false.

However, in the third program, the assignments decrease a non-integer countdown by one and they

never hit exactly zero, so the loop condition never becomes false. You could fix this loop by changing the

loop condition, the starting state, or the decrease amount.

Choosing Between Text-Mode and Block-Mode

In Pencil Code, block code and text code are perfectly equivalent (anything that can be done in one
representation of the code can be done in the other) and you can switch between the two modes at any
time. The choice between working in text or blocks is a matter of personal productivity.

Blocks are particularly helpful for those who are new to a language. Blocks facilitate the use of correct
syntax and help programmers recognize patterns of allowable code. However, using blocks makes it
difficult to find choices that are not provided on the palette.

Programming text lets programmers enter a program as fast as they can type. They are not limited by the
choices on a palette. Programming in text, however, requires the programmer to remember and follow the
syntax rules and it is very easy to create text programs that do not run due to syntax errors.

Although block languages have been improving, professional programmers still write their programs using
text because one they are familiar with the programming language, they can work more quickly with text
than with blocks.

Finding and Fixing Syntax Errors

Writing text programs is a skill that takes some time to develop. There are two strategies for learning
syntax:

1. Observe and copy examples of correct syntax. In Pencil Code, block is useful for this. If students
do not recall how a specific syntax works, they can always flip to block to try out something, and
then switch back to text once they are confident.

2. Pay attention to syntax errors reported by the computer and fix them right away, before too many
syntax errors are created. In Pencil Code, syntax errors are highlighted in text mode with an “x” to
the left of the code, like this:

The red “x” will sometimes appear when there is an unfinished line of code. However, if the line of code is
finished, students should pay attention to the red “x” and try to fix it right away. It is much easier to fix a
single syntax error in a program than fixing a program with many syntax errors.

This code snippet is an example of “mismatched quotes”. Block mode automatically corrects bare
apostrophes by prefixing them with “\” to tell Pencil Code that to include an apostrophe and not to end the
string. In text mode, the programmer needs to type this backslash before the apostrophe explicitly.

4.6

Because, by definition, a syntax error is a part of the program that the computer does not understand, the
computer sometimes puts the “x” in the wrong place. The error in the program might not be spotted until
more lines of code are added. The error may be on a line above the “x” and it might have been caused by
a problem other than the one the computer indicates.

Common Syntax Errors

Here are some examples of common syntax errors in CoffeeScript. One way to learn the syntax of a
programming language is to do a bit of practice fixing examples of syntax errors like this.

Explanation Example with an error Fixed example

Mismatched
quotes

write('can't get this to work') write('can\'t get this to work')

Using word-
processor-style
“smart quotes”

write(‘quotes must be straight’) write('quotes must be straight')

Mismatched
parentheses

write(1+(2*(x - 1)) write(1+(2*(x - 1)))

Missing comma
between
arguments

moveto 100 200
 ^

moveto 100, 200

Misaligned
indenting creating
incorrect scoping

if pressed('X')
 fd 100
 rt 90
 ^^^^

if pressed('X')
 fd 100
 rt 90

Mixing up
different brackets

for x in (1..10)
 write x

for x in [1..10]
 write x

Programming language syntax is very sensitive to punctuation and, in some cases, spacing. People are

usually good at spotting a missing word or a misspelling but it takes practice to pay attention to the

punctuation and spaces in a program.

Common Runtime Errors

Here are examples of the most common runtime errors. A program that uses the language syntax

correctly may still have runtime errors by referring to a name, variable, or function that has not been

defined by the time it is run.

Explanation Example with an error Fixed example

Missing quotes write hello write 'hello'

Variable used
before definition

write x * 7
x = 10

x = 10
write x * 7

Misspelled
function name

wrte 'hello' write 'hello'

4.7

4.1.1 Suggested Timeline: 1 55-minute class period

Instructional
Day

Topic

2 Days Lesson Plan I: For Loops and descending for loops. Practice with for loops
1 Day Lesson Plan II: Question Bot
1 Day Lesson Plan III & IV: While loops and forever loops. Practice with while

loops
1 Day Lesson Plan V: Tracing a loop with values

4.1.2 Standards

CSTA Standards CSTA Strand Learning Objectives Covered
Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Explain how sequencing, selection, iteration and
recursion are building blocks of algorithms.

Level 3 A
(Grades 9 – 12)

Computing Practice
& Programming
(CPP)

Use Application Program Interfaces (APIs) and libraries
to facilitate programming solutions.

4.1.3 Lesson Plan I

This lesson introduces the ‘For Loop’ using CoffeeScript. It includes both the ascending and descending
variants.
Note: Make sure you are in block mode. Type in the code (switch to block-mode if needed) and click the
play arrow to demonstrate the results.

Content details Teaching Suggestions Time
Dandelion: Code

speed 20
pen green
rt 10
fd 200
pen yellow, 10
for x in [1..9]
 fd 50
 bk 50
 rt 360 / 9

 Gold Star

 Loop 360

Demonstrate for and while loop (Control panel).
Type the code as shown and click play to
generate the dandelion.
Point to the students how x takes values from 1
to 9 to draw 9 petals.
Explain that rt moves the turtle by an angle for

every iteration. Give students a chance to try
this out.
Output

You could also have the students experiment
with Gold Star and Loop 360 as they are good
examples for reinforcing the same concept. Click
on the link below for the source code for these
two examples.
http://guide.pencilcode.net/edit/loops/

Demonstration:
20 minutes

Student Practice:

4.8

Content details Teaching Suggestions Time

30 minutes

Spiral: Code

pen purple, 10
for x in [50...1]by -1
 rt 30, x

Output

Once students understand the for loop
ascending, introduce the for loop variant for
descending loops. The loop decreases from
maximum value to minimum value in regular
negative intervals. For example:

for x in [50..1] by -1

Explain how the angle of 50 is decremented by 1
for every iteration of the loop.
Click on the link below for the source code for
this example.
http://teachersguide.pencilcode.net/edit/chapter
4/spiral

Demonstration:
10 minutes

4.1.4 Lesson Plan II

Pencil Code allows programmers to move easily between block- mode and text-mode. This lesson
introduces programming using text-mode.

Content details Teaching Suggestions Time
Code:

for x in [0...3]
 write 'hello', x

Output:
hello 0
hello 1
hello 2

While in the Pencil Code
environment, switch from block-
mode to text-mode. Type the
program as shown in the left-most
column.

Show students the three dots in the
loop and explain that the variable x
takes on the values 0, 1, 2 and 3
and for each value of x, the word

“hello” is printed and the value of x

is displayed.

Demonstration:
20 minutes

Student
practice:
80 minutes

Iteration # Value of x write x

1 0 0

2 1 1

3 2 2

Introduce the concept of tracing
variables.
Have students draw a table and
trace the values x takes as shown

in the left column.

4.9

Content details Teaching Suggestions Time
Code:

count = 1
for x in [1..5]
 type count + ': ' x
 count += 1

Output:

Iteration

Value of x type
count

Count +1

1 1 1 2

2 2 2 3

3 3 3 4

4 4 4 5

5 5 5 6

Demonstrate a simple math
operation such as

count = count + 1

then type the code as shown.

Ask students to trace the code. The
tracing values are also shown in
the left-most column.

Once the students have worked on
it show the solution given here.

As a way of giving students additional practice, provide the following for loops problems and ask them
to trace the values.

for x in [0..5]
 type count + ': ' x
 count += 1

for x in [5..1]
 type count + ': ' x
 count += 1
for x in [0..0]
 type count + ': ' x
 count += 1

4.1.4 Lesson Plan III

This lesson introduces different for loop that iterates over a collection of data.

Content details Teaching Suggestions Time
Code

for color in [red, orange,
yellow]
 dot color, 100
 fd 30

Output

Demonstrate this program while explaining
to that this is a different kind of loop.

The variable ‘color’ goes through the

collection of colors and executes the ‘dot’
command with that value of color.

The execution of the code traces how ‘dot’
command takes various values.

Encourage students to use variations of this
loop to produce interesting output.

Demonstration:
15 minutes
Student Practice:
20 minutes

4.10

4.1.5 Lesson Plan IV

This lesson introduces the first large programming assignment and the idea of iterating on a program over
time, in this case the Question Bot program.

Teaching Suggestions Time
Spiral Assignment:
Ask students to use the Question Bot program they created in the previous chapter.

Give the students a chance to explore and experiment. Put them in groups and
challenge them to develop the most creative Question Bot they can.
If they choose to add constructs that have not been covered, allow them to do this but
adjust the time accordingly and be quick to move on to the next topic when your class is
ready.

Student practice:
55 minutes

4.1.6 Lesson Plan V:

This lesson introduces the While Loop

Content details Teaching Suggestions Time
Spiral using While Loop
Code
pen purple, 10
x = 50
while x > 0
 rt 30, x
 x = x-1

Output

While Loops:
Type the code as shown for creating a
while loop.
Explain that a while loop is written
differently than a ‘for loop’ but it produces
the same output. This helps students
understand that there are more than one
solution to a problem.

Here is another example of while loop
that uses input statements in the code
and solves a problem that cannot be
solved with a ‘for loop’. The program
waits for an input from the user to
determine if the code within the loop
should be executed one more time.

Demonstration:
25 minutes

Students Practice:
All students to us
the remainder of
the class period
and the entire next
class period.

Note: Gauge how
well the students
have understood
the content. If
feasible, have
them also
complete lesson
plan VI.

4.1.7 Lesson Plan VI

This lesson introduces the ‘Forever’ loop[MU1].

Content details Teaching Suggestions Time
Code

forever 1, ->
 dot (random color), random
100
 moveto (random position),
random position

Forever (x) loop:
Demonstrate the use of this loop using this
code. (Confetti)
Output

Ask students for ideas on where it would
be appropriate to use the forever loop.

Demonstration:
20 minutes

Students Practice:
Allow the
remainder of the
class period and
the next full class
period.

4.11

4.2 Resources

Book: book.pencilcode.net

5.5

Chapter 5: Functions

5.0.0 Objectives

Functions are the most important concept in programming because they allow programmers to break
down programs into smaller subprograms. Yet functions have another important purpose: they allow
programmers to set off code to be run later, and then control when precisely when that code runs.

Students may not see the value in creating subprograms at first, since their programs are small.
Therefore, we suggest starting with a focus on the use of functions to control “when code runs” by
beginning with functions attached to buttons.

Named functions, function calls, and functions with parameters can be introduced next as a powerful way
to generalize the idea. At the end students should learn to apply the “DRY” principle, using functions to
abstract common sequences of code by creating their own commands.

5.0.1 Topic Outline

5.0 Chapter Introduction
5.0.1 Objectives
5.0.2 Topic Outlines
5.0.3 Key Terms
5.0.4 Key Concepts

5.1 Lesson Plans
5.1.1 Suggested Timeline
5.1.2 CSTA Standards
5.1.3 Teaching notes
5.1.4 Lesson Plan I on calling functions using buttons.
5.1.5 Lesson Plan II on creating functions using buttons
5.1.6 Lesson Plan III on re-using function code.
5.1.7 Lesson Plan IV on passing parameters in functions.

5.0.2 Key Terms

Parameters Variable

Abstraction Program execution

Modularity Arguments

Reusability Event handlers

DRY: Don’t Repeat Yourself Callbacks

5.0.3 Key Concepts

What Are Functions?

A function is a program within a program. Functions allow programmers to divide up code, just like
authors use paragraphs to divide up an essay. Mathematicians also use functions to divide up formulas
into simple rules for calculating values. In computer science, however, functions are used for more than
just dividing a program into formulas:

1. Functions allow reuse of code. Once a function is defined, its code can be used many places in
a program without writing the individual lines of code again.

2. Functions control when and how code runs. When code is put in a function, it is not run right
away, but later, when and if the function is called.

5.5

The key is for understanding functions in computer code is to understand that code defined in a function
does not execute immediately. Code within a function runs when the program executes a function call.
This means that functions can be used to reuse the same code multiple times, and they can be used to
defer execution of code to some future time.

How Are Functions Written?

In CoffeeScript, a function call is written by putting arguments after a function name, in one of two ways:

fd 100 Use a space after the function name fd to

call it, passing it the argument 100

fd(100)

Use parentheses and no space fd to call it

with arguments in parentheses.

A function call may have no arguments, but then it requires parentheses, such as hide(). We have

previously used many calls to built-in functions like fd and hide, but custom programmer-defined

functions are called in exactly the same way.

In CoffeeScript, a function definition begins with an arrow -> (typed as two characters, minus-angle)

pointing from parameters to the body of the function. We may put the body of the function on a series of
lines after the arrow if the lines are indented.

(x) -> x * x An unnamed function that takes any value x and
returns x * x.

sq = (x) ->
 return x * x

The same function, this time named “sq”, and

typed differently using indenting and “return”.

exclaim = ->
 write 'hey!'
 write 'yo!'

A function named “exclaim” that has no

parameters and writes two messages to the
screen.

How Can a Function Compute the Answer to a Question?

Functions are used by combining function definitions with function calls. A function can compute the
answer to a question in CoffeeScript like this:

1 sq = (x) -> x * x
2 write "My favorite square numbers"
3 write sq(8)
4 write sq(3)

The function sq calculates the square of a number

and is used twice in this program.

Line 1 has a function definition, defining sq as the function (x) -> x * x. This function has one input

parameter listed in parentheses (x) before the arrow. After the arrow ->, the body of the function

calculates x * x.

The body of the function is a piece of code that is not run right away! It makes sense that it does not run
yet, because the program does not yet know what value to use for x. The parameter x is a kind of
variable: its value varies depending on the situation, and we will not know what value to use for x until
later when there is a function call.

5.5

On line 3, sq(8) is the function call. The number 8 is the function argument. This is the specific value to

be assigned to the parameter (x). When running line 3, the program immediately executes the sq

function by jumping up to the body of the function sq on line 1, setting x temporarily to 8, and then

computing x*x, which is 64. When this is done, it returns 64 back to line 3, and the number 64 is written.

The program then proceeds to line 4, which calls sq again. This time x is assigned to 3, and x * x is

returned as 9.

The flow of this kind of program may seem simple, but functions are so fundamental that it is important to
thoroughly understand the sequencing of function calls and return.

Notice that the each time sq is called, x can have a different value. We say that x has a different meaning

for every invocation of the function. Because of this, x is called a local variable - it has no meaning

outside the invocation of the function.

How Can Functions Control When Code Is Run?

A function is an object that can be called any time (whenever needed). For example:

myfunc = -> write 'ouch!'
button 'click me', myfunc

The function myfunc does not run immediately,

but only when the button is pressed.

Here myfunc is the function -> write 'ouch!' that requires no arguments, and that writes a message

each time it is called. Notice that, as usual, the function is not run when it is defined: no “ouch!” is written
to the screen when the program is first run. But whenever we click the button, the function is called and
we see “ouch!”

In this example, we have not written the function call! Instead, the built-in function button sets up its own

function call to be done whenever the button is clicked. A function that is given for the purpose of getting
a call back is called a callback function, and since our callback is called whenever an event occurs, it is
sometimes also called an event handler.

In CoffeeScript, we can make a function without ever naming it - an anonymous function:

button 'click me', -> write 'ouch'
write 'ready?'

Functions containing code to run later can be created

even without ever giving them a name.

Here, again, the function -> write 'ouch!' is passed as the second argument to the button function.

However, unlike the previous example, we have not given a name to the function -> write 'ouch!'.

We just define it inline where we need to pass it to button. Although anonymous functions sound

mysterious, they are commonly used for creating event handlers.

When anonymous event handlers are indented and passed directly as callbacks, the code makes it clear
that the function body is the code to run whenever a specific event occurs.

button 'go forward', ->
 fd 100
 dot red
button 'go backward', ->
 bk 100
 dot blue

Event handlers (from Chapter 3) are functions.

5.5

It is worth considering why commas are needed in the code above: the arrow and two indented lines of
code after each comma form an anonymous function that is passed as the second argument to button.

Although this code is simple to write, it contains several very important concepts, and we suggest that
students experiment with writing the code for event handlers in different ways using named functions and
anonymous functions.

When Would a Programmer Define a Function?

Functions are useful whenever we have code that we want to reuse in several places in a program or
(the same idea looked at in another way) whenever we have code whose execution we want to defer to
some future call.

One principle that guides the use of functions in these situations is called DRY: “Don’t Repeat Yourself.” If
you find that you are writing similar code in two or more different places in your program, you should
define a function whose body contains that code exactly once; and then use function calls to reuse that
same function in different places.

To aid in DRY, programmers routinely call functions from within the body of other functions and they
usually define functions with several parameters to allow their functionality to be customized to fit different
situations. Advanced programmers often customize functions by calling other functions passed as
parameters - that is how callbacks are created. If done carefully, functions can even be called from within
themselves - that is called recursion. (Chapter 10)

Because they make it possible to organize and arrange the code of a program in both simple and
complicated situations, functions are the most powerful and fundamental concept in programming.

5.1.1 Suggested Time-line: 1 55-minute class period

Instructional Day Topic
2 Days Lesson Plan I & II: Use of buttons to explain the purpose of functions.

1 Day Lesson Plan III: Teach how functions help with reusability of code.

1 Day Lesson Plan IV: Teach parameter passing in functions.

5.1.2 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Use predefined functions and parameters, classes and
methods to divide a complex problem into simpler parts.

Level 3 A
(Grades 9 – 12)

Computing Practice
& Programming
(CPP)

Apply analysis, design, and implementation techniques to
solve problems.

Level 3 A
(Grades 9 – 12)

CPP Use Application Program Interfaces (APIs) and libraries to
facilitate programming solutions.

Level 3 B
(Grades 9 – 12)

CT Decompose a problem by defining new functions and
classes.

Level 3 B
(Grades 9 – 12)

CPP Use tools of abstraction to decompose a large-scale
computational problem (e.g. procedural abstraction,
object-oriented design, functional design).

Level 3 B
(Grades 9 – 12)

CT Discuss the value of abstraction to manage problem
complexity.

5.5

5.1.3 Teaching Notes:

This is the first topic that will bring significant programming challenges to the beginning programming
student. In many languages, when a student tries to break into modules of reusable code, parameter
passing, returning the correct values with appropriate data types and calling the modules result in compile
errors. Students will resist modularity so as to avoid compile errors Pencil code in block-mode will help
avoid some of the errors.

5.1.4 Lesson Plan I

This lesson demonstrates that functions must to be called to be executed.

Content details Teaching Suggestions Time
Code:

pen red
button 'right', ->
 rt 90
button 'left', ->
 lt 90
button 'forward', ->
 fd 25

In this lesson, the buttons call the
functions. Every button press is a
function being called.

Demonstrate the press of a
button to the students. Show the
code for every button press.

Provide this link:
http://teachersguide.pencilcode.n
et/edit/functions/remotecontrol for
the students to play with the
buttons and to enable them to
create patterns.

Output

Demonstration:
15 minutes

Student
Practice:
20 minutes

5.5

5.1.5 Lesson Plan II
This lesson introduces the idea of functions by creating buttons to call functions.

Content details Teaching Suggestions Time
Code for the Circle button

speed 100
pen black, 10
pen black, 10
Asks user for radius and color
for a circle
button 'Circle', ->
 await read 'Radius of circle',
defer radius
 await read 'Color of circle',
defer color
 circle(radius, color)
Asks user for sides and color in
a polygon
button 'Polygon', ->
 await read 'Number of sides',
defer sides
 await read 'length of each
side', defer length
 await read 'Color of polygon',
defer color
 polygon(sides, length, color)
circle = (radius, color) ->
 rt 360, 50
 fd radius
 fill color
draws a polygon. Asks user for #
of sides, length
polygon = (sides, length, color) -
>
 pen color, 10
 for [1..sides]
 fd length
 rt 360/sides
 fill color

Pull up the Shapes Bot program.
http://teachersguide.pencilcode.net/
edit/functions/ShapeBot

Demonstrate the action of the
buttons by clicking on the Circle
and Polygon button.

Next, show the code to the
students. Explain that under the
Circle button is the code that draws
the circle to the specifications
created. Also show the main
program from which the circle and
polygon functions are called.
(Screenshots on the left column are
for circle.)

Encourage students to improve the
program by adding their own
shapes (Triangle, Star, etc.).

Teaching Tip: For now do not focus
on the parameters being passed.
Just ask to students to accept it as
is. We will address it in a lesson
plan later.

Output for the Circle Button:

Demonstration:
20 minutes

Student
Practice:
Until the end of
class.

Add to the
program
additional code
to draw shapes
and buttons.

5.5

5.1.6 Lesson Plan III

This lesson introduces the use of various palates and blocks to create reusable code snippets.

Content details Teaching Suggestions Time
Code:

tee = ->
fd 50
rt 90
bk 25
fd 50
pen green
tee()
pen gold
tee()
pen black
tee()

Introduce the idea that a function can
be called several times to create
something unique or to solve a
problem.
Type the code and demonstrate that a
function can be called repeatedly.
Note: The Tee program code can be
found at book.pencilcode.net
Output:

Demonstration:
20 minutes.

Code
Step I

#Function to draw generic black
background
background = () ->
 dot midnightblue, 1500

Introduce the idea that one small
function can be written and another
program can call it.

Step I: Write the program to draw the
background: background ()

Demonstration
Time:
30 minutes
(all steps
included)

Step II

#Function to draw small
white star
star = (x) ->
 pen white
 for [1..5]
 fd x
 rt 144

Step II: Write the program to draw the
star: Star().

5.5

Content details Teaching Suggestions Time
Code: Step III

#function to call all the other
functions
main = () ->
 background()
 speed Infinity
 star()

Step III: Write a main program that calls
both of these programs: main().

Code: Step IV
Blue Sky, 1 Star

main()

Step IV: Call main ()
Explain to students that main () does
not know how the star is created.
The code for the program can be found
here:
http://teachersguide.pencilcode.net./edit
/chapter5/starsInTheSky_I

Black Sky, 25 stars

main()

#Function to draw small white
star
star = () ->
 pen white
 for [1..5]
 fd 200
 rt 144

#Function to draw generic black
background
background = () ->
 dot black, 1500
#main function
main = () ->
 ht()
 background()
 speed Infinity
 #Draw 100 stars
 for [1..25]
 randomX = (random [-
400..400])
 randomY = (random [-
400..400])
 jumpto randomX, randomY
 star()
run everything

Explain and demonstrate to students
that star () can be used in different
programs.
Code the program and show students
how the star () and background ()
functions are reused.
http://teachersguide.pencilcode.net./edit
/Chapter5/StarsInTheSkyII

Demonstration:
15 minutes

5.5

Content details Teaching Suggestions Time
Code

#function to draw a moon
moon = () ->
 jumpxy 273, 276
 dot white, 100
#Function to draw generic black
background
background = () ->
 dot black, 1500

#Function to draw small white star
star = () ->
 pen white
 for [1..5]
 fd 200
 rt 144

#main function
main = () ->
 ht()
 background()
 moon()
 speed Infinity
 for [1..50]
 randomY = (random [-
400..400])
 randomX = (random [-
400..400])
 jumpto randomX, randomY
 star()

run everything
main()

Demonstrate that it is now easy to add
newer functionality to the program (for
example adding a moon).

Copy the code shown on the left
column to demonstrate modularity.

Explain that if the star or the moon does
not display correctly, it is easier to find
the bug in the program because the
functionality (behavior) is isolated within
the function.

Demonstrate this by modifying the
position of the moon (jumpxy – values).

Or, modify the fd- value in the star
function. Change it to something very
small such as 6 (code and output
shown).

Note: The main () function remains the
same. (Not shown)
View the code for the program here:
http://teachersguide.pencilcode.net./edit
/Chapter5/StarsInTheSkyIII

Output: Black Sky, 1 Moon, 100 Stars

Demonstration:
15 minutes

Student
Practice:
45 minutes

5.5

5.1.7 Lesson Plan IV

This lesson explores functions with parameters. Programmers design functions with more variables to
make their programs reusable for various applications. The values for the variables are obtained from the
user and passed to the function as parameters.

Ex. Circle (radius, color) – radius

Content Details Teaching Suggestions Time
Code

moon = (x,y,size,color) ->
 jumpto x, y
 dot color, size
moon(230,230,100,blue)

#Function to draw small white
star
star = (x) ->
 pen white
 for [1..5]
 fd x
 rt 144

#Function to draw generic blue
background
background = () ->
 dot midnightblue, 1500

#function to call all the other
functions
main = () ->
 background()
 speed Infinity
 star(15)

main()

Pull up the moon example. Ask the
students how they would change the
size of the moon. The moon program
(see code) can now take parameters on
the size and position. And depending on
what the values are the position and size
of the moon on the sky will be different.
Explain to that in moon (230,230…), x
will take value 230 and y will take value
230.

Teaching suggestion. Ask students to
pull up the star program and add
parameters (code shown). You can also
can code along with the students and on
your screen.

Demonstration:
30 minutes

Iterative Development Cycle:
Students need a great deal of practice writing programs with functions. Train them to write small chunks
of code and test it, and then add small changes and test again, repeating this process until the program
behaves as desired. The Pencil Code environment provides the output grid which gives instant
feedback. Student Practice:120 minutes

6.1

 Chapter 6: Conditional Statements

6.0.1 Objectives

Students typically find conditional statements (also known as selection, or decision statements) easy to
understand when compared to other constructs. The main area of confusion involved with conditionals
occurs when students begin using Boolean combinations: for example, the word “and” as it Is used
casually in English can have a different for the formal word “and” in Boolean logic. At the end of this unit,
students should be able to apply conditionals, creating Boolean expressions with comparisons, and they
should be able to reason correctly about the use of the Boolean operators “and” “or” and “not.”

6.0.2 Topic Outline

6.0 Chapter Introduction
6.0.1 Objectives
6.0.2 Topic Outlines
6.0.3 Key Terms
6.0.4 Key Concepts

6.1 Lesson Plans
6.1.1 Suggested Timeline
6.1.2 CSTA Standards
6.1.3 Lesson Plan I on using the control block- If, If… Else.
6.1.4 Lesson Plan II on re-visiting the spiral assignment on the Question Bot.
6.1.5 Lesson Plan III on using Boolean expressions.
6.1.6 Lesson Plan IV to designing a hi-lo game and the race car game.

6.2 Resources
6.2.1 Additional exercises.

 6.0.3 Key Terms

Boolean Values: true / false If then else, If then else if else

Simple & Complex expressions match functionality

AND / OR – Operators

is (comparison), isnt, < ,>

Numerical comparisons

String comparisons

6.0.4 Key Concepts

Controlling Code Using Conditions

The word if can be used to put a block of code under the control of a condition, so it only runs when the

condition is true.

Below is an example that uses if to control turtle motion by testing keyboard presses.

The indented code fd 2 only runs when the condition pressed('W') is true, that is, when the user is

pressing the W key. Similarly, the two lines of code rt 2; dot blue, 5 only run when the user is

pressing the D key.

If neither key is pressed, neither block of indented code is run. If both keys are pressed, both blocks are
run.

6.2

forever ->

 if pressed('W')

 fd 2

 if pressed('D')

 rt 2

 dot blue, 5

Testing key presses using if.

Using “else” For the Other Alternative

The “else” keyword allows you to program a second action to take when the “if” does not happen. The
second block of code will run when the condition is false.

forever ->

 if pressed('W')

 fd 2

 else

 rt 2

Providing two alternatives using if/else.

This program moves the turtle forward when W is pressed. When W is not pressed, it spins the turtle.

Chaining “else if” for Multiple Alternatives

When there are three or more actions, if and else can be chained.

forever ->

 if pressed('W')

 fd 2

 else if pressed('S')

 bk 2

 else

 rt 2

Chaining if, else if, and else for three alternatives.

This code moves forward if W is pressed and backward if S is pressed. It spins right if nothing is pressed.
A chained if/else only chooses the first condition that is true, so if both W and S are pressed at the same
time, this program will just do “fd 2” and not move backward.

Using “and”, “or” and “not” to Combine Boolean Expressions

The words and, or, and not are Boolean operators that can be used to combine conditions. For

example, the following program uses “and” and “not”. It draws a blue ring and then only moves the turtle
forward if W is pressed and the turtle is not already touching the blue ring.

6.3

dot blue, 500

dot white, 400

forever ->

 if pressed('W') and not touches('blue')

 fd 2

 else

 rt 2

Combining tests using and and not.

Although Boolean operators usually work in the same way as when reading them as English words, it is
important to understand exactly how they work as mathematical operators because it is easy to get
unexpected effects.

Confusing “and” With “or”

Consider a program that where “up” and “W” keys need to work equivalently, both working in the same
way to move the turtle forward. We might be tempted to use the “and” combiner to capture both cases
with a single “if” like this:

WRONG:

forever ->

 if pressed('up') and pressed('W')

 fd 2

Incorrectly using “and” to combine two alternatives.

This code, however, will not generate the desired effect! To understand why, we need to understand how
and and or operate on truth values.

Boolean Values and Boolean Tables

The words and, or and not are Boolean operations that combine “true” and “false” values (similar to the

arithmetic rules you get when using “+”, “*” to combine regular numbers). Just as we can learn about
addition and multiplication by creating addition and multiplication tables, we can understand and and or
by writing truth tables. Here are two truth tables related to the program above:

pressed('up') and pressed('W') pressed 'up' = false pressed 'up' = true

pressed 'W' = false false false

pressed 'W' = true false true

pressed('up') or pressed('W') pressed 'up' = false pressed 'up' = true

pressed 'W' = false false true

pressed 'W' = true true true

6.4

The conjunction and combines two Boolean values and creates “true” only when both of the values are

true. For example, pressed('up') and pressed('W') is true only when both the up and W keys are

pressed at the same time.

The disjunction or combines two Boolean values and creates “true” when either or both of the values are

true. For example, pressed('up') or pressed('W') is true when just the W key is pressed, or just the

up key is pressed, or both. This is what we want for our program.

To fix the program, the and should be switched to or.

Testing Numbers Using Comparison Operators

Boolean expressions can be used to test the properties of numbers. Most of the comparison operators
you would see in math class work in a programming language, but they may be written with slightly
different punctuation. For example, “is less than or equal to” is written <=. Here is a summary of some

common Boolean tests for numbers:

Expression Description What if x =
0?

What if x =
3?

What if x =
6?

x is 3 x is equal to 3 false true false

x isnt 3 x is not equal to 3 true false true

x < 3 x is less than 3. true false false

x <= 3 x is less than or equal to 3 true true false

x > 3 x is greater than 3 false false true

x >= 3 x is greater than or equal to 3 false true true

0 < x <= 6 x is greater than 0 and less than or equal to 6 false true true

x % 2 is 1 x is odd (because it has remainder 1 when
divided by 2)

false true false

x % 3 is 0 x is divisible by 3 false true true

Confusing “or” with Comparisons

Numerical comparisons can be combined with Boolean operators. For example, (x > 6 and x isnt 9)

means that x is a number greater than 6 other than 9, and (x is 5 or x is 11) means that x is either

5 or 11. It is important, though, to remember that the word “or” operates on truth values and not on

numbers, so the version of the program on the left does not do produce the desired result.

WRONG:

await readnum 'How many items?', defer n

if n is 1 or 2

 write 'Come to the speedy checkout.'

RIGHT:

await readnum 'How many items?', defer n

if n is 1 or n is 2

 write 'Come to the speedy checkout.'

The program on the left incorrectly results in the speedy checkout line no matter what number you enter.

6.5

To understand why, remember that or operates on truth values, so when you say “or 2”, it begins with

the question “is 2 true or false?” By convention, any number that is not zero is treated as “true”, so “or 2”

makes the expression always true regardless of the value of num. On the other hand, the program on the
right produced the desired result: “or n is 2” only makes the expression true when the number is 2.

Another way to think about the difference is with precedence of operators. The word “or” has lower

precedence than the word “is”, so the expression on the left reads like this: ((n is 1) or 2) and the

expression on the right reads like this: ((n is 1) or (n is 2)).

Testing Strings Using Pattern Matching

Text strings can also be tested to create Boolean values. It is common to test strings by comparing them
exactly (looking at their length) or by testing if the string matches a pattern using the “match” method.
Pattern matching can be used to determine if a string contains a particular pattern of letters within it.

The following table shows several examples.

Expression Description "appear" "pear" "peachy"

x is "pear" x is exactly equal to the string "pear" false true false

x.length is 6 x has exactly 6 characters true false true

x.match(/pp/) x contains the substring “pp”. true false false

x.match(/pea/) x contains the substring “pea” true true true

x.match(/PEA/) x contains the substring “PEA” false false false

x.match(/Pea/i) x contains the substring “Pea”, ignoring case true true true

x.match(/^pea/) x contains “pea” at the start of the string false true true

x.match(/ear$/) x contains “ear” at the end of the string true true false

x.match(/a(p|ch)/) x contains “a” followed by either “p” or “ch” true false true

x.match(/ap*e/) x contains “a”, then zero or more “p”, then “e” true false false

The patterns used between the “/” symbols are called regular expressions.

A regular expression can be used to test whether a string contains a fixed pattern, for example whether it
contains the letters “pp”. Normally regular expressions are case-sensitive, so “PEA” does not match
“pea”, but putting an “i” after the regular expression makes it case-insensitive.

Regular expression patterns have several powerful features. For example, in a regular expression, “^”
matches the beginning of the string, “$” matches the end of the string, “(one|other)” is used to match
alternatives, and “*” allows a sub-pattern to be repeated zero or more times.

Although the types of patterns shown above are enough for most situations, regular expressions have
several more features. There are many excellent resources about regular expressions on the Internet if
you search for “regular expression lessons”. When exploring, it is important to know that the symbols
used in regular expression patterns are standardized, and the same pattern language is used in
JavaScript, CoffeeScript, Python, Perl, Java, C# and other languages.

6.6

6.1.1 Suggested Timeline: 1 55-minute class period

Instructional Day Topic
2 Days Lesson Plan I: If, If Then Else statements using fun visual elements

1 Day Lesson Plan II: Question Bot & Lesson Plan III Complex If Statements

1 Day Lesson Plan IV: Pair programming for the HiLo Game

1 Day Lesson Plan V: Race Car Track game

6.1.2 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Explain how sequencing, selection, iteration and recursion
are building blocks of algorithms.

Level 3 A
(Grades 9 – 12)

CT Explain the program execution process.

Level 3 A
(Grades 9 – 12)

CT Describe how mathematical and statistical functions, sets,
and logic are used in computation.

6.1.3 Lesson Plan I

This lesson focuses on the Control Block, If statements and If Else statements. The lesson should take
about 30 to 40 minutes of a class period, providing time for students to code programs similar to the ones
modeled.

Content details Teaching Suggestions Time
Code

x = random [1..3]
write x
if x is 1 or x is 2
 write 'Today is your lucky
day!'
else
 if `` is ``
 write 'Stay low. Let
everything happen tomorrow'
 else
 write 'I cannot see your
future.'
 # Demonstrate complex IF
Statements

Explain the key concept of the evaluation of
a Boolean expression.

Show the Control Block and the ‘IF’
statement.

Type the code shown on the left column.
(Note: You will need speakers for this
program. You can use the write block

instead of say block.)

Teaching Tips: You can extend this lesson
further by adding a loop around the entire
code for the tune to be played for a fixed
period (e.g. 5 times). Explain that the
program gives an output based on the value
the variable to which “Day” is set.

Demonstration:
20 minutes

Code Give another example using patterns.
Demonstrate how the conditional can impact

Demonstration:
20 minutes

6.7

Content details Teaching Suggestions Time
speed 50
pen red, 10
for x in[1..20]
 fd 90
 rt 100
 if x is 8
 pen purple, 10
 else
 if x is 12
 pen lightsalmon, 10

the color in which the pattern is drawn.

Teaching Tips: Change the values within the
conditional to show how the pattern
changes.

Add another if statement to show another
color. (Point out the use of a nested if
statement.)

Add an ‘if’ statement to change the speed.
Here is the copy of the program:
http://teachersguide.pencilcode.net./edit/cha
pter6/pattern

Now students can start writing their own
programs. Students are expected to write
both the programs that were demonstrated.
Students should complete both programs by
the end of the class period (15 minutes of
class time).

Student Practice:
15 minutes

 Code

speed 10
answer = 'yes'
hide()
while answer is 'yes'
 diceRoll = (random 6)
 label
String.fromCharCode(9856 +
diceRoll), 100
 say 'Rolling dice now!'
 if diceRoll is 6
 say 'You made a 6!! Roll
again!'
 answer = no
 else
 write diceRoll
 say 'Tool Bad! Want to

Add a few fun elements to the program to
show that how using a loop and a
conditional increases a program’s power.

Here is the code to simulate the roll of a die.
(This is a starter program for a Yahtzee
game. The Additional Exercises section
provides the specifications for Yahtzee.)

Demonstrate and walk students through the
code. Point out the use of random numbers,
how the assignment of an exit condition lets
the loop exit eventually, and the If… Else
block.

Demonstration:
55 minutes

6.8

Content details Teaching Suggestions Time
try again?'
 await read 'Roll
again?', defer answer
say 'Good bye!'

6.1.4 Lesson Plan II

This lesson revisits the Spiral assignment Question Bot introduced in the Chapters 3, 4, and 5. Students
will extend this program using all of the previously-learned concepts and add conditional statements.

Content details Teaching Suggestions Time
Code:

chatbot
CS1004 example chatbot using
loop and variable prompts

write 'Bob: Hi! My name is Bob.'
await read 'Bob: What\'s your
name?', defer name
write 'Bob: Hello ' + name
done = false
while not done
 prompt = name + ' can you
guess who I am?' + ':'
 await read prompt, defer q
 if (q.match /quit|give up/)
 write 'Bob: OK, nice talking
to you!'
 done = true
 else if (q.match /bot/)
 write 'Bob: Close... But I
am a human, of course.'
 else
 write 'Bob: Good guesswork!'

Pull up the Question Bot (Loops version)
program. Ask students how its
functionality can be expanded.

Even though the program asks four
people’s names, it does not “remember”
them?

Making the lesson more interesting by
asking students for a good question.
Walk through the code and emphasize
the power of conditionals.

This example also introduces the
operator x.match () functionality.

In block-mode it looks like this:

Demonstration:
20 minutes

6.9

6.1.5 Lesson Plan III

This lesson plan demonstrates the use of complex if statements, specifically, combining multiple Boolean
expressions.

Content details Teaching Suggestions Time
Code

x = random [1..3]
write x
if x is 1 or x is 2
 write 'Today is your lucky day!'
else
 write 'I cannot see your
future.'
 # Demonstrate complex IF
Statements

Explain the key concept of the
evaluation of multiple Boolean
expressions. Explain how an AND /
OR operator combines two
expressions and evaluates them.

The example provided here is a
simple program that acts like a
“Genie” and predicts the day based
on the random number generated.

Teaching Tip: Explain how an OR
operator works. Explain using the
example that the ‘if’ statement will
get executed even if one of the
expressions is true.

Ask the students to copy the code
provided and test the program.

Demonstration:
20 minutes

Code:

x = random [1..3]
write x
if x is 1 or x is 2
 write 'Today is your lucky
day!'
else
 if `` is ``
 write 'Stay low. Let
everything happen tomorrow'
 else
 write 'I cannot see your
future.'
 # Demonstrate complex IF
Statements

Now explain in-depth using the
modified program as show in the left
column.

Teaching Tip: Explain how an AND
operator works. Explain using the
example that the ‘if’ statement will
get executed IF AND ONLY IF both
expressions are true.

Ask students to copy the code
provided and test the program.

Give students 10 minutes to
experiment with if statements and
modifications of the code. Let them
test other programmers’ code and
see what kind of day the genie
predicts for them!

Demonstration:
20 minutes.

Student
Practice:
10 minutes

6.10

6.1.6 Lesson Plan IV

Students will now work with a partner to design a Hi-Lo Guessing game. The Additional Exercises section
provides the problem description. Students will watch a short video on pair programming before beginning
the exercise. The lesson plan below focuses on how to design a project with a partner. Students will take
about half a class period to design the program. They will have the rest of the class period and one more
class period or homework to complete the assignment. (Note: Homework may not result in true
collaborative work because it increases the temptation to find answers on the Internet and from people
outside of the team.)

Content details Teaching Suggestions Time
https://www.youtube
.com/watch?v=vgka
hOzFH2Q

Have students watch the video on pair programming. Student Practice:
5 minutes

Split students into groups. The References section provides resources on forming successful
collaborative groups.

Using the “Rally Robin” co-operative learning® structure, have the students write the pseudocode for the
HiLo game. Their pseudocode should indicate:

i. Variables used
ii. Control structures needed
iii. Input / Output statements

Student Practice: 20 minutes

Rally Robin instructions:
On a piece of paper, take turns writing instructions on how to design the guessing game.

Each instruction should be a numerical bullet (e.g. 1,2,…)
Student 1 writes the first instruction.
Student 2 writes the second instruction.

Keep repeating this process until all of the instructions have been recorded.
Next, go back and take turns revising the instructions until both partners are satisfied.

Submit your work your teacher for grading.
Here is a sample Hi-Lo program.
Student Practice: 20 minutes

On your computer, type the program with your partner using the pair programming methods presented in
the pair programming video.
Student Practice: 40 minutes

6.11

6.1.7 Lesson Plan V

This interactive lesson involves having the students design a racecar game. We recommend that
students type this in text using CoffeeScript. Encourage the students to toggle between text-mode and
block-mode to venture out of their comfort zone and increase their confidence. Follow the activity Turtle
Race track as provided in this activity sheet

Content details Teaching Suggestions Time
http://activity.pencilcode.net/home/workshe
et/race.html

Teaching Tip:
Have all the students in the class start
on the worksheet at the same time.
Print out the worksheet and give it to
the students. This will eliminate the
temptation to copy-paste the code.
Follow the link to complete steps 1
and 2.
Instruct students to type the text and
stay in text-mode.

Student
Practice:
10 mins

http://activity.pencilcode.net/home/workshe
et/race.html

Ask students to answer Questions 1
and 2 verbally in the classroom.

Student
Practice:
15 mins

http://activity.pencilcode.net/home/workshe
et/race.html

Now let the students venture out at
their own pace as they respond to
Challenges 1 through 4. Students can
stay in text-mode or switch back to
block-mode. If they do switch to
block-mode, encourage them to
toggle to text and see how their code
looks.

The solution code is given in
CoffeeScript.
Teaching Tip: If the students type the
text, encourage them to indent their
code to convey intent. All good
programming practices (Refer
Appendix A) should be followed.

Student
Practice:
20 mins

The race car game activity can be completed by students.
1. http://activity.pencilcode.net/home/worksheet/race.html - the basic game
2. http://activity.pencilcode.net/home/worksheet/race-car.html - making the car look like a car,

and this emphasizes the idea of an “object” whose behavior your control
3. http://activity.pencilcode.net/home/worksheet/race-two.html - here you introduce a “second

object” - two instances - and now you can controls them separately
4. http://activity.pencilcode.net/home/worksheet/race-track.html - this is a review of drawing, but

used for a very different purpose - to create a track shape
5. http://activity.pencilcode.net/home/worksheet/race-speed.html - this is an introduction to

variables, used to keep track of how fast each car goes.
6. http://activity.pencilcode.net/home/worksheet/race-time.html - this is another use of variables,

this time to keep track of how much time has passed
7. http://activity.pencilcode.net/home/worksheet/race-menu.html - this is an example of use of

functions to divide your program into subprograms.

6.12

6.2 Resources

Additional Exercises:

Yahtzee
Design a modified version of Yahtzee where you roll three dice and the score is calculated based on
which of the following categories are satisfied. The game ends after each user has had three turns. The
user who has the largest point value at the end of three turns is the winner. The three categories are:

i. Three of a kind – 5 points
ii. Two of a kind – 10 points
iii. Yahtzee – You Win! Game over!

Hi-Lo- Guessing Game
Design a simple game where the computer generates a random number and the user must guess the
number. The computer helps the user by giving responses such as “too high or too low”. The user has a
fixed number of tries to guess the right answer. Once the allowed number of tries are completed, the
game displays the computer-generated number and says “Game Over”. You can get up to extra five
creativity points if you have added a new feature to the game.

7.1

 Chapter 7: Learning A Second Language: JavaScript

Block Mode → CoffeeScript → JavaScript

7.0.1 Objectives

The same fundamental programming concepts apply across different programming languages.

Exposure to a second programming language allows students to understand that the programming
concepts they learn as beginners are the same concepts used by professionals. This unit introduces
JavaScript, which is a very close cousin of CoffeeScript, and one of the most widely used languages used
by professionals today. In this unit, students will use blocks to learn JavaScript syntax, and to see how
the syntax of JavaScript and CoffeeScript have many similarities, and they will transition from blocks to
programming directly in JavaScript text code.

7.0.2 Topic Outline

7.0 Chapter Introduction
7.0.1 Objectives
7.0.2 Topic Outlines
7.0.3 Key Terms
7.0.4 Key Concepts

7.1 Lesson Plans
7.1.1 Suggested Timeline
7.1.2 CSTA Standards
7.1.3 Teaching Notes
7.1.4 Lesson Plan I to use blocks to code in JavaScript mode.
7.1.5 Lesson Plan II to recreate the Broken Scene program demonstrating the iterative
development model.

7.0.3 Key Terms:

Websites Block-mode
JavaScript Text-mode
Scripting Language Settings box in Pencil Code
Programming Language

7.0.4 Key Concepts

Languages in Pencil Code

Every programming language has its own syntax, that is, has a specific set of patterns of words and
punctuation allowed in the language. As shown in previous chapters, using a block editor view gives
students a view of the syntax for a language.

For a sense for how JavaScript differs from CoffeeScript, see the two function definitions below, one
written in CoffeeScript, and the other in JavaScript. Both text code and blocks are shown.

7.2

CoffeeScript Text

tri = (n) ->
 total = 0
 for x in [1..5]
 total += x
 return total
write 'sum up to 10:', tri(10)

CoffeeScript Blocks

JavaScript Text

function tri(n) {
 var total = 0;
 for (x = 1; x <= 5; x++) {
 total += x;
 }
 return total;
}
write('sum up to 10:', tri(10));

JavaScript Blocks

Although looking at the text makes the languages seem very different, looking at the blocks reveals that
JavaScript and CoffeeScript are closely related languages. Generally, JavaScript requires more
punctuation, but the structure of most code is essentially identical between the two languages.

Choosing between JavaScript and CoffeeScript

In Pencil Code, a project can be switched between JavaScript and CoffeeScript by clicking on the “gear”
button in the blue bar. When you choose JavaScript, it is run directly by your browser. When you choose
CoffeeScript, the CoffeeScript compiler compiles the program into JavaScript before it is run.

CoffeeScript and JavaScript are closely related. They operate on the same objects and they have the
same level of speed and power when they run. CoffeeScript was designed after JavaScript, so the
CoffeeScript syntax has several advantages:

● CoffeeScript syntax requires less punctuation than JavaScript, so it is easier to type without
syntax errors.

● CoffeeScript directly supports more programming concepts; for example, it has syntax for classes
and await.

● CoffeeScript uses meaningful indents, which means it is impossible to hide nesting mistakes with
deceptive indenting.

● CoffeeScript avoids common mistakes in JavaScript such as approximate-zero-equality and
accidental global variables.

The default language in Pencil Code is CoffeeScript, because it is easier to learn how to read and write

text code in CoffeeScript. Why would a programmer choose to program in JavaScript? Because

JavaScript has three significant advantages:

● JavaScript is an official standard designed by an international committee, and it runs in Web
browsers without translation.

7.3

● The community of programmers who know JavaScript is larger than the CoffeeScript community.
● Many people are working on improving future versions of JavaScript, and they are aware of the

good things in CoffeeScript.

JavaScript continues to evolve, and future versions of JavaScript will incorporate some of the innovations

in CoffeeScript. So even for JavaScript aficionados, it is worth knowing CoffeeScript because many of its

ideas represent the future of JavaScript.

And for fans of CoffeeScript, it is worth knowing JavaScript because there are benefits its larger
community.

Differences between CoffeeScript and JavaScript

JavaScript and CoffeeScript are closely related languages, and by understanding where some additional
punctuation is required, you can translate directly from one to the other. Here is a summary of a few
differences between CoffeeScript and JavaScript, showing how equivalent code would be written in each
language. We discuss these in detail below.

CoffeeScript JavaScript

fd 100 fd(100);

if pressed('up') and not pressed('shift')
 tone 440

if (pressed('up') && !pressed('shift')) {
 tone(440);
}

for x in [0...10]
 write x

for (var x = 0; x < 10; ++x) {
 write(x);
}

for c in [red, orange, yellow]
 dot c, 100
 fd 100

var colors = [red, orange, yellow];
for (var j = 0; j < colors.length; ++j) {
 var c = colors[j];
 dot(c, 100);
 fd(100);
}

button 'doorbell', ->
 write 'ding dong'
 play 'C'

button('doorbell', function() {
 write('ding dong');
 play('C');
});

sq = (x) -> x * x
write sq(5)

function sq(x) {
 return x * x;
}
write(sq(5));

Parentheses and Semicolons

JavaScript requires parentheses after a function name in order to run a function call. These same
parentheses are optional in CoffeeScript, but are required in JavaScript.

CoffeeScript JavaScript

dot red, 100 dot(red, 100);

7.4

JavaScript also recommends a semicolon at the end of every complete statement (including function
calls, return statements, and break and continue statements). Not every line of code, however, is a
complete statement. For example, the first line of an if is not a complete statement and should not be

separated from the body of the if by a semicolon.

Punctuation for Boolean Expressions

JavaScript also requires parentheses after the words if, while, and switch to surround the tested

expression. CoffeeScript, does not require these parentheses.

CoffeeScript JavaScript

if pressed('X') and not pressed('Z')
 tone 440

if (pressed('X') && !pressed('Z')) {
 tone(440);
}

The words and, or, not, is and isnt in CoffeeScript are not supported in JavaScript. Instead, JavaScript

uses punctuation for these Boolean expressions. The corresponding punctuation has exactly the same

meaning as the spelled-out words in CoffeeScript.

CoffeeScript x and y x or y not x x is y x isnt y

JavaScript x && y x || y !x x === y x != y

CoffeeScript allows the JavaScript punctuation for all these operators, but when programming in
CoffeeScript, it is conventional to use the spelled-out English words to improve readability.

Indents versus Curly Braces

JavaScript uses curly braces to indicate nesting. While indents are allowed, they do not mean anything to
the JavaScript interpreter. It important to use curly braces and make sure they match the indenting.

CoffeeScript if x < 0
 write 'x is negative'
 write 'This is inside the if'
write 'This is outside the if'

JavaScript

Equivalent, but

bad style

if (x < 0) {
 write('x is negative');
write('This is inside the if');
}
write('This is outside the if');

JavaScript

Good style

if (x < 0) {

 write('x is negative');

 write('This is inside the if');

}

write('This is outside the if');

Some beginners, when discovering that JavaScript is not sensitive to indenting, will write JavaScript code

with no indenting at all. This is a terrible idea, because it leads to confusing code like the example above.

Good code is not just functional, but readable.

7.5

If the curly braces are omitted in JavaScript, a control flow statement such as if, while, or for will only

apply to the single line of code after the condition. The red line in the JavaScript below will print “This is
not in the if!” regardless of the value of x. The correct way to write the equivalent JavaScript is with curly
braces, as in the last row.

CoffeeScript if x == 0
 write 'x is zero'
 write 'This is inside the if'

JavaScript

Not equivalent!

if (x === 0)
 write('x is zero');
 write('This is not in the if!');

JavaScript

Correct; always

include braces

if (x === 0) {

 write('is zero');

 write('This is inside the if');

}

Never omit the curly braces in JavaScript! The JavaScript interpreter will not pay attention to indenting, so

omitting curly braces is an invitation to have errors like the one above.

It is important to help students understand that good style in a JavaScript program requires consistent

use of curly braces and indenting. Programs should always be written with curly braces after conditionals

and loops and indents must match with curly braces so that other programmers can read and understood

them. The number of indents should match the number of nested curly braces.

Understanding the Three-Clause for Loop

The current version of JavaScript does not have an array-based for loop like CoffeeScript. Instead,
JavaScript supports a “three part for loop”. This type of for loop is just an abbreviation for three lines of a

while loop on a single line. The following three are equivalent:

CoffeeScript for x in [0...10]
 write x

JavaScript

using while

var x = 0;

while (x < 10) {

 write(x);

}

JavaScript

using for

for (var x = 0; x < 10; ++x) {
 write(x);
}

The three-part for loop in the last row of the table contains three statements in the parentheses.

1. The loop initializer, such as var x = 0 here. This statement is run once, before the loop begins.

2. The loop condition, here x < 10. This statement is run before each repetition of the loop,

including before the first one. If it is ever false, the loop skips to the end and stops running.
3. The loop incrementer, here ++x. This statement runs after the execution of each iteration of the

loop, right before going back to test the condition again.

7.6

Although there can be 10 or more pieces of punctuation on the line of a three-part “for” loop, they usually
follow the same pattern, counting up from zero to some number.

Declaring Functions Using the Word “function”

Functions in JavaScript are always written out with the special word “function,” and functions that return a
value must contain an explicit return statement (whereas in CoffeeScript, the last value computed is
automatically the value returned). Here is a named function declaration in JavaScript:

CoffeeScript square = (x) ->
 write 'the input was ' + x
 return x * x

JavaScript function square(x) {

 write('the input was ' + x);

 return x * x;

}

In CoffeeScript, functions must be defined before they are called while in JavaScript named functions can

be declared out-of-order. JavaScript named function declarations are implicitly bound to their names

before any other code runs.

Unnamed functions such as function callbacks from buttons or inputs, still use the word “function” but
without the name, like this:

CoffeeScript button 'get started', ->
 write 'starting now!'

JavaScript button('get started', function() {

 write('starting now!');

});

When an anonymous function is defined inline and passed as the last argument to an event binding

function such as “button”, the program ends up including a curious series of punctuation at the end (a

closing curly brace, a closing smooth parentheses, and a semicolon). This sequence of punctuation is

very common in JavaScript code.

Waiting on Input Without “await”

Unlike CoffeeScript, the current version of JavaScript does not support the “await” keyword or concept.
That means that if you wish to write a program that waits on input, you must arrange function callbacks to
produced the desired effect.

Arranging any sequence of execution is possible, but it requires planning.

The table below contains a simple program to total up numbers. The program on the right is written
JavaScript using only function definitions while the program on the left uses the equivalent CoffeeScript
with “await/defer”.

Getting a loop effect requires the programmer to define a function that sets up a callback that causes its
own execution again. This is a form of looping through recursion. (Recursion will be discuss in more detail
in Chapter 9.)

7.7

CoffeeScript JavaScript

await readnum 'How many nums?', defer n
total = 0
for j in [1..n]
 await readnum 'Enter #' + j, defer x
 total += x
write 'Average is ' + (total / n)

readnum('How many nums?', function(n) {
 var total = 0;
 var j = 1;
 nextnumber();
 function nextnumber() {
 readnum('Enter #' + j, function() {
 total += x;
 j += 1;
 if (j === n) {
 write 'Average is ' + (total / n);
 } else {
 nextnumber();
 }
 });
 }
});

The people that oversee the ongoing design of JavaScript are aware that the code on the right is more

difficult to write than the code on the left, and the standards committee is considering adding “await” to a

future version of JavaScript. Until that happens, the code on the right is what is needed to write this type

of program in JavaScript.

Common Syntax Pitfalls in JavaScript

JavaScript has more punctuation than CoffeeScript, so there are additional syntax errors to watch out for
when coding in JavaScript in text-mode. Here are a few forms to watch out for:

Issue Code with syntax error Fixed code

Mismatched curly
braces

click(function() {
 write('clicked');
);

click(function() {
 write('clicked');
});

Misspelling a keyword funtion s(x) { return x * x; } function s(x) { return x * x; }

Missing parentheses
after “if”

if x < 2 {
 write('try again');
}

if (x < 2) {
 write('try again');
}

Missing clauses after
“for” (JavaScript)

for (var j = 0; j < 10) {
 write(j);
}

for (var j = 0; j < 10; ++j) {
 write(j);
}

Mismatched curly
braces, hidden by
deceptive indenting
(JavaScript)

for (var j = 0; j < 10; ++j) {
 if (j > 8) {
 write('and finally');
 write(j);
}

for (var j = 0; j < 10; ++j) {
 if (j > 8) {
 write('and finally');
 }
 write(j);
}

7.8

When getting used to JavaScript syntax, it is helpful for the student to get some practice reading
JavaScript punctuation so that they can quickly identify errors such as the ones above.

7.1.1 Suggested Time-line: 1 55-minute class period

Instructional
Day

Topic

1 Day Lesson Plan I: Creating a Random spiral program using blocks and
JavaScript

2 Day Lesson Plan II: Iterative Development Cycle

7.1.2 Standards

CSTA
Standards

CSTA Strand CSTA Learning Objectives Covered

Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Describe a variety of programming languages available to
solve problems and develop systems.

Level 3 A
(Grades 9 – 12)

Computing Practice
& Programming
(CPP)

Apply analysis, design, and implementation techniques to
solve problems (e.g., use one or more software lifecycle
models).

Level 3 B
(Grades 9 – 12)

CPP Classify programming languages based on their level and
application domain

Level 3 A
(Grades 9 – 12)

CPP Use various debugging and testing methods to ensure
program correctness (e.g., test cases, unit testing, white
box, black box, integration testing)

7.1.3 Teaching Notes

Mastering these concepts and practices requires student to make several transitions. Students are
required to move from using blocks to text. In addition, they will now need to begin programming in
JavaScript which is harder programming language to program in as compared to CoffeeScript. Here are a
series of steps that will facilitate this new learning.

Step 1: Have the students to choose a program that they have already coded and analyzed in block-
mode and text-mode.

Step 2: Have the students begin pulling the blocks and arranging them (copying from an existing lab) and
then have then switch to text-mode.

Step 3: Ask the students to add a new construct to the program that adds a small feature by typing it in
the text editor and have them run the program.

Step 4: Encourage the students to keep adding small constructs and watching how the program
responds. Encourage students to switch to block-mode and add a block if that would make them more
adventurous and ready to try modifying the program; then switch back to text mode to become familiar
with text syntax.

7.1.4 Lesson Plan I

Note: For this lesson, make sure you are in block mode. Type in the code (switch to block-mode if

needed) and click the play arrow to demonstrate the results.

7.9

Content details Teaching Suggestions Time
Code:

speed(100);
pen(purple, 2);
for (var j = 0; j < 50; ++j)
{
 rt(30, j);
}

Take the spiral program used the
Loops chapter.
Or this program.

Ask the students to use block-mode
with settings in JavaScript mode.

Demonstration:
10 minutes

Code:
speed(100);
for(var i=0;i<6;i++)
{
 pen(random(color), 2);
 for (var j = 0; j < 50;
++j)
 {
 rt(30, j);
 }
}

Switch to text-mode.

Add an external loop to build 3
spirals.

Teaching Tip: Change the number
of iterations to 6, 8, and 12 and
show how the patterns change.

Talk about indentation, especially
the opening and closing of curly
braces.
Program code here.

Demonstration:
10 minutes

7.10

7.1.5 Lesson Plan II

This lesson uses the Broken Sample Scene program. Having already worked on functions, students
should now be ready to read code, isolate small snippets of code, and make the entire program work.
This lesson helps students understand the iterative development cycle, that is, the process of adding
small pieces of code to a large program.

Content Details Teaching Suggestions Time
Code

function mouse()
{
 dot(gray, 50);
 fd(15);
 rt(45);
 box(gray, 30);
 rt(135);
 label('..',30);
 fd(30);
 pen(black, 5);
 rt(100,30);
}

// MAIN PROGRAM STARTS HERE
speed(10);
dot(cyan, 1000);
bk(1000);
box(green, 2000);
moveto(250, -70);
mouse();
/*moveto (-300, -150);
turnto (90);
road (600);
*/

Give the students the broken
sample scene program. Remind
students to be in JavaScript mode
and to stay in text-mode.

Ask the students to run the
program and fix the bugs in the
code.

Encourage the students to stay in
text-mode while fixing the bugs.
Provide the students with the
movie to demonstrate the running
of the program.

Teaching tips:
Teach students to debug by
adding one function at a time.

Step 1: Only have the code to
create the background, a call to
the user-defined mouse function
and the code for the mouse
function. Run the code and have it
work as desired.

Step 2: Add the road () function.
 Show students how to comment
code that is not being used so that
it is available for future inclusion.
(See sample code in the left
column.)

Step 3: Students can now keep
un- commenting code and adding
pieces to get the entire scene to
work.

Demonstration:
30 minutes
Student Practice:
1 class period.

8.1

Chapter 8: Introducing One-Dimensional Arrays

8.0.1 Objectives

One-dimensional arrays (also known as lists) are the fundamental data structure that allows a program to
store many elements of data, using a linear arrangement. In this unit, students will learn how to create
and traverse arrays, and how to add, remove, insert and search for elements in an array. Using Pencil
Code, students will explore building arrays using data loaded from the internet, and how to create
visualizations using data in an array.

8.0.2 Topic Outline

8.0 Chapter Introduction
8.0.1 Objectives
8.0.2 Topic Outlines
8.0.3 Key Terms
8.0.4 Key Concepts

8.1 Lesson Plans
8.1.1 Suggested Timeline
8.1.2 CSTA Standards
8.1.3 Teaching Suggestions
8.1.4 Lesson Plan I on using ‘for… each’ loop over arrays
8.1.5 Lesson Plan II on traversing arrays – text-mode.
8.1.6 Lesson Plan III on a demonstrating how an array behaves.
8.1.7 Lesson Plan IV using arrays creating a bar graphs with an array of data.
8.1.8 Lesson Plan V using arrays creating a pie chart with an array of data.
8.1.9 Lesson Plan VI using arrays to search for an element in an array of data.

 8.0.3 Key Terms

Linear data structures Index starts at 0
Graphing charts Size of an array - syntax
Range errors
Index
Content of an array

8.0.4 Key Concepts

CoffeeScript and JavaScript differ in their support for iterating over arrays, so the presentation of arrays is
slightly different depending on the language used. The key concepts in this unit are provided in two ways:
once in CoffeeScript, and alternately in JavaScript; teachers may decide to present the concepts with one
language or the other.

Understanding Arrays in CoffeeScript

Data structures are objects that a computer program uses to organize more than one piece of
information at a time. We have already seen data structures together with the “for” loop. (Note that
creating this program requires working in text- mode. Try flipping to text-mode and editing “for” statement
to look just like this.)

for x in [red, orange, yellow]
 dot x, 100
 fd 50

8.2

The object in square brackets [red, orange yellow] is a data structure called an array. The for loop
iterates over the array, repeating the indented code while setting x to each one of the values in the array
in turn.

The subtle thing about this code is that the array is its own object. The array can be put in its own variable
and be used by name instead. For example, the program below is equivalent to the one above:

mycolors = [red, orange, yellow]
for x in mycolors
 dot x, 100
 fd 50

In this version, the variable mycolors contains the array of three colors. The array can be used for

iterating a loop, but the same array can also be used in other ways.

Basic Access: Array Indexing and Length

An array is a called a container because it is a single object that contains other objects. Every array has
a number of elements in a well-defined order, and every array has a length, which counts the number of
elements in the array. Individual elements and the length can be fetched from they can always flip back to
block-mode after typing the array parts in text.)

write mycolors.length This prints “3”, since there are three elements
in the array.

write mycolors[0] This prints “red”, since the first element is red.

write mycolors[1] This prints “orange”.

write mycolors[2] This prints “yellow”.

The use of square brackets after the array number is called indexing, and the number inside the brackets

is the index of a specific element in the array. Indexing can also be used to change an element of an

array. For example, the following code changes the first color in the array:

mycolors[0] = blue

Changing one element has no effect on the other elements of the array.

Zero-Based Indexing

Arrays in CoffeeScript and JavaScript and most other modern programming languages are zero-indexed,
which means the first element of the array has index 0 (instead of 1). This also means that the last
element of the array has index equal to length – 1.

Since people usually count starting at one, zero-indexing may seem counterintuitive at first. Starting at
zero is a language design choice, and some older programming languages such as Fortran do use one-
indexing. Many programmers experienced with both zero and one-based indexing contend that zero-
based indexing is slightly clearer because it allows programmers to interpret the index as the distance the
element would have to be moved to bring it to the beginning of the array. Since the starting element is
already at the beginning, its distance, and its index, should be zero. (Another, more mathematical
argument for zero-based indexing can be found on the Web by searching for Edger Dijkstra’s discussion
of zero-indexing.)

8.3

Empty Arrays and Looping with Zero-Based Indexes

To create a loop that uses zero-based indexes in CoffeeScript, use the three-dot range form [0...N], as

shown on the second line of the following program:

mycolors = [red, orange, yellow]
for j in [0...mycolors.length]
 write element #' + j + ' is ' + mycolors[j]

The three-dot form of a number range is called a “half closed range” which tries to start counting at the

first number but which definitely omits the last number, so [0...3] counts [0, 1, 2], exactly as needed

for zero-based indexing.

The three-dot range has another advantage over the two-dot form: it works correctly when the length is
zero! When counting to zero, instead of ranging from [1..0], which would count backwards over two

numbers, it ranges from [0...0], which sets up to start at zero and yet omits the zero because it uses

three dots. The result is an empty sequence, which means the loop will not be entered at all: exactly what
we want for an empty array.

An empty array is a perfectly good and useful array! We can create an empty array by writing the
following:

favoritecolors = []
write 'the length is ' + favoritecolors.length

The length of an empty array, of course, is zero.

Making a Graph Using an Array

Arrays can contain any type of element such as numbers or strings. Visualization is a useful type of
program that creates a graph using numbers in an array. Here is an example.

data = [2, 10, 3, 7]
rt 90
for j in [0...data.length]
 jumpto 0, 25 * j
 pen red, 20, 'butt'
 fd data[j] * 20
 label data[j], 'right'
hide()

This program uses [0...data.length] to count up the index j from 0 to 3, then it uses data[j] to read one

element out of the array at a time. These numbers are used with turtle functions to draw the bar graph.

This program uses some additional arguments to the pen and label function to control formatting

precisely. The pen is given the 'butt' option, which is a graphics term that requests a flat squared-off

line ending rather than a rounded line. And the label is given the 'right' option, which places the label

to the right of the position instead of directly on the turtle.

Creating Arrays from Strings and Files

Arrays are wonderfully powerful because a single array object can contain many thousands or millions of
elements. However, to do this in a practical way, the array needs to be loaded from a data file outside of
the program.

8.4

To try the next experiment, create a file inside Pencil Code and change its name to “mydata.txt”. As soon
as you give it a name ending with “.txt”, Pencil Code will know it is not a regular program, and it will
expect a plain text data file. Save a series of numbers in the file with no spaces, just separated by
commas, like this:

96,73,93,95,85,89,85,99,79,75,89,82,90,85,84,85,88,95,78,96,91,93

Any numbers can be used; perhaps this is a series of test scores.

Here is an example program that loads data from a file into an array and calculates basic statistics with it.

await load 'mydata.txt', defer textdata
mydata = textdata.split(',')
total = 0
for j in [0...mydata.length]
 mydata[j] = Number(mydata[j])
 total += mydata[j]
write 'Total: ' + total
write 'Average: ' + total / mydata.length

Three Steps for Loading a File into an Array

As illustrated in the program above, loading an array from a file takes two or three steps.

1. Load a file as a single large string of text data: (await load 'mydata.txt', defer textdata)
2. Split the file into an array of smaller strings, one for each element of data: (mydata =

textdata.split(','))
3. (If the data are numbers) Convert the strings to numbers: (mydata[j] = Number(mydata[j]))

The function load loads a file URL from the Internet and calls a callback function with the content of the

file as a single string. The program here loads a short filename “mydata.txt” that will be located in the
same Pencil Code directory that the program is running. By using a full URL starting with “http://”,
however, Pencil Code can load any data file from the Internet. Note that load is a form of input (from the
network instead of from the user), and it works just like the “read” function from the I/O chapter. Here we
combine load with await to put the program on hold while waiting for the callback.

The function split divides a string of text into an array of strings by dividing it up at a delimiter

character. The delimiter can be any letter or pattern. For example, to split a file with one entry per line,
split using '\n' (backslash n is the code for the “newline” character that appears at the end of a line in a
text file).

The function Number converts a string to a number. To avoid having “96” + “73” result in the answer

“9673”, the loaded strings must be converted to numbers before doing arithmetic with them.

Search: Splitting a Document to an Array, then Joining It Again

Here is another example program that finds words in a file. It uses the split function with a special pattern
to split the file at all word boundaries and uses the join function to join the array back together as one big
string to print.

To prepare data for this program, save a file called “document.txt” containing any amount of text such as
a paragraph copied from Wikipedia or a public-domain book.

8.5

await load 'document.txt', defer textdata
words = textdata.split(/\b/)
await read 'A word to search for?', defer q
for j in [0...words.length]
 if words[j] is q
 words[j] = '<mark>' + q + '</mark>'
write words.join('')

This program does four things with the array:

1. It creates the array using split(/\b/). The special pattern /\b/ splits the string at every word

boundary.
2. It examines each word using the test words[j] is q, to try to find a match.

3. For matching words, it adds a formatting code using an HTML tag. words[j] = '<mark>' + q
+ '</mark>'

4. The words.join('') function then joins all the elements of the array back together in a single

string for writing.

The result looks something like this:

A word to search for? who
There once lived, in a sequestered part of the county of Devonshire, one
Mr. Godfrey Nickleby: a worthy gentleman, who, taking it into his head
rather late in life that he must get married, and not being young enough
or rich enough to aspire to the hand of a lady of fortune, had wedded an
old flame out of mere attachment, who in her turn had taken him for the
same reason. Thus two people who cannot afford to play cards for
money, sometimes sit down to a quiet game for love.

Arrays make it possible to write programs that work with big data such as large volumes of numbers or

text.

ALTERNATE DISCUSSION USING JAVASCRIPT

Understanding Arrays in JavaScript

Data structures are objects that a computer program uses to organize more than one piece of

information at a time. For example, in the code below, the object mycolors is an array that contains three

colors.

var mycolors = [red, orange yellow];
write(a[0]);
write(a[2]);

When running the program, it prints the first color and the last one: “red” and “yellow”.

Basic Access: Array Indexing and Length

An array is a called a container because it is a single object that contains other objects.

Every array has a number of elements in a well-defined order and every array has a length, which
counts the number of elements in the array. Individual elements and the length can be fetched from an
array as shown below.

8.6

write(mycolors.length); This prints “3”, since there are three elements
in the array.

write(mycolors[0]); This prints “red”, since the first element is red

write(mycolors[1]); This prints “orange”

write(mycolors[2]); This prints “yellow”

(Note again that using array syntax in Pencil Code requires students to code in text-mode; but they can
always flip back to block-mode after typing the array parts in text.)

The use of square brackets after the array number is called indexing and the number inside the brackets
is the index of a specific element in the array. Indexing can also be used to change an element of an
array. For example, the first color can be changed as follows:

mycolors[0] = blue;

Changing one element has no effect on the other elements of the array.

Zero-Based Indexing

Arrays in CoffeeScript and JavaScript and most other modern programming languages are zero-indexed,
which means the first element of the array has index 0 (instead of 1). That also means that the last
element of the array has index equal to length - 1.

Since people usually count starting at one, zero-indexing may seem counterintuitive at first. Starting at
zero is a language design choice and some older programming languages such as Fortran do use one-
indexing. Many programmers experienced with both zero and one-based indexing contend that zero-
based indexing is slightly clearer because it allows programmers to interpret the index as the distance the
element would have to be moved to bring it to the beginning of the array. Since the starting element is
already at the beginning, its distance, and its index, should be zero. (Another, more mathematical
argument for zero-based indexing can be found on the Web if by searching for Edger Dijkstra’s
discussion of zero-indexing.)

Empty Arrays and Looping with Zero-Based Indexes

The conventional form of a JavaScript for loop works equally well for empty and nonempty arrays. The

code below will repeat the loop zero times if mycolors is changed to be an empty array.

mycolors = [red, orange, yellow];
for (var j = 0; j < mycolors.length; ++j) {
 write element #' + j + ' is ' + mycolors[j];
}

An empty array is a perfectly good and useful array. An empty array can be created as shown below.

favoritecolors = [];
write('the length is ' + favoritecolors.length);

The length of an empty array is zero.

8.7

Making a Graph Using an Array

Arrays can contain any type of element such as numbers or strings. One very useful type of program is a
visualization that creates a graph using numbers in an array. Here is an example.

data = [2, 10, 3, 7];
rt(90);
for (var j = 0; j < data.length; ++j) {
 jumpto(0, 25 * j);
 pen(red, 20, 'butt');
 fd(data[j] * 20);
 label(data[j], 'right');
}
hide();

This program the index j from 0 to 3, then it uses data[j] to read one element out of the array at a time.

These numbers are used with turtle functions to draw the bar graph.

This program uses some additional arguments to the pen and label function to control formatting

precisely. The pen is given the 'butt' option, which is a graphics term that requests a flat squared-off

line ending rather than a rounded line. The label is given the 'right' option, which places the label to

the right of the position instead of directly on the turtle.

Creating Arrays from Strings and Files

Arrays are wonderfully powerful because a single array object can contain many thousands or millions of
elements. However, to do this in a practical way, the array needs to be loaded from a data file from
outside the program.

To try the next experiment, create a file inside Pencil Code and change its name to “mydata.txt”. As soon
as you give it a name ending with “.txt”, Pencil Code will know it is not a regular program and will expect a
plain text data file. Save a series of numbers in the file with no spaces, just separated by commas as
follows.

96,73,93,95,85,89,85,99,79,75,89,82,90,85,84,85,88,95,78,96,91,93

Any numbers can be used; perhaps this is a series of test scores.

Here is an example program that loads data from a file into an array and calculates basic statistics with it.

load('mydata.txt', function (textdata) {
 var mydata = textdata.split(',');
 var total = 0;
 for (var j; j < mydata.length; ++j) {
 mydata[j] = Number(mydata[j]);
 total += mydata[j];
 }
 write('Total: ' + total);
 write('Average: ' + total / mydata.length);
});

Three Steps for Loading a File into an Array

As illustrated in the program above, loading an array from a file takes two or three steps.

8.8

1. Load a file as a single large string of text data: (await load 'mydata.txt', defer textdata)
2. Split the file into an array of smaller strings, one for each element of data: (mydata =

textdata.split(','))
3. (If the data are numbers) Convert the strings to numbers: (mydata[j] = Number(mydata[j]))

The function load loads a file URL from the Internet and calls a callback function with the content of the

file as a single string. The program here loads a short filename “mydata.txt” that will be located in the
same Pencil Code directory that the program is running. By using a full URL starting with “http://”,
however, Pencil Code can load any data file from the Internet. Note that load is a form of input (from the
network instead of from the user), and it works just like the “read” function from the I/O chapter. Here we
combine load with await to put the program on hold while waiting for the callback.

The function split divides a string of text into an array of strings by dividing it up at a delimiter

character. The delimiter can be any letter or pattern. For example, to split a file with one entry per line,
split using '\n' (backslash n is the code for the “newline” character that appears at the end of a line in a
text file).

The function Number converts a string to a number. To avoid having “96” + “73” result in the answer

“9673”, the loaded strings must be converted to numbers before doing arithmetic with them.

Search: Splitting a Document to an Array, then Joining it Again

Here is another example program that finds words in a file. It uses the split function with a special pattern
to split the file at all word boundaries, and it uses the join function to join the array back together as one
big string to print.

To prepare data for this program, save a file called “document.txt” containing any amount of text, for
example a paragraph copied from Wikipedia or a public-domain book.

load('document.txt', function (textdata) {
 var words = textdata.split(/\b/);
 read('A word to search for?', function(e) {
 for (var j = 0; j < words.length; ++j) {
 if (words[j] == q) {
 words[j] = '<mark>' + q + '</mark>';
 }
 }
 write(words.join(''));
 });
});

This program does four things with the array:

1. It creates the array using split(/\b/). The special pattern /\b/ splits the string at every word
boundary.

2. It examines each word using the test words[j] is q, to try to find a match.
3. For matching words, it adds a formatting code using an HTML tag. words[j] = '<mark>' + q +

'</mark>'.
4. Then the words.join('') function joins all the elements of the array back together in a single

string for writing.

The result looks something like this:

A word to search for? who
There once lived, in a sequestered part of the county of Devonshire, one

8.9

Mr. Godfrey Nickleby: a worthy gentleman, who, taking it into his head
rather late in life that he must get married, and not being young enough or
rich enough to aspire to the hand of a lady of fortune, had wedded an old
flame out of mere attachment, who in her turn had taken him for the same
reason. Thus two people who cannot afford to play cards for money,
sometimes sit down to a quiet game for love.

Arrays make it possible to write programs that work with big data such as large volumes of numbers or
text.

8.1.1 Possible Timeline: 1 (55-minute class period)

Instructional Day Topic
2 Day Lesson Plan I

1 Day Lesson Plan II

1 Day Lesson Plan III

1 Day Lesson Plan IV & V

1 Day Lesson Plan VI

8.1.2 Standards

CSTA
Standards

CSTA Strand CSTA Learning Objectives Covered

Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Explain how sequence, selection, iteration, and recursion
are building blocks of algorithms.

Level 3 A
(Grades 9 – 12)

CT Compare techniques for analyzing massive data
collections.

Level 3 A
(Grades 9 – 12)

Collaboration (CL) Describe techniques for locating and collecting small and
large-scale data sets.

Level 3 B
(Grades 9 – 12)

CL Deploy various data collection techniques for different
types of problems.

Level 3 B
(Grades 9 – 12)

CT Compare and contrast simple data structures and their
uses (e.g., arrays and lists).

Level 3 B
(Grades 9 – 12)

Computers and
Communication
Devices (CD)

Discuss the impact of modifications on the functionality of
application programs.

8.1.3 Teaching Suggestions

Encourage students to toggle between text-mode and block-mode to constantly extend themselves
beyond their comfort level. The lesson plan provides suggestions to toggle between modes. It is best to
that the students use block-mode when trying they are trying to understand the overall flow of logic. At
other times, though, it is more convenient to type out various keywords in text since the block-mode may
not have all the blocks that are needed. This is important because typing in text enable access to the
richer library available in JavaScript.

8.10

8.1.4 Lesson Plan I

This lesson introduces arrays in CoffeeScript.

Content details Teaching Suggestions Time
Code:

Code in text:

for color in [red, orange, yellow]
 dot color, 100
 fd 30

Output:

Pull up the program “rainbow Colors”
and demonstrate the running of the
program.

Point out that this was also used in
Chapter 4, Lesson Plan III.

Explain that color is a variable that is
traversing an array of colors red,
orange and yellow.

Between the [] brackets are the
various colors that are stored in the
data structure arrays. The command
‘dot’ takes values in the arrays and
draws the dot of the value of the
color.

Encourage students to play with
various colors.

Variant: Instead of color being the
changing value the program could
access an array of dot sizes.
The for loop would look like this:
for x in [10,20,30,40]
 dot red,x
 fd 30

Demonstration:
15 minutes

Student Practice:
20 minutes.

8.1.5 Lesson Plan II

This first introduction to arrays shows students how to traverse simple arrays with a list of known
elements. The program draws an element of the size as shown in the array. Type the code as shown (in
block and text-mode) or pull up the code and walk the students through the code and explain the
concepts to them.

Content details Teaching Suggestions Time
Code: Blocks

Type the code (or pull it up on the
projector) and walk the students through
the code.

Show how the array is declared.

Explain length gives the size of the array.

Explain why an array starts a position 0
and that the loop traverses through the
array.

Explain that x represents the value in the

Demonstration:
30 minutes

8.11

Code: Text

speed(10);
a=([10,20,30,40]);
for (var j = 0; j < a.length;
++j) {
 x = (a[j]);
 fd(50);
 dot(black, x);
}

Array values: 10,20,30,40

array at that position. So when j = 0, x =
10. j=3, x= 40.
Each value of x the turtle moves forward
by that many blocks and the size of the
dot drawn is also dependent on that value
of the x.

Teaching Tip: A fun exercise would be to
have the students change the values in
the array so that they are not sequential.
This will enable students to watch the size
change depending on the position of the
index in the array. Ask them to use big
numbers such as 10, 50, 15, and 30 and
watch the dot go bigger and smaller
alternatively.

Array values: 10, 50, 15, 39

8.1.6 Lesson Plan III

This lesson plan shows how an element is added or removed from an array using the stack concept of
Last In First Out (LIFO). This demo program can be used to show the students how elements in an array
get added and removed. Use the pop feature to demonstrate that, even if the element is removed, the
space created by the array for that element is unclaimed. Distribute the program among the students and
let them experiment with the program to understand array behavior and stack properties.

Content details Teaching Suggestions Time
Code

var stack = [];
pen(green, 25);
speed(Infinity);
button('F', function() {
 fd(10);
});
button('R', function() {
 rt(30);
});
button('Push', function() {
 dot(crimson, 50);
 var record = {
 xy: getxy(),
 dir: direction()
 };

Use this program to demonstrate basic
array functionality.

Use the F button to move the turtle
forward.

Use the Push to create a red dot on the
screen, representing an element added
to the array.

Use the Pop to create the pink dot. This
lightens the red dot. This example can be
used to represent an element being
removed from the array.

Use the combination of the ‘F’ button and

Demonstration:
20 minutes.

Student Practice:
55 minutes

8.12

 stack.push(record);
});
button('Pop', function() {
 if (!stack.length) {
 home();
 return;
 }
 var record = stack.pop();
 jumpto(record.xy);
 turnto(record.dir);
 dot(pink,50);
});

Code: Blocks

the ‘Push’ button to demonstrate that the
elements in the array can be placed
anywhere in the array structure as long
as there is an integer index position to
hold the element.

Output:

Extension Activity: Ask students to create their own versions of the two programs. Give them copies of both
programs so they can tinker with them. Encourage students to create their own versions of the 1st program
(you can choose to give program 1 as a lab activity for them to design on their own.) The 2nd program is
intended for demonstration purposes only. You can, however, ask the students to tinker with it to help them
better understand how the program works. (55 minutes).

8.13

8.1.7 Lesson Plan IV

This lesson plan demonstrates the use of arrays to hold data. Students will learn to traverse arrays that
hold data to generate data graphs. This lesson shows how a bar graph can be drawn from the two arrays
that are in the program. The lesson leverages the feature of Pencil Code to be able to generate visual
feedback during execution.

Content details Teaching Suggestions Time
Output:

Text Code:

data =[2, 10, 3, 7];
labels = ['Amy','Beth','Carla','Dara'];
for (var k = 0; k < data.length; ++k) {
 jumpto(25 * k, 0);
 lt (45);
label(labels[k] + ' ' + data[k] ,'bottom

left rotated');
 rt (45);
 pen(random(color), 20, 'butt');
 fd (data[k] * 20);
}

Block Code:

Walk the students through the program
code.

Step 1: Run the program and
demonstrate the output.

Step 2: Point the two 1-D arrays with the
data in it.

Step 3: Labels forms the x-axis data.
Data forms the y-axis data and determine
the length of the bars.

Step 4: The random color generator
decides the color on the graphs.

Step 5: Show the loop in a program.
Point to students how the loop traverses
the array.
(data.length)

Step 6: Show students the movement of
the turtle on the y-axis to a constant
value * the value in the data array.

fd (data[k] * 20);

Step 7: Show students the movement of
the turtle on the x-axis to a constant
value * the value in the data array.

jumpto(25 * k, 0);
 lt (45);

Demonstration:
30 minutes

Students
Practice: 25
minutes

Extension Activity: Ask students to create different arrays with different types of data values and use the
code provided to create the bar graph. (55 minutes)

8.14

8.1.8 Lesson Plan V

In this lesson the students will create a Pie Chart using simple data stored in a one-dimensional array.
This lesson is similar to the bar graph one. The data graph drawn from an array is different.

Content details Teaching Suggestions Time
Text Code:

portions = [5,3,4];
item =(['apple', 'cherry', 'pears']);
sum = 0;
for (var j = 0; j < portions.length; ++j)

{
 sum += (portions[j]);
}
for (var j = 0; j < portions.length; ++j)
{
 rt(180);
 fraction = (portions[j] / sum);
 degrees = (360 * fraction);
 pen(black, 3);
 fd(100);
 rt(90);
 rt(degrees / 2, 100);
 label(item[j],'center');
 rt(degrees / 2, 100);
 rt(90);
 fd(100);
 fill(random(color));
}

Block Code:

Step 1: Run the program to
demonstrate the creation of a pie
chart.

Step 2: Change values in the array to
show how the changes are reflected in
the resulting graph.

Step 3: Walk through the code to show
how the pie chart is computed.

Step 4: Formula to calculate the
fractions

 fraction = (portions[j] / sum);

Step 5: Formula to calculate the
degrees.

degrees = (360 * fraction);

Output

Demonstration:
30 minutes

Student Practice:
1 class period

Extension Activity: As students to create different arrays with different types of data values and use the
code provided to create various pie charts depicting different types of data. (55 minutes)

8.15

8.1.9 Lesson Plan VI

The lesson plan illustrates how to search for an element in a text file. The lesson plan has two parts. The
first part involves showing students how to load (open) a file and read it. The second part has a traversal
code that searches for an element in the file.

Content details Teaching Suggestions Time
Code: Text

load('mynumbers.txt', function
(textdata) {
 var mydata = textdata.split(',');
 var total = 0;
 for (var j = 0; j < mydata.length;
++j) {
 mydata[j] = Number(mydata[j]);
 total += mydata[j];
 }
 write('Total: ' + total);
 write('Average: ' + total /
mydata.length);
});

Code: Blocks

Output:

Step 1: Pull up the
SearchingNumbers program.

Step 2: Remember to stay in
JavaScript mode.

Step 3: Run the program and
demonstrate the output.

Step 4: Walk through the code.

Step 5: Explain file-opening. Refer
to the key concepts when needed
to reiterate the syntax.

Step 6: The data file
(“mynumbers.txt”) is to be located in
the same directory as that of the
program. Students can create their
own data files by creating a new file
in Pencil Code and copy/pasting
data into it and then clicking the
‘Save’ button.

Step 7: Now explain how the data is
stored in an array and the program
searches for a match and when it
finds it the count is increased.

Step 8: Trace the code with the ‘for
loop’ and explain the data that is
traversed.
Note: Students can trace the values
of mydata[j], j and total and share it
with the class.

Demonstration:
30 minutes

Students
Practice:
60 minutes

8.16

Code: Text

load('mydata.txt', function
(textdata) {
 var words =
textdata.split(/\b/);
 read('A word to search for?',
function(q) {
 for (var j = 0; j <
words.length; j++) {
 if (words[j] == q) {
 words[j] = '<mark>' + q +
'</mark>';
 }
 }
 write(words.join(''));
 });
});

Code: Block

Step 1: Pull up SearchingText
program.

Step 2: Run the program

Step 3: Ask the students to walk
through the code and explain it to
you.

Note: Both programs use the split ()
function. For a good explanation on
split and how to use it, see:
http://www.w3schools.com/jsref/jsre
f_split.asp

Output:

Demonstration:
30 minutes.

Student Practice:
35 minutes

9.1

Chapter 9: Nested Loops

9.0.1 Objectives

The chapter has two goals. The first goal is to help introduce the concept of nested loops and show
students how to build them. The lessons teach nested loops using ASCII art. The second goal is to
introduce the concept of a two-dimensional (2D) output grid. The most natural way to traverse a 2D grid is
using nested loops. This makes nested loops a powerful construct for students to learn and master.

9.0.2 Topic Outline

9.0 Chapter Introduction
9.0.1 Objectives
9.0.2 Topic Outlines
9.0.3 Key Terms
9.0.4 Key Concepts

9.1 Lesson Plans
9.1.1 Teaching Suggestions
9.1.2 Suggested Timeline
9.1.3 CSTA Standards
9.1.4 Lesson Plan I on using understanding nested loops
9.1.5 Lesson Plan II on traversing 2D grids to create ASCII Art.

 9.0.3 Key Terms

Index Tables

Matrix ASCII Art

Nesting Tracing

Animation Inner and outer loop

9.0.4 Key Concepts

When loops are nested within loops, a program can create a repetition of repetitions. Below is an
example.

for (var j = 0; j < 5; ++j) {
 for (var k = 0; k < 8; ++k) {
 typebox(random(color));
 }
 typeline();
}

Output:

An example of using a nested loop.

Inner Loops and Outer Loops

When nesting loops, the two loops play very different roles:

● The outer loop starts first and finishes last. It starts once and finishes once. In the example
above, the outer loop uses the variable j to repeat its body five times, running the inner loop, then
doing a typeline exactly 5 times, once at the end of each row of the output.

9.2

● The inner loop starts last and finishes first. It can start repeatedly and finish repeatedly. Here,

the inner starts looping 5 times, each time starting k at 0 and counting to 8, to do typebox 8

times. By the time the program is done, the inner loop will have repeated 5x8 = 40 times.

Inner loops spin around quickly, finishing a complete loop for each single iteration of the outer loop. Outer

loops spin around slowly.

The hands of a clock work like inner and outer loops. For example, the second-hand of a clock acts like
an inner loop and the minute-hand acts like an outer loop. For every single click of a minute hand, the
second hand spins all the way around, clicking through all 60 seconds. By the time a minute hand clicks
through one whole hour, the second hand has spun through 60x60 = 3600 seconds.

Odometers and calendars work the same way.

Dependent Inner Loops

Sometimes, the way the inner loop works differs depending upon which step of the outer loop is running.
For example, to create a program that prints all the dates in a year, you can use a nested loop for the
days of the month, but the number of times the inner loop runs depends upon the outer loop, since each
month has a different number of days.

lengths = [31, 27, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];
for (var month = 0; month < 12; month++) {
 for (var day = 0; day < lengths[month]; day++) {
 write((month + 1) + "/" + (day + 1));
 }
}

A nested loop that prints every date in a year.

Here the inner loop repeats a different number of times, depending on which month it is on, because its
ending condition is day < lengths[month].

For months, we charted out a dependent inner loop by just listing the days in each month in an array, but
the rule for coming up with a dependent inner loop can require more generalization: a programmer needs
to look at the specifics, and try to generalize to a rule.

Generalizing a Rule for Inner Loops

Suppose we want to create a program that can create patterns like the program below.

N = 5

for (var row = 0; row < N; row++) {

 for (var b = 0; b < ??; b++) {

 typebox(blue);

 }

 for (var j = 0; j < ??; j++) {

 typebox(orange);

 }

 typeline();

}

Desired output:

Planning a dependent inner loop: how do we choose the loop bounds in red?

The output we want is a 5x5 arrangement of colored boxes but we want to generalize our program so
that it can make a similar pattern of any size. Since each line has a number of blue boxes followed by a

9.3

number of orange boxes, we can plan to have a nested loop like the program on the right, with one outer
loop for each line, and two inner loops, one for the blue boxes, and one for the orange boxes.

Determining the values to put in for the question marks requires generalization. You can do this by
looking at the specific output needed and finding patterns. Here is a table summarizing each row of the
shape.

Row number How many blue
boxes

How many orange
boxes

A formula for blue A formula for
orange

row = 0 4 1 4 = N - 1 - row 1 = row + 1

row = 1 3 2 3 = N - 1 - row 2 = row + 1

row = 2 2 3 2 = N - 1 - row 3 = row + 1

row = 3 1 4 1 = N - 1 - row 4 = row + 1

row = 4 0 5 0 = N - 1 - row 5 = row + 1

You can fill in the first three columns of the table by looking at the example shape and counting. But to
generalize, you need to find rules that work in the last two columns. This requires finding a rule that
relates the number of boxes on a row to the row number. For example, the number of orange boxes on
each line is always one more than the row number. So a formula for the number of orange boxes that
works on every line is row + 1.

For the blue boxes, the number decreases by one each time the row number increases by one, so the
rule should involve subtraction. In this example, a rule that works is 4 - row. But this is not quite

generalized yet. Imagine a larger pattern with 10x10 boxes and N = 10. In this case the number of blue
boxes on row #0 would not be 4; it would be 9! So a fully generalized formula that works for every row of
every size N would be N - 1 - row.

Filling in the formulas so that the two inner loop conditions are b < row + 1 and j < N - 1 - row

completes the program so that it works for any N.

Nested loops can be challenging to program correctly because of the relationship between inner loops
and outer loops. A good strategy for designing nested loops is to carefully chart out the behavior you want
in a single example, and then find a way to generalize it.

9.1.1 Teaching Suggestions

The following lesson plans are structured so that the students master the idea of nesting loops.
Encourage the students to trace through the values and then introduce the idea of 2D grids. Ensure that
Pencil Code is in JavaScript mode. As much as possible encourage students to stay in text-mode and
type in their code. They can switch to block-mode (when needed) and drag and drop the blocks into the
program.

9.4

9.1.2 Possible Timeline: 1 55-minute class period

Instructional Day Topic
1 Day Lesson Plan I

2 Day Lesson Plan II

9.1.3 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 B
(Grades 9 – 12)

Collaboration (CL) Use project collaboration tools, version control systems,
and Integrated Development Environments (IDEs) while

working on a collaborative software project.
Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Explain how sequence, selection, iteration, and recursion
are building blocks of algorithms.

9.1.4 Lesson Plan I

This lesson introduces nested loops. There are two programs. There are a two different teaching tools
that have been demonstrated here. The first one is the idea of showing the logical path that the program
takes. Tracing the code. Run the video to show the students how the loop execution takes place. The
second concept is to ask simple questions on code modifications to elaborate what the role of each line of
code is. It should be possible to take the two ideas and use them elsewhere to teach some other
concepts.

Content details Teaching Suggestions Time
Code:

speed(100);
for (var i = 0; i < 10; ++i) {
 for (var j = 0; j < 19; ++j) {
 typebox(purple);
 }
 typeline();
}

Output

Use the code that is provided in the
left-most column.

Switch to text-mode.

Open the program and
demonstrate how a nested loop
works.

Run the program and show how,
for every one iteration of the outer
loop, the inner loop completes all
iterations.

.

Demonstration:
30 minutes

Code:

speed(1);
pen(purple, 1);
for (var i = 0; i < 10; ++i)
{
 dot(blue, 10);
 for (var j = 0; j < 4; ++j)
 {

Have students pull up the
decorated nest program.

Encourage students to stay in text-
mode. As they watch the program
on their monitors, ask students to
answer the following questions.
(Questions can be projected,
written on a whiteboard, or handed

Demonstration:
30 minutes

9.5

Content details Teaching Suggestions Time
 fd(50);
 rt(90);
 }
 lt(36);
 bk(50);
}

Output:

as a worksheet to be filled in.)
a. What does the inner loop

create?
b. How many blue dots are

created?
c. Which loop are the command

lt and bk a part of?

d. How many times do they get
executed?

e. What happens in the inner loop
iterations are increased?

Give students about five minutes to
answer the questions and then, as
a large group discussion, have
students share their answers.
(Alternatively, this can be given as
homework or warm-up for the next
day)

As an extension to the decorated nest program, ask the students to modify the ‘for’ loop, for example by
using additional fd and rt instructions to create interesting patterns.

Teaching Tip: Award extra points for the project voted most creative by the class.
Student Practice: 55 minutes

9.1.5 Lesson Plan II

This lesson focuses on building a simple 2D output using nested loops. It is fun and colorful and is great
stepping stone to creating ASCII and text art.

Content details Teaching Suggestions Time
Code:

speed(10);
for (var i = 0; i < 3; ++i) {
 for (var j = 0; j < 3; ++j) {
 typebox(random(color));
 }
 typeline();
}

Give students the program that in the left-
most column. Have them toggle between
text and block to understand the logic.

Ask them modify the program using
possible variations such as:

o Number of iterations of i and j
o Color – no variations of color

Ask them what happens if the number of
iterations of j and i are not the same?
Output

Demonstration:
20 minutes

9.6

Content details Teaching Suggestions Time
 Code:

speed(500);
for (var i = 0; i < 10; ++i) {
 for (var j = 0; j < 9-i; ++j)
{
 typebox(transparent);
 }
 for (var j = 0; j < 1+i*2;
++j) {
 typebox(darkgreen);
 }
 typeline();
}

Have students use the code in the left-
most column to design a triangle.
Next, show the students how using
typebox() to color a cell typeline()

enables them to create ASCII / TEXT art
designs.
(Students can toggle between text and
text-mode if needed.)
Output

Demonstration:
30 minutes

Code

speed(500);
dot(deepskyblue, 5000);
moveto(6, 70);
for (var i = 0; i < 10; ++i) {
 for (var j = 0; j < 9-i; ++j)
{
 typebox(transparent);
 }
 for (var j = 0; j < 1+i*2;
++j) {
 typebox(darkgreen);
 }
 typeline();
}
jumpxy(4,250);
for (var i = 0; i < 3; ++i) {
 for (var j = 0; j < 12; ++j)
{
 if (j < 7) {
 typebox(transparent);
 } else {
 typebox(brown);
 }
 }
 typeline();
}

Using the two art shapes created in this
lesson, have the students create a fun
scene using ASCII art such as the tree
shown in the left-most column.

Here is a sample program.

Output:

Demonstration:
55 minutes

Student
Practice:
100 minutes

9.7

9.2 Resources

Additional Exercises:

Using the Text Art assignment, ask students to work collaboratively to create a long-term project. The end
result should an interesting scene using at least two objects build in TEXT Art. Allow the students to pick
other objects from the library from the functions chapter. Require each student should to create at least
one TEXT art individually and require them to submit it for grading as an early deliverable. (You can
choose if this grade is part of the overall grade or a separate one.)

10.1

Chapter 10: Recursion

10.0.1 Objectives

The chapter provides a brief introduction to recursion, which is the practice of using a function that calls
itself. Students will learn what recursion is and how to read recursive code. Students will learn the key
components of a recursive program and, importantly, they will learn that any recursive program must have
a means of exiting the function via a base case.

10.0.2 Topic Outline

10.0 Chapter Introduction
10.0.1 Objectives
10.0.2 Topic Outlines
10.0.3 Key Terms
10.0.4 Key Concepts

10.1 Lesson Plans
10.1.1 Teaching Suggestions
10.1.2 Suggested Timeline
10.1.3 CSTA Standards
10.1.4 Lesson Plan I on demonstrating how recursive functions work.
10.1.5 Lesson Plan II on demonstrating how a recursive stack works.
.

10.0.3 Key Terms

Recursive functions Base case

Terminating condition Infinite recursion

10.0.4 Key Concepts

A recursive function is a function that calls itself. Recursive functions are useful for working with self-
similar problems. There are two ways of thinking of recursion:

● Recursion reduces a problem to smaller, similar, problems that can be solved more easily than
the larger problem.

● Recursion expands computation by repeating a smaller, similar procedure as part of carrying out
a larger procedure.

A recursive function has a conditional for dealing with two different cases:

● The recursive case. In this case, the function calls itself to solve a smaller problem then use that
solution to solve the complete problem.

● The base case. In this case, function recognizes the simplest situations and completes the
computation without calling itself.

Both cases are important. Since working out the recursive case usually takes a lot of thinking,

programmers often forget about the simple base case. When that happens, a recursive function will call

itself repeatedly in an infinite recursion and the function will never complete (until a debugger interrupts

it).

The best way to understand recursion is with examples.

10.2

A Triangular Spiral Example

Previously we have created computer algorithms by thinking about the first steps first, but in recursion,

the planning is done from the end first. Imagine that most of the problem has already been solved. With

recursion, the programmer asks: once almost everything is done, how would the very last step be solved?

A recursive algorithm is built by starting by just thinking about just this last step.

Suppose a recursive program needs to measure a triangular spiral where each side is 10 units longer
than the previous side, with the first side 10, then the next side 20, then the next side 30, and so on. How
long is a spiral with N sides?

Solving this problem using recursion requires two cases.

● The recursive case. To make a spiral with N sides, imagine that the program can already solve
the problem for size N - 1. Call the answer spiral(N - 1). Since the last side has length 10 * n, we
therefore know that spiral(N) = spiral(N - 1) + (10 * N).

● The base case. Some N is needed which does not require on self-reference. It is convenient to
do this when N is zero, as spiral(0) = 0.

To write this in code, use an “if” conditional.

function spiral(N) {
 if (N > 0) { // The recursive case.
 var len = spiral(N - 1); // Assume we can do a smaller spiral.
 fd(10 * N); // Now draw just the last leg of the big spiral.
 rt(120);
 return len + (10 * N); // Return the whole length.
 } else {
 return 0; // The base case is zero: zero length.
 }
}
pen(purple);
spiral(20);

Output

A recursive program to measure a triangular spiral.

The spiral function calls itself and then adds just the last leg.

In thiscode, spiral(20) makes a call to spiral(19), makes a call to spiral(18), and so on. How can

this possibly work? The computer does not actually have the answer to spiral(19) before running

spiral(20)!

Tracing Out Recursion on a Grid

Every time a function is called, its parameters can take on a different meaning, and so a computer can
even call spiral(3) even if the invocation of spiral(4) is still not completed. The variable N means

10.3

something different in each invocation and the “layers” do not interfere with each other. The computation
layers in the diagram below show how this works.

spiral(4) = ↓ spiral(3) + 40 …………………………………………………………….. = 60 + 40 = 100

 spiral(3) = ↓ spiral(2) + 30 = 30 + 30 = 60 ↑

 spiral(2) = ↓ spiral(1) + 20 = 10 + 20 = 30 ↑

 spiral(1) = ↓ spiral(0) + 10 = 0 + 10 = 10 ↑

 spiral(0) = 0 (base case) ↑

Each row is a single level of the recursion, showing how it calls the next level of the recursion, with the

base case at the bottom. Moving from top to bottom shows how each layer of recursion reduces the

problem to a smaller problem.

Reading from left to right reveals how the computation proceeds over time: spiral(4) does a function

call to spiral(3), which does a function call to spiral(2), and so on until the base case returns 0,

which allows spiral(1) to complete and return 10, which allows spiral(2) to complete and return 30,

which allows spiral(3) to complete and return 60, which allows spiral(4) to complete and return 100.

A Fractal Tree Example

Recursion can be used to create self-similar patterns. If a recursive function calls itself twice, then a

branching effect can be created, where a single function call expands to 2, 4, 8, etc, calls. In the example

below, the recursive function tree takes two inputs, a turtle object t and a branch length x.

function tree(t, x) {
 t.fd(x); // 1. Draw a line
 if (x < 10) {
 return; // 2. Base case
 }
 var r = t.copy(); // 3. Copy the turtle
 t.lt(30);
 tree(t, x * 0.7); // 4. Left mini-tree
 r.rt(30);
 tree(r, x * 0.7); // 5. Right mini-tree
}
pen(brown);
tree(turtle, 100);

An explanation of the portions of this program.

1. The only drawing done directly is to draw one line of length x by moving forward t.fd(x).

2. Then the base case is handled: if the line was shorter than 10, it returns with no further action.

3. A branch will be made by making a copy of t called r. This will handle the right side.

4. The original turtle t will handle the left side by turning left 30 degrees and drawing another tree.

The tree on the left will begin with a branch that is smaller than x by multiplying by 0.7.

10.4

5. The new turtle r will handle the right side by turning right 30 degrees and drawing another tree.

The tree in the example above is self-similar because a large tree is made up of smaller trees. Many

shapes in nature have the same kind of self-similarity, and recursive programs like this can be used to

create organic, natural shapes.

10.1.1 Teaching Suggestions

Students often find recursion intimidating, so teachers often need to revisit this concept several times to
make sure the students truly understand it. In an introductory programming class, students should at least
be exposed to the idea of recursive functions and understand how recursive functions work. It helps a
great deal if they can see recursion in action. It can be helpful to ask students to solve a couple of
recursive problems using paper and pencil to predict the output. At this point we do not recommend that
students create their own recursive solution. You can use the two Pencil Code examples provided in this
lesson as a tool explain and demonstrate recursion. It is best to use multiple strategies to teach recursion.

10.1.2 Possible Timeline: 1 55-minute class period

Instructional Day Topic
1 Day Lesson Plan I

2 Day Lesson Plan II

10.1.3 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 A
(Grades 9 – 12)

Computational
Thinking (CT)

Explain how sequence, selection, iteration, and recursion
are building blocks of algorithms.

10.1.4 Lesson Plan I

This lesson shows the recursion process. The demonstration should take about 30 minutes. After the
demonstration, give the students a copy of the program and let them play experiment with to expand their
understanding of how the recursive functions work.
Teaching Notes:
Invariably this is the hardest topic in programming for beginner programmers. The visual feedback that
Pencil Code provides helps with understanding the concepts better. Below is a suggested two-fold
approach.

First step: demonstrate the program
Next: break it down into pieces and explain the concept using smaller snippets of code.

10.5

Demonstrate the program on the projector (5 minutes)

Code Block Output

movexy -101, 250
pen black, 1
speed 2
kolam = (x) ->
 if x > 13
 for [1..4]
 rt 90
 fd x
 fill random color
 lt 90
 kolam(x/2)
kolam(160)
jumpto 98, 51
kolam(160)
ht()

Demonstrate the concept taking small snippets of code

Content details Teaching Suggestions Time
Code

kolam = (x) ->
 if x > 13
 for [1..4]
 rt 90
 fd x
 fill random color
 lt 90
 kolam(x/2)

Step 1:
The rectangles keep getting smaller
at each call to the function.
Teaching Tip:
Project this code and emphasize
that the value of x keeps getting
smaller.

Demonstration:
15 minutes

Code:

kolam(160)
jumpto 98, 51
kolam(160)

Step 2:
The main program calls the function
twice and generates two sets of
three squares.

Code:

if x > 13

Step 3:
There is a condition that is checked
before the function is called again.

Step 4:
When the condition fails, the
program exits out of the recursive
cycle and the control is returned to
the main program

10.6

10.1.5 Lesson Plan II

This lesson plans demonstrates the recursive process and shows how the complier stacks the commands
that are not yet executed. This should take about 20 minutes to demonstrate and explain.

Content details Teaching Suggestions Time
, Code:

spiral = (x) ->
 if x > 0
 fd x * 10
 rt 90
 spiral x - 1
 lt 90
 bk x * 10
pen red
spiral 10

Demonstrate the program
and explain the recursive
function.

Point out the recursive
formula and the condition that
helps end the recursion.

Emphasize the importance of
the conditional statement.

Output

Demonstration:
25 minutes

Code Snippet:

spiral x - 1
 lt 90
 bk x * 10

When the recursive function
is called, the two statements
after the recursive call are
stacked.
Once the recursive calls ends
the two statements are
popped out of the stack.
This is illustrated by the turtle
tracing the spiral in reverse
order.
Output

Encourage students to play execute various recursive programs that are
available in the resources list. Students should be encouraged to change
values and see the effect of the changes.

Student Practice:
55 minutes

11.1

Chapter 11: Building a Website Using HTML - CSS

11.0.1 Objectives

Pencil code offers a very easy drag and drop way to create HTML files. This section introduces the

structure of a simple HTML page. The lessons guide students to create basic pages using block-mode

and to transition to text-mode as their familiarity and knowledge increase.

11.0.2 Topic Outline

11.0 Chapter Introduction

11.0.1 Objectives

11.0.2 Topic Outlines

11.0.3 Key Terms

11.0.4 Key Concepts

11.1 Lesson Plans

11.1.1 Teaching Suggestions

11.1.2 Suggested Timeline

11.1.3 CSTA Standards

11.1.4 Lesson Plan I on building a basic HTML page

11.1.5 Lesson Plan II on building a basic CSS page

11.1.6 Lesson Plan III on writing a JavaScript program embedded in a HTML page.

11.1.7 Lesson Plan IV on writing a JavaScript program to create a slideshow.

11.0.3 Key Terms

Cascading Style Sheet (CSS) HTML

url Hyper-text

Server - client protocol

https vs. http (encrypted vs. unencrypted) tags

<script> - tag

11.0.4 Key Concepts

Pencil Code supports coding webpages that combine HTML, CSS, and JavaScript or CoffeeScript. To

enable HTML and CSS editing, click the “gear” icon and select those languages.

11.2

Enabling HTML and CSS will split the editing area into multiple panes:

Editing HTML and CSS and JavaScript in the same project

The code for the screenshot above is shown below. It has an HTML page with several elements, two CSS

rules, and two lines of JavaScript code:

JavaScript
cat.moveto(0,0);
cat.rt(20);

CSS
body { font-family: Arial; }
h1 { text-align: center; }

HTML
<html>
<body>
<h1>Introduction to Pencil Code</h1>
<p>Pencil Code is an environment for
learning to code on the web.<p>
<p>It supports both block coding and
text coding with CoffeeScript,
JavaScript, CSS and HTML.</p>

</body>
</html>

All three of the languages in this example interact with each other.

 The HTML includes <body>, <h1>, and elements.

 The CSS has a body rule and an h1 rule, setting the visual styles for those HTML elements.

 The JavaScript refers to the cat image, using turtle functions to move it and turn it.

This editor can be used to teach web and internet concepts. Because the Pencil Code library is also

provided, all the examples from previous chapters continue to work. Coding can be done directly on a

webpage, allowing students to create animations and interactivity at the same time as learning about

HTML and CSS, URLs, and the Internet.

11.3

The Internet

The Internet is a global network of connected computers acting as clients, routers, and servers. Some of

the most useful data sent on the Internet are webpages, and when some people talk about the Internet,

they are really referring to the Web.

Servers run programs that wait at the network, ready to answer requests that are sent by other

computers. For example, the computer known as “www.un.org” is a server at the United Nations that

waits for requests for webpages, and when it gets a request, it sends back the requested webpage to

whichever computer sent the request.

Clients run programs that make requests by creating and sending messages to servers. For example,

when you use your Web browser on your phone to visit www.un.org, your phone is acting as a client. It

sends a small message with a request to the computer at the UN, and after a moment, it gets back a

message containing a webpage.

Routers run programs that forward messages between other computers. It would be impractical to run a

wire (or a direct radio signal) from your client (and every other client in the world) to the UN. So, instead,

the computer sends messages to a nearby computer with instructions to pass it on in the right direction.

The message is passed on from computer to computer until it arrives at the correct server. Routers are

the silent delivery workers of the Internet. You do not normally need to know the dozen or so routers that

may sit between your client and a server, but if you have noticed a computer on your network known by

the number “192.168.1.1” or “10.0.0.1”, those computers are probably routers.

The World Wide Web

HTML is the HyperText Markup Language, the main language in which pages on the web are written.

A hypertext document is a text document that embeds links to other resources on the Internet.

A web address is a precise name (written as a URL) that locates one specific document or file on the

Internet.

A webpage is a hypertext document with a Web address.

If one were to draw a picture of a few linked webpages with a dot for each webpage and a line for each

link between them it would look like a Web of connections. The World Wide Web (the Web) is the name

we give to the many billions of linked webpages around the world.

The pages that make up the Web are served by millions of different servers around the world, each

hosting numerous webpages. To understand how a webpage is found, it is important to understand the

URL.

The Three Main Parts of a URL

The Web address of a webpage is written in a precise way called a URL (a Uniform Resource Locator).

A URL looks like this:

https://www.un.org/en/index.HTML

The first part “https:” is the protocol, which determines the message formats used when communicating

with the server. There are two main protocols on today’s Web. HTTP (Hyper Text Transfer Protocol)

transmits requests and responses without any encryption so that any router can read the messages.

HTTPS (HTTP Secure) encrypts the messages so that only the client and the server can read them.

11.4

The second part “//www.un.org” after the double slash is the server. Requests for this URL will be sent to

the server www.un.org.

The third part “/en/index.HTML” after the server name is the path of the webpage that will be requested

within the server. Web servers often organize paths using “/” to divide directory names from the files

within them, but Web servers are free to organize their webpages using any paths they choose. For

example, Google serves an almost infinite variety of webpages using URLs such as

“https://www.google.com/search?q=un”. Change the last part of the path from “un” to any other word to

ask Google for a page of search results.

Pencil Code URLs

Pencil Code makes a URL for every program saved by a student:

http://newbie.pencilcode.net/home/myprogram

Here the protocol is HTTP unencrypted. (Pencil Code also supports HTTPS.)

The server is “newbie.pencilcode.net”, a server created by the student. All students who save work on

Pencil Code gets their own virtual server. (It is called “virtual” because there is not actually a new

computer for each student: Pencil Code just runs server software using a new name and reuses a

physical computer that is shared with other students.)

The path is “/home/myprogram”, which is “/home/, followed by the name chosen when saving the file. On

Pencil Code, the top-level directory name in the path is special. If you use “/home/”, it will serve the raw

webpage, just like an ordinary Web server. If you change the directory name to “/edit/”, it will serve a

special editing webpage that lets you see the source code and log in to edit the page.

Tags in HTML

HTML (Hyper Text Markup Language) is the language used to write a webpage. A simple HTML

document looks like this:

<!doctype HTML>

<HTML>

 <body style="background:wheat">

 <h1>My Page</h1>

 <p>This is my page.</p>

 <p></p>

 </body>

</HTML>

A standard HTML document begins with <!doctype HTML> followed by three types of information.

Tags in angles like <body> designate special locations in the document. The tag name is the first word of

the tag.

Attributes of a tag, also written within the angle of the tag, such as title=”little fox” or

style=”background:wheat”.

Text content such as “My Page” which does not appear inside angles.

Most of the tags are paired: a begin tag like <body> matches end tag with a slash like </body>, but there

are a few special self-closing tags such as that are not paired. A tag and its pair (if any) together

11.5

are called an element, and elements may be nested within each other. For example, within the

document above, the element is nested within a <p> element, nested within <body>, which is

nested within the <HTML>. The element is also nested within a different <p> element.

HTML has about 100 types of elements and 100 or so attributes that let programmers do a great variety

of things in a document. The best way to learn about HTML is to make webpages while trying out different

elements described in one of the many online resources available on the Internet. Here is a list of a few

particularly useful elements.

Element Purpose Type

<HTML>...</HTML> The element enclosing an entire HTML document. section

<body>...</body> The visible contents of the document (invisible metadata

goes in another similar section <head>...</head>).

section

<p>...</p> A paragraph. group

<h1>...</h1> A big heading (headings get smaller down to h6). group

<style>...</style> A Cascading Style Sheet for defining visual styles. code

<script>...</script> A script in JavaScript or another programming language. code

... An emphasized phrase (italicized in your browser). text

... A hyperlink that leads to a page located by the href url. text

 An image that is loaded from the url in the src attribute. embedding

<iframe src="url"></iframe> A subframe containing a nested page loaded from a url. embedding

The last three elements have attributes href and src whose values are URLs that link to other files or

webpages. On a webpage, there is a short way to write URLs that is important to understand.

Relative URLs

URLs that in webpages can be written in an abbreviated form called relative URLs, which omit portions

of the URL and assume they take on the same values as the current Web address. Ordinary complete

URLs contain a protocol, server name, and path and are called absolute URLs. For example, suppose

the current URL is http://newbie.pencilcode.net/home/myproject/welcome.html. Here are examples of

relative URLs.

11.6

Relative URL Relative to http://newbie.pencilcode.net/home/myproject/welcome.html

friends.html http://newbie.pencilcode.net/home/myproject/friends.html

css/style.css http://newbie.pencilcode.net/home/myproject/css/style.css

/home/index.html http://newbie.pencilcode.net/home/index.html

/img/happyfox http://newbie.pencilcode.net/img/happyfox

//un.org/fr/index.html http://un.org/fr/index.html

https://google.com/ https://google.com/

The basic rule is this: an absolute URL always starts with a protocol name such as http: or https:. If a

relative URL starts with two slashes, it inherits the current protocol but replaces everything after that. If a

relative URL starts with one slash, it replaces everything after the current server name. If a relative URL

does not start with a slash, it replaces everything after the last slash in the current URL.

Absolute URLs can be used anywhere a URL is required, but relative URLs can be much faster to type.

Relative URLs also have the advantage in that if a directory of webpages is moved together between

servers or directories, URLs that make relative references within the directory will continue to work.

The Style Attribute and the <style> Element

Browsers come with default visual styling for every HTML element. For example, the ...

element indicates a phrase that should be emphasized, and browsers will use italic font-style for that text

by default. But what if you wish to use a normal font-style and underline the text instead? Visual styles

can be overridden by using the style attribute on any visible element, as follows:

<em style="font-style:normal;text-decoration:underline">something

The value of the style attribute is a style declaration block, which can list any number of style

declarations separated by semicolons. Each style declaration has a style property followed by a colon

and a value. There are about 100 standard style properties and there are many Internet resources that list

them and give examples of how they work.

If you wish to apply the same style declaration block to every element in the document, you can

create a <style> element containing CSS (Cascading Style Sheet) rules, such as:

<style>

em {

 font-style:normal;

 text-decoration:underline;

}

</style>

11.7

CSS is a powerful language that provides ways to combine and generalize style rules. We will not talk

much about it here but there are excellent resources available on the Internet detailing beautiful effects

that can be created with CSS.

The <script> Element

When combining HTML and JavaScript code, the JavaScript is embedded in a <script> element. Pencil

Code provides separate editing panels for separating editing HTML and JavaScript for a webpage, but

when you view them together, Pencil Code puts the JavaScript inside the HTML page by adding a

<script> element.

The <script> Element also can also be used with other languages. When the CoffeeScript language is

loaded, the type attribute may be set so that <script type="text/coffeescript">...</script> contains

CoffeeScript.

11.1.1 Teaching suggestions

The first two lesson plans detail how to build an HTML page using Pencil Code. There are blocks

available for the overall structure that a student can drag and help them students build the HTML page.

This chapter differs from others in that each lesson plans is a continuation from the previous lesson plan.

11.1.2 Possible Timeline: 1 55-minute class period

Instructional Day Topic

2 Days Lesson Plan I & II:HTML webpage design

1 Day Lesson Plan III: HTML – JavaScript embedded program

1 Day Lesson Plan IV: HTML – JavaScript using arrays (JavaScript embedded in
the webpage)

11.1.3 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 B
(Grades 9 – 12)

CL Use project collaboration tools, version control
systems, and Integrated Development
Environments (IDEs) while working on a
collaborative software project.

Level 3 A
(Grades 9 – 12)

CPP Use advanced tools to create digital computing
innovations and artifacts (e.g., web design,
animation, video, etc.).

Level 3 A
(Grades 9 – 12)

CPP Create and organize webpages through the use of a
variety of web programming design tools.

11.8

11.1.4 Lesson Plan I

Build a one-page HTML page using basic blocks and HTML tags. Check to see that HTML and CSS

options are checked under settings.

Content details Teaching Suggestions Time

Code: Text

<!DOCTYPE html>
<html>
<head>
 <title>iTeach-
ComputerScience</title>
 </head>
 <body
 bgcolor="#ffffbc6">
 <h1 align="center"> Art Gallery
to open soon!</h1>
 <p>
 In a new exhibition at
…
…
comes from watching and being
watched.
 </p>
 </body>
</html>

Step 1: Demonstrate to students on
how to create a basic page by
dragging the blocks for the
framework.

Step 2: Ask the students to add color
and fonts.

Step 3: Encourage students to switch
to “text-mode” to type in HTML text.

Step 4: Point out the basic structure
and problems that can happen if
students miss small details in the
HTML code. Note that they can avoid
these problems by dragging and
dropping using block-mode.

Step 5: Click on “Share” and copy –
paste the URL into a Web browser.

Point out the layout and color and
comment on the site’s visual appeal.

Here is the code for the program.

Output

Demonstration:

30 minutes

11.1.5 Lesson Plan II

This lesson focuses on the creation of a page using the CSS. It demonstrates the use of CSS and how to

add it to the program from the previous lesson plan. Check to see that the HTML and CSS options are

checked under settings.

11.9

Content details Teaching Suggestions Time

Code – HTML

body {
 background: cyan;
 font-family: sans-serif;
 text-align: center;}
button {
 background: cornflowerblue;
 color: white;
 border: none;
 border-radius: 6px;
 font-size: 18px;
 margin: 8px;
}
#rs { background: gray;}
img { border-radius: 6px;}
ul { list-style-type: none;
 padding: 0;}
ul li { display: none;}
ul li.shown { display: block;}

Code – CSS

body {
 background: cyan;
 font-family: sans-serif;
 text-align: center;
}
button {
 background: cornflowerblue;
 color: white;
 border: none;
 border-radius: 6px;
 font-size: 18px;
 margin: 8px;
}

Step 1: Open the program and
click on run.

Step 2: Point out the HTML part
of

the code and show how the
structure of an HTML file can be
dropped into the program in
block-mode.

Step 3: Show the CSS code and
tinker with values to demonstrate
change in appearance.

Step 4: Compare with the first
program and show students how
CSS helps

Here is a sample program.

Demonstration:

15 minutes

Student Practice:
30 minutes

11.10

11.1.6 Lesson Plan III

Students will now write a JavaScript program that is embedded in the webpage they have been

modifying. The Art Gallery page. Note, the program is a very simple one because it takes what has been

taught in Lesson Plan II and adds the JavaScript information to it.

Content details Teaching Suggestions Time

Code: JavaScript

speed(100);
for(var i=0;i<6;i++)
{
 pen(random(color), 2);
 for (var j = 0; j < 50; ++j)
 {
 rt(30, j);
 }
}

Code: HTML

<!DOCTYPE html>
<html>
 <head>
 <title>iTeach-
ComputerScience</title>
 </head>
 <body
 bgcolor="#ffffbc6">
 <h1 align="center"> Art Gallery to
open soon!</h1>
 <p>
 In a new exhibition at …
…
and being watched.
 </p>
 </body>
</html>

Code: CSS

body {
 font-family: sans-serif;
 text-align: center;
}
button {
 background: cornflowerblue;
 color: white;
 border: none;
 border-radius: 6px;
 font-size: 18px;
 margin: 8px;
}

Step 1: Pull up program:
FirstPageArtGalleryDesigns.

Ensure that the Pencil Code
environment is in JavaScript mode with
HTML / CSS selected.

Step 2: Run the program. (It looks
similar to the program the students
modified in the previous lesson plan.)

Step 3: Point to the JavaScript program.
This is one of the programs they
previously designed.

Step 4: Explain that this activity
combines many techniques they have
already learned.

Step 5: Click on the Share and copy /
paste the URL into a new Tab in the
browser to view the webpage.

Teaching Tip: Use a right mouse button
click on View Source to show how the
JavaScript code is embedded into the
HTML page.

Output:

Demonstration:

20 minutes

Encourage students to create their own JavaScript code and view the program execution embedded in a
webpage.
Student Practice: 25 minutes

11.11

11.1.7 Lesson Plan IV

This lesson focuses on the creation of a slide show using the JavaScript program. It demonstrates the

use of arrays (the simplest data structure in programming). This culminating lesson enables students to

put together all of the techniques presented in all the lesson plans in this chapter to create an interesting

webpage.

 Content details Teaching Suggestions Time

Code:HTML

<!DOCTYPE html>
<html>
 <body>
 <h1>My Slide Show</h1>
 <button id="bb">Back</button>
 <button
id="ff">Forward</button>
 <div>

 </div>
 <button
id="rs">Restart</button>
 </body>
</html>

Code: CSS

body {
 font-family: sans-serif;
 text-align: center;
}
button {
 background: cornflowerblue;
 color: white;
 border: none;
 border-radius: 6px;
 font-size: 18px;
 margin: 8px;
}
#rs {
 background: gray;
}
img {
 border-radius: 6px;
}
ul {
 list-style-type: none;
 padding: 0;
}
ul li {
 display: none;
}
ul li.shown {
 display: block;
}

Step 1: Open the program js-slideshow.
Ensure that the Pencil Code
environment is in JavaScript mode and it
has HTML and CSS options checked.

Step 2: Point out that each button has a
small functional module under it that gets
executed when clicked. (Refer to
concepts in Chapter 5 – Functions.)

Step 3: Show that the images get
selected from the Internet using /img
capability. (Chapter 3 – Input / Output).

Step 4: Point out the HTML and CSS
sections of the program that enable this
program to become a part of a webpage.

Demonstration:
30 minutes

11.12

 Content details Teaching Suggestions Time

Code: JavaScript

document.getElementById('bb').addEventList
ener('click', goback);

document.getElementById('rs').addEventList
ener('click', restart);

document.getElementById('ff').addEventList
ener('click',goforward);

var food = [
 "/img/orange juice", "/img/cupcake",
 "/img/potato chips",
]
var pointer =0;
function goforward() {
 pointer += 1;
 if (pointer >= food.length) {
 pointer =0;
 }

document.getElementById('im').src =
(food[pointer]);
}

function goback() {
 pointer -= 1;
 if (pointer < food.length) {
 pointer =food.length-1;
 }

document.getElementById('im').src =
(food[pointer]);

}

function restart(){

document.getElementById('im').src =
food[pointer];

pointer = 0;

}

Encourage students to change the images. Increase the size of the array and add more elements.
Encourage students to tinker with the CSS and HTML values to improve the visual appeal of the
program.
Student Practice:120 minutes

12.1

Chapter 12: Traversing Data Using JQuery

12.0.1 Objectives

This unit introduces the basics of the jQuery library. Many webpages today use jQuery to create
interactive features, and familiarity with jQuery will allow students to understand a large number of
programming resources on the internet. Students will learn the concept of a jQuery selection, and use
jQuery methods and events to create a simple interactive program.

12.0.2 Topic Outline

12.0 Chapter Introduction
12.0.1 Objectives
12.0.2 Topic Outlines
12.0.3 Key Terms
12.0.4 Key Concepts

12.1 Lesson Plans
12.1.1 Suggested Timeline
12.1.2 CSTA Standards
12.1.3 Lesson Plan I using the Timer () program.
12.1.4 Lesson Plan II on traversing an array.

12.0.3 Key Terms

JQuery JQuery Object

CSS Selector JQuery Method

Turtle library set

Arguments method

12.0.4 Key Concepts

Introduction to jQuery

JQuery is the most popular library used in web pages because it is a convenient way to examine and alter
visual elements. Here is an example using jQuery.

$('div').hide();

Each use of jQuery has three steps:

1. A CSS Selector is used to find a set of elements on the page.
2. A jQuery Object is created representing the set of elements.
3. A jQuery Method is called to do some operation on the set of elements.

In this example, 'div' is the CSS selector, $('div’) is the jQuery object, and .hide() is the jQuery method.
This line of jQuery code means: “Find all the <div> elements on the page and then hide them.”

Querying databases involves a three-step process of finding, gathering, and manipulating. JQuery applies
this database technique to the interface elements of an HTML page, treating a single page as a database.

12.2

Creating jQuery Objects with $

The function that creates jQuery objects is the most important function in the jQuery library. Because it is
used so often, the jQuery library provided a short and unusual name for this function: $. Although it may
look strange, $ is just a regular function name that happens to use a symbol.

A jQuery object holds a set of elements: the set may contain zero, one, or multiple elements on the page.
Here are some example uses of $:

jQuery constructor Creates a jQuery object containing this set.

$('p') All the <p> elements in the document.

$('.special') All the elements with class="special" in the document.

$('#buy') The element with id="buy" in the document.

$('') A new element with the given src, not yet inserted into the
document.

$('<p>Hello</p>') A new <p> element with the given text content, also not yet inserted
into the document.

The CSS selector language used to find elements with $ is the same language used in CSS, so anything
you learn about CSS selectors can also be used in jQuery. If no elements match a selector, the function
returns the empty set.

The $ function can also create elements using HTML syntax (such as in the last two examples above). In
this case, it returns a set containing one newly-created element, not yet placed in the visible document.

A jQuery object has a .length attribute that gives the size of the set. For example you can use the
expression $('p').length to count the number of <p> elements in the document.

Using jQuery Objects

There are a number of methods that can be used to operate on any jQuery object. Some examples:

$('p').fadeOut(); Smoothly fades the elements, then hides them.

$('p').css({ background: red }); Alters the CSS styling of all selected elements.

$('p').html('Read this'); Replaces the HTML content of all selected elements.

var t = $('p').text(); Reads text content of the first selected <p> element.

$('input').val(10); Set the value within all the selected <input> boxes.

var v = $('input').val(); Reads the value of the first selected <input> element.

12.3

$('img).attr({src: '/img/cat'}); Changes every src attribute to “/img/cat”.

$('').appendTo('body'); Creates a dog image and adds it to the <body>.

$('#warn').remove(); Removes the element with id=”warn”.

$('img').bk(100); Use the turtle “bk” function to move all s.

Students who have used Pencil Code will find jQuery familiar because every Pencil Code turtle is a
jQuery object. The Pencil Code turtle library is an extension to jQuery that adds a number of turtle
methods such as “pen”, “fd”, “bk”, “rt”, and “moveto” to the set of jQuery methods. Programmers can use
these methods to move any visual element on the screen.

The main turtle can be accessed using the jQuery call $('#turtle'), so the CoffeeScript program “fd 100”
from the very first section of this book is the same as JavaScript and jQuery program $('#turtle').fd(100).

Experimenting with jQuery

It is helpful for students to experiment with individual jQuery methods. Using the “gear” menu, they can
create a Pencil Code project that includes the following HTML.

<html>
 <body>
 <h1>My favorite things</h1>
 <p>Pizza: </p>
 <p>Watermelon: </p>
 </body>
</html>

There are enough elements in this document to try each of the jQuery examples above. Students can
enter the jQuery code directly into the “Test panel” on the right pane of Pencil Code, or they can enter the
code to run in a JavaScript or CoffeeScript program on the left.

There are two things to notice with jQuery:

1. Changes are usually made as soon as you run the code, although some changes can be
animated over time.

2. Although the changes you make affect the visible document, they do not change the HTML of the
program itself.

The HTML in a program is the “starting state” of the HTML page. Once a program adds, removes, or
alters elements, it can end up looking different from the HTML page the programmer originally wrote - but
if the program is run, it will start with the original HTML.

Using jQuery to Provide Dynamic Output

JQuery is useful for creating user interfaces with a screen of dynamic output that changes over time. For
example, with jQuery, you can keep a timer and update a number every second. Here is a JavaScript
program that does this.

12.4

$('<h1>Countdown</h1>').appendTo('body');
$('h1').css({textAlign: 'center'});
var count = 10;
forever(1, function() {
 $('h1').html(count);
 count -=1;
 if (count < 0) {
 $('h1').html('blast off!');
 stop();
 }
});

This program uses “forever” to set up a function that is called once per second until stop() is called. Here
is an explanation of each of the jQuery calls in the program.

$('<h1>Countdown</h1>').appendTo('body'); Creates an <h1> element and adds it to the <body>.

$('h1').css({textAlign: 'center'}); Sets the CSS of the <h1> so its “text-align” is “center”.

$('h1').html(count); Changes the HTML contents of the <h1> with a variable.

$('h1').html('blast off!'); Changes the HTML contents of the <h1> to “blast off!”d.

jQuery allows a program to provide real-time information on the screen by updating the contents of any
visual element.

Using jQuery Events to Collect User Input

In previous sections of this manual, input was collected by handling clicks in on-screen buttons. JQuery
makes it simple to collect input events on any set of elements using the “.on” method. Here is an
example.

$('h1').on('click', function(e) {
 log('You clicked on an h1');
}

The first argument of the “on” method is the event name and the second argument is the event handler
function. These event handlers are the same as those used since Chapter 3. The main difference here is
that it is easy to connect the same event handler to a whole set of elements at once. It is also easy to

handle events other than the “click” event. Here is a partial list of events that can be handled this way.

$('h1').on('click', function(e)...) e.pageX and e.pageY represent the page coordinates of
the click.

$('h1').on('dblclick',
function(e)...)

e.pageX and e.pageY are coordinates of a double-click.

$('h1').on('mousemove',
function(e)...)

e.pageX and e.pageY are coordinates of mouse motion.

12.5

$('h1').on('keydown',
function(e)...)

e.which is the numeric code of a key being pressed.

$('h1').on('keydown',
function(e)...)

e.which is the numeric code of a key being released.

Many other events can be captured; their names and descriptions can be found on the Web.

Combining Input and Output with jQuery

Students can create useful interactive interfaces by combining input and output with jQuery. For example,
the program below combines an on('click') event handler with .rt and .attr so that the image is spun and
switched whenever it is clicked.

var trees = [

 '/img/elm-tree',

 '/img/maple-tree',

 '/img/pine-tree',

 '/img/cypress-tree',

 '/img/oak-tree'

];

$('').appendTo('body');

$('img').on('click', function() {

 $('img').rt(360);

 $('img').attr('src', random(trees));

});

12.1.1 Suggested Timeline: 1 55-minute class period

Instructional Day Topic
2 Days Lesson Plan I

2 Days Lesson Plan II

12.1.2 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 B
(Grades 9 – 12)

Collaboration (CL) Use project collaboration tools, version control systems,
and Integrated Development Environments (IDEs) while
working on a collaborative software project.

Level 3 A
(Grades 9 – 12)

Computing Practice
Programming
(CPP)

Use advanced tools to create digital artifacts (e.g., Web
design, animation, video, multimedia)

Level 3 A
(Grades 9 – 12)

CPP Create and organize Web pages through the use of a
variety of Web programming design tools.

12.6

12.1.3 Lesson Plan I

This lesson plan focuses on designing programs using JQuery commands using the timer program.

Content details Teaching Suggestions Time
Code:

$('<h1>Countdown</h1>').appendTo('
body');
$('h1').css({textAlign:
'center'});
var count = 10;
forever(1, function() {
 $('h1').html(count);
 count -=1;
 if (count < 0) {
 $('h1').html('blast off!');
 stop();
 }
});

Output

Step 1. Demonstrate the timer
program.

Step 2. Point out the key
concepts where the various
jQuery commands are explained.

Step 3. Explain to the students
that the $ symbol calls a function.

Step 3. Show the commands and
their explanation and alt-tab
between output and the actual
program.

Step 5. Encourage students to
tinker with the code and modify
it.

Demonstration:
15 minutes

Student Practice:
30 minutes

12.7

12.1.4 Lesson Plan II

This lesson plan demonstrates the power of JQuery for traversing data stored in arrays. It addresses
traversal and showing data storage in 1D Arrays.

Content details Teaching Suggestions Time
Code:

var trees = [
 '/img/elm-tree',
 '/img/maple-tree',
 '/img/pine-tree',
 '/img/cypress-tree',
 '/img/oak-tree'
];
$('<img
src="/img/tree">').appendTo('body');
$('img').on('click', function() {
 $('img').rt(360);
 $('img').attr('src', random(trees));
});

Output

Step 1. Demonstrate the magicTree
program.

Step 2. Show students how the click
function responds to the mouse
click.

Step 3. Point out the array named
trees.

Step 4. Point to the appendTo

jQuery command.

Step 5. Encourage students to
modify the contents of the array and
notice the various kinds of images
that can be displayed.

Step 6. Encourage students of try
other jQuery commands in the code
and see the results.

Demonstration:
15 minutes

Student Practice:
30 minutes

Aii

APPENDIX A

Pencil Code – Recommended Coding Standards

Variable Naming Conventions:

● Variable and method names like countPegs, x, or total are lowercase, with
occasional upperCase characters in the middle. Some call this the interCap
method for naming variables. For example, a proper variable name is numStudents
rather than NumStudents or num_students or numstudents.

● Constant names are UPPERCASE, with an occasional UNDER_SCORE. For
example, BANK_FEE is a good constant name rather than BANKFEE or bankFee.

● There are spaces after keywords like “if” and surrounding binary operators like
“=” or “+”.

● There should be NO space after a function name like connectionCost or like sqrt.
(In CoffeeScript, no space is even allowed between the function name and the
parentheses in a function call!)

● You should use constants where appropriate.
● Every function must have a comment.
● Functions must be short: a rule of thumb is to limit them to 30 lines of code.

The following rules specify when to use upper- and lowercase letters in identifier names.

● Prefer lowercase for variable and function names (maybe with an occasional
upperCase in the middle to help separate words); for example, firstPlayer.

● When using all-uppercase for constants, use underscores to separate words for
example, CLOCK_RADIUS rather than CLOCKRADIUS.

Names must be reasonably long and descriptive. Your program is considered to be self-
documenting if its variable names are descriptive.

Braces:

● Braces should never be omitted where they are allowed. Although JavaScript
allows single-line if, while, and for statements without braces, the braces should
always be used with these statements. For example, in the example above, the
braces after the “if” are not strictly required by the language, but they should be
included. Missing braces here is one of the leading sources of bugs in
professional code! Many professionals have learned over time to always include
the braces.

● In CoffeeScript, of course, braces are not used because indents are used to
reflect the nesting structure.

Aii

Indents:

● In JavaScript, every block of code surrounded by a {} should be indented evenly
by two spaces. Even though intents are not required in JavaScript, they should
be used just as you are required to use them in CoffeeScript.

● Pencil Code by default uses 2-space indents.

Sample Code to illustrate the programming standards stated above:
// How far apart are the points which must be connected
// to the origin? Five sets them five points apart.
INCREMENT_AMOUNT = 5;

// connectionCost totals up the cost for connecting each
// point within an (x, y) rectangle to the origin, assuming
// the points are in a grid determined by INCRMENT_AMOUNT
// and the cost per unit distance is given by costPerMile.
// Only points farther than minDist are included.
function connectionCost(x, y, minDist, costPerMile) {
 var total = 0;
 for (var i = 0; i < x; i += INCREMENT_AMOUNT) {
 for (var j = 0; j < y; j += INCREMENT_AMOUNT) {
 var dist = sqrt(x * x + y * y);
 if (dist > minDist) {
 total += costPerMile * dist;
 }
 }
 }
 return total;
}

B.1	
	

APPENDIX – B

Links to the list of programs used in the manual
 Chapter Links to the programs
2 Lines and Points Lesson Plan II:

http://teachersguide.pencilcode.net/edit/chapter2/dotRow
http://teachersguide.pencilcode.net/edit/chapter2/smiley
Lesson Plan III:
http://gym.pencilcode.net/draw/#/draw/first.html
http://guide.pencilcode.net/edit/explainer/turns
http://guide.pencilcode.net/home/explainer/curves
http://activity.pencilcode.net/home/worksheet/flower.html
Lesson Plan IV:
http://teachersguide.pencilcode.net./edit/chapter2/collage

3 Input/Output Lesson Plan I: Drag and drop the blocks as shown in the lesson.
http://teachersguide.pencilcode.net./edit/chapter3/questionBot
Lesson Plan II:
http://teachersguide.pencilcode.net./edit/Chapter3/Button
http://teachersguide.pencilcode.net./edit/Chapter3/Keydown
http://teachersguide.pencilcode.net./edit/Chapter3/MouseClick
Lesson Plan III:
http://teachersguide.pencilcode.net./edit/Chapter3/imgBot
Lesson Plan IV:
http://teachersguide.pencilcode.net./edit/Chapter3/shapeBot
Additional Ex.: http://gym.pencilcode.net

4 Loops Lesson Plan I & II: http://guide.pencilcode.net/edit/loops/
Lesson Plan III:
http://teachersguide.pencilcode.net./edit/chapter4/rainbowCircles
Lesson Plan IV:
http://teachersguide.pencilcode.net./edit/chapter4/QuestionBot
Lesson Plan V:
http://teachersguide.pencilcode.net/edit/chapter4/interactionWhile
Lesson Plan VI:
http://teachersguide.pencilcode.net./edit/chapter4/forever

5 Functions Lesson Plan I:
http://teachersguide.pencilcode.net/edit/functions/remotecontrol
Lesson Plan II:
http://teachersguide.pencilcode.net/edit/functions/ShapeBot
Lesson Plan III:
http://teachersguide.pencilcode.net./edit/chapter5/starsInTheSky_I
http://teachersguide.pencilcode.net./edit/Chapter5/StarsInTheSkyII
http://teachersguide.pencilcode.net./edit/Chapter5/StarsInTheSkyIII
Lesson Plan IV:
http://teachersguide.pencilcode.net./edit/chapter5/starsInTheSky_I
http://teachersguide.pencilcode.net./edit/functions/moon

6 Selection
Statements

Lesson Plan I:
http://teachersguide.pencilcode.net./edit/chapter6/WakeUp
http://teachersguide.pencilcode.net./edit/chapter6/pattern
http://teachersguide.pencilcode.net./edit/chapter6/DiceRoll
Lesson Plan II:

B.2	
	

 Chapter Links to the programs
http://teachersguide.pencilcode.net./edit/chapter6/questionbot
Lesson Plan III:
http://teachersguide.pencilcode.net./edit/chapter6/genieComplete
Lesson Plan IV:
http://teachersguide.pencilcode.net./edit/chapter6/hiLo
Lesson Plan V:
http://activity.pencilcode.net/home/worksheet/race.html

7 Learning a Second
Language:
JavaScript

Lesson Plan I:
http://teachersguide.pencilcode.net./edit/chapter7/spiral
http://teachersguide.pencilcode.net./edit/chapter7/RandomSpirals
Lesson Plan II:
http://teachersguide.pencilcode.net./edit/chapter7/brokenScene

8 Introducing Lists
and One-
Dimensional Arrays

Lesson Plan I:
http://teachersguide.pencilcode.net./edit/chapter4/rainbowCircles
Lesson Plan II:
http://teachersguide.pencilcode.net./edit/chapter7/dotOfArrays
Lesson Plan III:
http://teachersguide.pencilcode.net./edit/chapter8/push_pop
Lesson Plan IV:
http://teachersguide.pencilcode.net./edit/chapter8/bar
Lesson Plan V:
http://teachersguide.pencilcode.net./edit/chapter8/pie
Lesson Plan VI:
http://teachersguide.pencilcode.net./edit/chapter8/searchtxt

9 Nested Loops Lesson Plan I: http://teachersguide.pencilcode.net./edit/2DArray/box
http://teachersguide.pencilcode.net./edit/chapter9/nest
Lesson Plan II:
http://teachersguide.pencilcode.net./edit/chapter9/colorfulMatrix
http://teachersguide.pencilcode.net./edit/chapter9/triangle
http://teachersguide.pencilcode.net./edit/chapter9/XMasTree

10 Recursion Lesson Plan I:
http://teachersguide.pencilcode.net./edit/chapter10/recursiveSquares
Lesson Plan II:
http://teachersguide.pencilcode.net./edit/chapter10/spiral

11 Building a Website:
Using HTML, CSS
in the Pencil Code
Environment

Lesson Plan I:
http://teachersguide.pencilcode.net./edit/chapter11/FirstPageArtGaller
y
Lesson Plan II:
http://teachersguide.pencilcode.net./edit/chapter11/OnePage
Lesson Plan III:
http://teachersguide.pencilcode.net./edit/chapter11/FirstPageArtGaller
yDesigns
Lesson Plan IV:
http://teachersguide.pencilcode.net./edit/chapter11/slideshow

12 Traversing Data
Using JQuery

Lesson Plan I:
http://teachersguide.pencilcode.net./edit/chapter12/timer
Lesson Plan II:
http://teachersguide.pencilcode.net/edit/chapter12/magicTree

B.3	
	

	

C.1	
	

Appendix C - Pacing Guide
1 semester course

Almost 12 Weeks:

Time Pencil Code
Topic

Programming
Concept

Examples / Comments
etc.

3 days

Basic Blocks:
Move, Art, Text,
Images

Sequencing

Chapter 2,3

2 days

Blocks revisited:
Sound, Text,
Controls

Input / Output

Chapter 3
Sample programs (2)
Spiral Program:
Beginnings of a
QuestionBot.

5 days

Operators,
Controls

Iterations

Battery of programs
Spiral Program:
QuestionBot

2 days

Transitioning to
text-mode
(CoffeeScript)

Iterations

Practice tracing loops
Battery of programs

3 days

Operators

Functions

Battery of programs
Spiral Program:
QuestionBot
Creation of pieces of
scenes.
Chapter 5
(One large program)

3 days

CoffeeScript
programming

Iterative Development
process

Design a scene.
(Use the Middlebury College course
on Pencil Code for ideas.)
Chapter 5

5 days

Control
(CoffeeScript)

Conditionals

Battery of Programs
(Chapter 6)
Spiral Program:
Questionbot Complete.

	

C.2	
	

Time Pencil Code
Topic

Programming
Concept

Examples / Comments
etc.

5 days

HTML – CSS

Building a website

Build a simple page
using HTML blocks in
Pencil Code. Chapter 11

3 days

JavaScript
programming

Iterative Development
process

Design a complex
pattern.
Or
Design a Scene lab
Chapter 7, 5

5 days

Block – text mode
(JavaScript)

Arrays & Nested Loops

Battery of simple
programs – Chapter 8
Hi Lo – Chapter 6
(Code in JavaScript)

5 days

HTML- CSS –
Block language
based program

Embedding a program
in a HTML file

Build a website (multiple
pages) with embedded
JavaScript program.
Chapter 11

3 days

Text mode
(JavaScript)

A light introduction to
Recursion

Chapter 10
A battery of 3 programs.

5 days

Block – text mode

Use of JQuery

Chapter 12

5 days

Large Project

Putting it all together.
(No use of HTML)

Complex Patterns,
ASCII Art

5 days Open-ended
partner project

Putting it all together
(Use of HTML)

Art / Music / Stories

