Kap. 4: Suchen in Datenmengen

Professor Dr. Petra Mutzel

Lehrstuhl für Algorithm Engineering, LS11

Fakultät für Informatik, TU Dortmund

9. VO TEIL 2 DAP2 SS 2009 14. Mai 2009

Suchen in Datenmengen

- Motivation: Suchen in Datenbanken, in Wörterbüchern, im WWW, ...
- hier: nur elementare Suchverfahren (nur Vergleichsoperationen erlaubt)
- später: auch arithmetische Operationen (um aus Suchschlüssel Speicheradresse zu berechnen)

Kap 4.1: Suchen in sequentiell gespeicherten Folgen

- Gegeben: Datenelemente sind in Feld A[1],...,A[n] gespeichert
- Schlüssel sind ansprechbar über A[i].key

 Aufgabe: Suche in A ein Element mit Schlüssel s, d.h. ein i mit A[i].key = s

Überblick

Lineare Suche

- Binäre Suche
- Exkurs: Insertion-Sort

Geometrische Suche

Motivation

"Warum soll mich das interessieren?"

Suchen ist "das Wichtigste" überhaupt!

"Warum soll ich heute hier bleiben?"

Beliebte Klausurfragen!!!

...und ein interessantes Rätsel...

Ein kleines Rätsel

 Wie oft muss man ein Blatt Papier (0,1 mm dick) falten, bis es eine Dicke erreicht, die der Entfernung von Erde zu Mond entspricht?

(363.258 km = 363.258.000.000 mm)

4.1.1 Lineare Suche

"Naives Verfahren"

 Idee: Durchlaufe A von vorn nach hinten und vergleiche jeden Schlüssel mit dem Suchschlüssel s, solange bis s gefunden wird.

Analyse:

- Best Case: C_{best}(n)=1
- Worst Case: C_{worst}(n)=n

4.1.1 Lineare Suche ff

 Average Case: Annahme: jede Anordnung ist gleichwahrscheinlich:

$$C_{avg}(n) = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$$

Diskussion:

- lange Suchzeit → nur für kleine n empfehlenswert
- einfache Methode auch für einfach verkettete Listen geeignet

4.1.2 Binäre Suche / Idee

Annahme: die Liste ist bereits sortiert:

 $A[1].key \le A[2].key... \le A[n].key$

Divide-and-Conquer: Vergleiche den Suchschlüssel s mit dem Schlüssel des Elements in der Mitte m

- Falls A[m].key==s? Treffer → STOP
- Falls s ist kleiner:
 - Durchsuche Elemente links von m
- Falls s ist größer:
 - Durchsuche Elemente rechts von m

BinarySearch (nicht-rekursiv)

```
Procedure BinarySearch(A,s,l,r)
(1) var Index m
(2) while l \leq r do {
(3) m:= \lfloor (l+r)/2 \rfloor // Mitte bestimmen
(4) if A[m].key==s then return m
(5) if A[m].key>s then r:=m-1
(6) else
                         l:=m+1 // A[m].key<s
(8) return 0
```

Aufruf: BinarySearch(A,s,1,n)

Skript-Variante: BinarySearch (nicht-rek.)

```
Procedure BinarySearch(A,s,l,r)
```

- (1) var Index m
- (2) repeat
- (3) $m := \lfloor (l+r)/2 \rfloor$
- (4) if s < A[m].key then r = m-1
- (5) **else** l = m+1
- (6) until s == A[m].key or l > r
- (7) if s==A[m].key then return m
- (8) **else** return 0

Aufruf: BinarySearch(A,s,1,n)

Analyse von BinarySearch

Annahmen:

- Skript-Variante: nicht-rekursiv
- die Daten sind schon sortiert
- wir zählen nur die Vergleiche in Zeile (4)
- Annahme: n=2^k-1 für geeignetes k

Best Case: $C_{best}(n)=1=\Theta(1)$

Worst Case: C_{worst}(n)=?

$$2^k - 1 = \sum_{i=1}^k 2^{i-1} = n$$

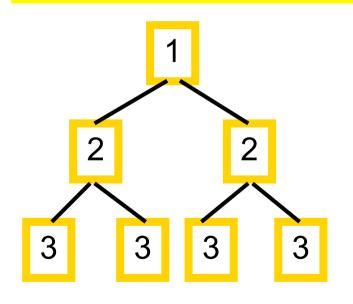
für erfolgreiche und erfolglose Suche

Worst Case: $C_{worst}(n) = log (n+1) = \Theta(log n)$

Position:

1 2 3 4 5 6 7

Anzahl Vergleiche: 3 2 3 1 3 2 3



weiter: nächste VO

Anzahl Schritte	Anzahl Positionen	Summe
1	1=20	1
2	2=21	3
3	4=22	7
k	2 ^k -1	$\sum 2^{i-1}$