Kap. 7.3 Enumerationsverfahren

Kap. 7.4 Branch-and-Bound

Kap. 7.5 Dynamische Programmierung

Professor Dr. Petra Mutzel

Lehrstuhl für Algorithm Engineering, LS11

Fakultät für Informatik, TU Dortmund

ACHTUNG: Die VO am Dienstag, dem 21.7. entfällt

24. VO (vorletzte) DAP2 SS 2009 16. Juli 2009

DAP2-Klausur

- Stoff der Klausur: Stoff der Vorlesung und der Übungen (nicht: Kap. 3.3: Externe Sortierverfahren),
 - für die Klausur am 31. Juli 2009 gilt: nicht Kapitel 7:
 Optimierung
- Zeit: 10:15 Uhr 11:45 Uhr (90 Minuten)
 - bitte ab 10:00 Uhr vor Ort sein
- Wo? Für die Hörsaaleinteilung beachten Sie bitte die Information auf den Web-Seiten

Anmeldung für IKT, ET/IT bei Problemen mit BOSS

- bitte mit Anmeldeformular bis spätestens 24.7. anmelden
- dabei: Studienrichtung auswählen (aber nur aus systemischen Gründen)

Überblick

- Enumerationsverfahren
 - Beispiel: 0/1-Rucksackproblem
- Branch-and-Bound
 - Beispiel: 0/1-Rucksackproblem
 - Beispiel: ATSP
- Dynamische Programmierung
 - Beispiel: 0/1-Rucksackproblem

Kap. 7.3: Enumerationsverfahren

Enumerationsverfahren

 Exakte Verfahren, die auf einer vollständigen Enumeration beruhen

 Eignen sich für kombinatorische Optimierungsprobleme: hier ist die Anzahl der zulässigen Lösungen endlich.

Definition: Kombinatorisches Optimierungsproblem

Gegeben sind:

- endliche Menge E (Grundmenge)
- Teilmenge I der Potenzmenge 2^E von E (zulässige Mengen)
- Kostenfunktion c: $E \rightarrow K$

Gesucht ist: eine Menge $I^* \in I$, so dass

$$c(I^*) = \sum_{e \in I^*} c(e)$$

so groß (klein) wie möglich ist.

Enumerationsverfahren

"Exhaustive Search"

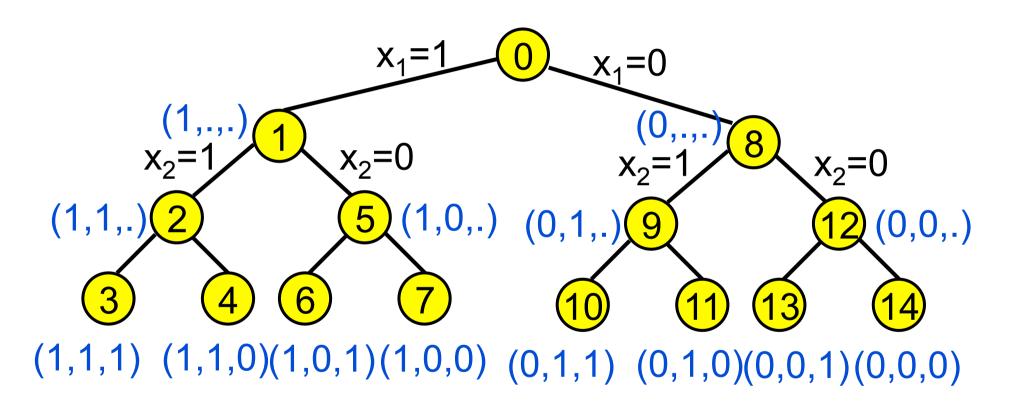
- Idee: Enumeriere über die Menge aller zulässigen Lösungen und bewerte diese mit der Kostenfunktion
- Die am besten bewertete Lösung ist die optimale Lösung.
- Problem: Bei NP-schwierigen OP ist die Laufzeit dieses Verfahrens nicht durch ein Polynom in der Eingabegröße beschränkt (sondern exponentiell).

Enumerationsverfahren für 0/1-Rucksackproblem

- Idee: Enumeriere über alle Teilmengen einer N-elementigen Menge.
- Für alle Gegenstände i=1...N:
 - Fixiere zusätzlich zu den bisherigen auch noch Gegenstand i: Löse das kleinere Problem, das nur noch aus N-i Gegenständen besteht.

Divide & Conquer-Prinzip

Bsp: Enumeration durch Backtracking: Suchbaum für N=3



"Backtracking-Verfahren"

Realisierung der Enumeration für 0/1-Rucksackproblem

- x: Lösungsvektor mit x_i =1 genau dann wenn Gegenstand i eingepackt wird, und x_i =0 sonst
- z: Anzahl der bereits fixierten Variablen in x
- xcost: Gesamtkosten (Wert) der Lösung x
- xweight: Gesamtgewicht der Lösung x

- Enum(z,xcost,xweight,x)
- Aufruf: Enum(0,0,0,x)

Algorithmus: Enum(z,xcost, xweight,x)

```
(1) if xweight \leq K then {
(2)
       if xcost > maxcost then {
(3)
         maxcost:=xcost; bestx:=x
(4)
(5)
      for i:=z+1,...,N do {
(6)
         x[i]:=1
(7)
         Enum(i, xcost+c[i], xweight+w[i], x)
(8)
         x[i]:=0
```


Enumerationsverfahren: Beispiel

Reihenfolge der ausgewerteten Rucksäcke für n=3:

- 000
- 100
- 110
- 111
- 101
- 010
- 011
- 001

Diskussion Enumerationsverfahren

Laufzeit: O(2^N)

 Wegen der exponentiellen Laufzeit sind Enumerationsverfahren i.A. nur für kleine Instanzen geeignet. Bereits für N≥50 ist das Verfahren nicht mehr praktikabel.

Diskussion Enumerationsverfahren

- Zusatzidee: k-elementige Mengen, die nicht in den Rucksack passen, müssen nicht aufgezählt werden
- In vielen Fällen kann die Anzahl der ausprobierten Möglichkeiten deutlich verringert werden.

 Systematische Verkleinerung des Suchraumes bieten Branch-and-Bound Algorithmen

Kap. 7.4: Branch-and-Bound

Branch-and-Bound

- Idee: Eine spezielle Form der beschränkten Enumeration, die auf dem Divide&Conquer Prinzip basiert.
- Frühes Ausschließen ganzer Lösungsgruppen in der Enumeration durch "Bounding".
- Man sagt: L ist eine untere Schranke für eine Instanz P eines OPs, wenn für den optimalen Lösungswert gilt: c_{opt}(P) ≥ L ist. U ist eine obere Schranke, wenn gilt c_{opt}(P) ≤ U.

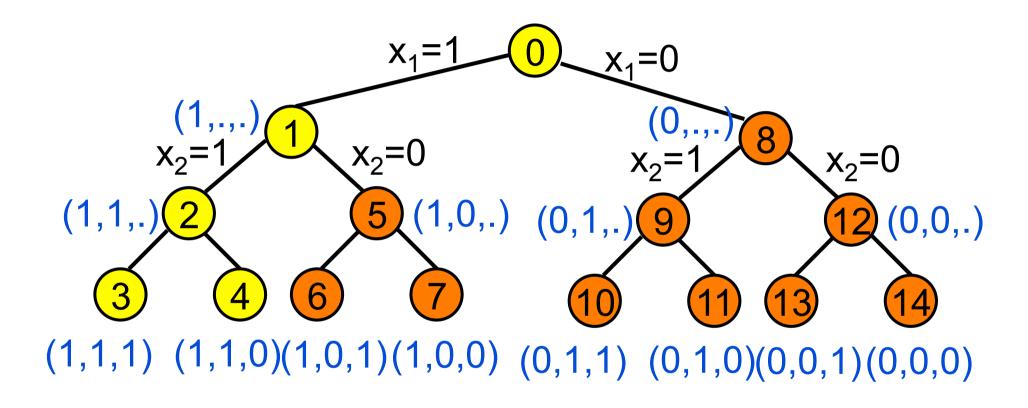
Branch-and-Bound

- Idee: An den entstehenden Knoten des Suchbaums wird geprüft, ob die dazugehörige Teillösung x' weiterverfolgt werden muss.
- Hierzu wird an jedem Knoten eine untere Schranke L der Teillösung (lower bound) und eine obere Schranke U (upper bound) berechnet.
- L (für Max.probleme) kann mit einer beliebigen Heuristik (z.B. Greedy) berechnet werden
- U (für Max.probleme) gibt eine Schranke für den besten Wert an, der von x' erreicht werden kann.

Gerüst für Branch-and-Bound Algorithmen für Maximierungsprobleme

- Berechne eine zulässige Startlösung mit Wert L und eine obere Schranke U für alle möglichen Lösungen.
- Falls $L = U \rightarrow STOP$: gefundene Lösung ist optimal.
- **Branching:** Partitioniere die Lösungsmenge (in zwei oder mehr Teilprobleme).
- Search: Wähle eines der bisher erzeugten Teilprobleme.
- **Bounding:** Berechne für eine dieser Teilmengen T_i je eine untere und obere Schranke L_i und U_i . Sei $L:=max(L,L_i)$ der Wert der besten bisher gefundenen Lösung. Falls $U_i \le L$, braucht man die Teillösungen in der Teilmenge T_i nicht weiter betrachten.

Bsp: Enumeration durch Backtracking: Suchbaum für N=3



Mittels Branch-and-Bound versucht man ganze Teilbäume im Suchbaum abzuschneiden ohne diese auswerten zu müssen

Beispiel: Branch-and-Bound für 0/1- Rucksackproblem

- Berechnung einer zulässigen Startlösung:
- z.B. Greedy-Heuristik \rightarrow L

Berechnung einer oberen Schranke U: später!

Beispiel: Branch-and-Bound für 0/1- Rucksackproblem

- **Branching:** Wir zerlegen das Problem in zwei Teilprobleme: Wir wählen Gegenstand i und wählen es für Teilproblem T_{1i} aus (d.h. x_i =1) und für T_{2i} explizit nicht aus (d.h. x_i =0).
- Für T_{1i} muss das Gewicht von Gegenstand i von der Rucksackgröße abgezogen werden und der Wert zum Gesamtwert hinzuaddiert werden.

Petra Mutzel

 Danach streichen wir Gegenstand i aus unserer Liste.

Branch-and-Bound für 0/1-Rucksackproblem

- Search: Wähle eines der bisher erzeugten
 Teilprobleme, z.B. dasjenige mit der besten
 (größten) oberen Schranke (wir hoffen, dass wir
 hier die beste Lösung finden werden).
- Bounding: Berechne für eine dieser Teilmengen
 T_i je eine untere und obere Schranke L_i und U_i.
 Sei L:=max(L,L_i) der Wert der besten bisher
 gefundenen Lösung. Falls U_i≤L, braucht man die
 Teillösungen in der Teilmenge T_i nicht weiter
 betrachten.

Berechnung einer oberen Schranke für 0/1-Rucksackproblem

- Sortierung nach Nutzen $f_i := Wert c_i$, / Gewicht w_i
- Seien i₁,...,i_n die in dieser Reihenfolge sortierten Gegenstände
- Berechne das maximale r mit w₁+...+w_r≤ K
- Gegenstände 1,...,r werden eingepackt (also x_i=1 für i=1,...,r)
- Danach ist noch Platz für K- $(w_1+...+w_r)$ Einheiten an Gegenständen. Diesen freien Platz "füllen" wir mit (K- $(w_1+...+w_r))$ / w_{r+1} Einheiten von Gegenstand r+1 auf.

Behauptung: Es existiert keine bessere Lösung!

Berechnung einer oberen Schranke für 0/1-Rucksackproblem

- Begründung: Die ersten r Gegenstände mit dem höchsten Nutzen pro Einheit sind im Rucksack enthalten. Und zwar jeweils so viel davon, wie möglich ist.
- Achtung: vom letzten Gegenstand r+1 wird eventuell ein nicht-ganzzahliger Teil eingepackt
- deswegen ist die generierte Lösung i.A. nicht zulässig (sie erfüllt die Ganzzahligkeitsbedingung i.A. nicht)
- Aber es gilt: der berechnete Lösungswert der Gegenstände im Rucksack ist mindestens so groß wie die beste Lösung.

Berechnung einer oberen Schranke für unser Beispiel

K = 17

Gegenstand	а	b	С	d	е	f	g	h
Gewicht	3	4	4	6	6	8	8	9
Wert	3	5	5	10	10	11	11	13
Nutzen	1	1,25	1,25	1,66	1,66	1,37	1,37	1,44

- Sortierung nach Nutzen:= Wert $c_{i,}$ / Gewicht $w_{i:}$ d,e,h,f,g,b,c,a
- Wir packen also in den Rucksack: x_d=x_e=1
- Platz frei für 5 Einheiten: x_h = 5/9 Einheiten dazu
- Wert: 10+10+5/9(13)<20+7,3=27,3
- Obere Schranke für beste Lösung: 27

Berechnung einer oberen Schranke für 0/1-Rucksackproblem

- FALL: Es besteht bereits eine Teillösung, denn wir befinden uns mitten im Branch-and-Bound Baum.
- Betrachte jeweils die aktuellen Teilprobleme, d.h. sobald ein Gegenstand als "eingepackt" fixiert wird, wird K um dessen Gewicht reduziert. Falls x_i=0 fixiert wird, dann wird der Gegenstand aus der Liste der Gegenstände gestrichen.

Petra Mutzel

 Berechnung der oberen Schranke auf den noch nicht fixierten Gegenständen: wie vorher

Branch-and-Bound für ATSP

 ATSP: wie TSP, jedoch auf gerichtetem Graphen: die Kantenkosten sind hier nicht symmetrisch: c(u,v) ist i.A. nicht gleich c(v,u).

Branch-and-Bound für ATSP

Asymmetrisches Handlungsreisendenproblem, ATSP

- Gegeben: Vollständiger gerichteter Graph G=(V,E) mit Kantenkosten c_e (geg. durch Distanzmatrix zwischen allen Knotenpaaren)
- Gesucht: Tour T (Kreis, der jeden Knoten genau einmal enthält) mit minimalen Kosten $c(T)=\sum c_e$

I.A. gilt hier $c(u,v) \neq c(v,u)$

Gerüst für Branch-and-Bound Algorithmen für Min mierungsprobleme

- Berechne eine zulässige Startlösung mit Wert Uund eine untere Schranke Lfür alle möglichen Lösungen.
- Falls $L = U \rightarrow STOP$: gefundene Lösung ist optimal.
- Branching: Partitioniere die Lösungsmenge (in zwei oder mehr Teilprobleme).
- Search: Wähle eines der bisher erzeugten Teilprobleme.
- Bounding: Berechne für eine dieser Teilmengen T_i je eine untere und obere Schranke L_i und U_i. Sei U der Wert der besten bisher gefundenen Lösung. Falls U≤L_i braucht man die Teillösungen in der Teilmenge T_i nicht weiter betrachten.

Gerüst für Branch-and-Bound Algorithmen für ATSP

- **Branching:** Partitioniere die Lösungsmenge, indem jeweils für eine ausgewählte Kante e=(u,v) zwei neue Teilprobleme erzeugt werden:
- T_{1e}: (u,v) wird in Tour aufgenommen; in diesem Fall können auch alle anderen Kanten (u,w) und (w,v) für alle w∈V ausgeschlossen werden.
- T_{2e}: (u,v) wird nicht in Tour aufgenommen.

Gerüst für Branch-and-Bound Algorithmen für ATSP

- **Bounding:** Berechne untere Schranke, z.B. durch:
- Für alle Zeilen u der Distanzmatrix berechne jeweils das Zeilenminimum.
- Denn: Zeile u korrespondiert zu den von u ausgehenden Kanten. In jeder Tour muss u genau eine ausgehende Kante besitzen: d.h. ein Wert in Zeile u wird auf jeden Fall benötigt.

ATSP-Beispiel

$$D = \begin{pmatrix} \infty & 5 & 1 & 2 & 1 & 6 \\ 6 & \infty & 6 & 3 & 7 & 2 \\ 1 & 4 & \infty & 1 & 2 & 5 \\ 4 & 3 & 3 & \infty & 5 & 4 \\ 2 & 5 & 1 & 2 & \infty & 5 \\ 6 & 2 & 6 & 4 & 5 & \infty \end{pmatrix}$$

Zeilenminimumsumme := 1+2+1+3+1+2 = 10

alternativ: Spaltenminimumsumme := 1+2+1+1+1+2=8

Gerüst für Branch-and-Bound Algorithmen für ATSP

- **Bounding:** Berechne untere Schranke, z.B. durch:
- Für alle Zeilen u der Distanzmatrix berechne jeweils das Zeilenminimum.
- Denn: Zeile u korrespondiert zu den von u ausgehenden Kanten. In jeder Tour muss u genau eine **aus**gehende Kante besitzen: d.h. ein Wert in Zeile u wird auf jeden Fall benötigt.
- Dasselbe kann man für alle Spalten machen: In jeder Tour muss u genau eine eingehende Kante besitzen.
- L := max (Zeilenminsumme, Spaltenminsumme)

Kap. 7.4 Dynamische Programmierung

Dynamische Programmierung

Dynamic Programming, DP

- Idee: Zerlege das Problem in kleinere Teilprobleme P_i ähnlich wie bei Divide & Conquer.
- Allerdings: die P_i sind hier abhängig voneinander (im Gegensatz zu Divide & Conquer)
- Dazu: Löse jedes Teilproblem und speichere das Ergebnis E_i so ab dass E_i zur Lösung größerer Probleme verwendet werden kann.

Dynamische Programmierung

Allgemeines Vorgehen:

- Wie ist das Problem sinnvoll einschränkbar bzw. zerlegbar? Definiere den Wert einer optimalen Lösung rekursiv.
- Bestimme den Wert der optimalen Lösung "bottom-up".

Beispiel: All Pairs Shortest Paths

All-Pairs Shortest Paths (APSP)								
Gegeben:	en: gerichteter Graph G = (V,A)							
	Gewichtsfunktion w : A!R ₀ ⁺							
Gesucht:	ein kürzester Weg von u nach v für jedes Paar $u, v \in V$							

Algorithmus von Floyd-Warshall

Idee: Löse eingeschränkte Teilprobleme:

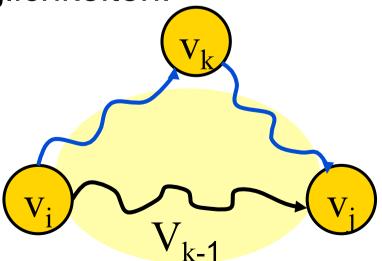
- Sei $V_k:=\{v_1,...,v_k\}$ die Menge der ersten k Knoten
- Finde kürzeste Wege, die nur Knoten aus V_k als Zwischenknoten benutzen dürfen
- Zwischenknoten sind alle Knoten eines Weges außer die beiden Endknoten
- Sei $d_{ij}^{(k)}$ die Länge eines kürzesten Weges von v_i nach v_j , der nur Knoten aus V_k als Zwischenknoten benutzt

Berechnung von dij (k)

Berechnung von $d_{ij}^{(k)}$:

- $d_{ij}^{(0)} = w(v_i, v_j)$
- Bereits berechnet: d_{ij}(k-1) für alle 1≤i,j≤n

Für einen kürzesten Weg von v_i nach v_j gibt es zwei Möglichkeiten:



Berechnung von dii (k)

Zwei Möglichkeiten für kürzesten Weg von v_i nach v_j :

- Der Weg p benutzt v_k nicht als Zwischenknoten: dann ist $d_{ij}^{(k)} = d_{ij}^{(k-1)}$
- Der Weg p benutzt v_k als Zwischenknoten: dann setzt sich p aus zwei kürzesten Wegen über v_k zusammen, die jeweils nur Zwischenknoten aus V_{k-1} benutzen: $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$
- $d_{ij}^{(k)} := \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
- Bellmansche Optimalitätsgleichung: der Wert einer optimalen Lösung eines Problems wird als einfache Funktion der Werte optimaler Lösungen von kleineren Problemen ausgedrückt.

Algorithmus von Floyd-Warshall

ist dynamische Programmierung:

```
(1) for i=1 to n do
    for j:=1 to n do
(3) d_{ii}^{(0)} := w(v_i, v_i)
(5) for k=1 to n do
     for i:=1 to n do
(7)
           for j:=1 to n do
              d_{ii}^{(k)} := \min (d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
(8)
```

DP für 0/1-Rucksackprobleme

Rucksackproblem HIER:

- Geg.: n Gegenstände mit Größe (Gewicht) w. und Wert ci, und ein Rucksack der Größe (Gewichtslimit) K, wobei $w_i, c_i, K \in \mathbb{Z}$.
- Gesucht: Menge der in den Rucksack gepackten Gegenstände mit maximalem Gesamtwert; dabei darf das Gesamtgewicht den Wert K nicht überschreiten.

ACHTUNG HIER: Alle Eingabewerte sind ganzzahlig!

DP für 0/1-Rucksackproblem

Wie können wir ein Rucksackproblem sinnvoll einschränken?

- Betrachte nur die ersten k der Objekte
- Frage: Was nützt uns die optimale Lösung des eingeschränkten Problems für die Lösung des Problems mit k+1 Objekten?
- Lösung: Variiere die Anzahl der betrachteten Objekte und die Gewichtsschranke

- **Def.:** Für ein festes $i \in \{1,...,n\}$ und ein festes $W \in \{0,...,K\}$ sei $\mathbf{R(i,W)}$ das eingeschränkte Rucksackproblem mit den ersten i Objekten mit Gewichten w_j , Werten c_j (j=1,...,i) und Gewichtslimit W.
- Wir legen eine Tabelle T(i,W) an für die Werte i=0,...,n und W=0,...,K, wobei an Position T(i,W) folgende Werte gespeichert werden:
- F(i,W): optimaler Lösungswert für Problem R(i,W)
- D(i,W): die dazugehörige optimale Entscheidung über das i-te Objekt

- D(i,W)=1: wenn es in R(i,W) optimal ist, das i-te Element einzupacken
- D(i,W)=0: sonst
- F(n,K) ist dann der Wert einer optimalen
 Rucksackbepackung für unser Originalproblem

- F(i,W): optimaler Lösungswert für Problem R(i,W)
- D(i,W): die dazugehörige optimale Entscheidung über das i-te Objekt

Wie können wir den Wert F(i,W) aus bereits bekannten Lösungen der Probleme F(i-1,W') berechnen?

$$F(i,W) := max \{ F(i-1,W-w_i)+c_i \}, F(i-1,W) \}$$

entweder i-tes Element wird eingepackt: dann muss ich die optimale Lösung betrachten, die in R(i-1,W-w_i) gefunden wurde.

oder i-tes Element wird nicht eingepackt: dann erhält man den gleichen Lösungswert wie bei R(i-1,W).

Wie können wir den Wert F(i,W) aus bereits bekannten Lösungen der Probleme F(i-1,W') berechnen?

$$F(i,W) := max \{ F(i-1,W-w_i)+c_i \}, F(i-1,W) \}$$

Bellmansche Optimalitätsgleichung

Wie können wir den Wert F(i,W) aus bereits bekannten Lösungen der Probleme F(i-1,W') berechnen?

```
F(i,W) := \max \{ F(i-1,W-w_i)+c_i \}, F(i-1,W) \}
```

Randwerte:

- F(0,W) := 0 für alle W:=0,...,K
- Falls W<w_i, dann passt Gegenstand i nicht mehr in den Rucksack für das eingeschränkte Problem mit Gewicht W≤K.

Algorithmus DP für Rucksackproblem

```
(1) for W:=0 to K do F(0,W) := 0 // Initialisierung
(2) for i = 1 to n do {
      for W:=0 to w<sub>i</sub>-1 do // Gegenstand i zu groß
(4)
          F(i,W) := F(i-1,W); D(i,W) := 0
(5)
      for W:=w; to K do {
(6)
         if F(i-1,W-w_i)+c_i > F(i-1,W) then {
                F(i,W):=F(i-1,W-w_i)+c_i; D(i,W):=1
(7)
                                         D(i,W) := 0
(8)
        else \{ F(i,W) := F(i-1,W); \}
(9) \}
```


Beispiel:

K=9

n=7

i	1	2	3	4	5	6	7
c_{i}	6	5	8	9	6	7	3
\mathbf{W}_{i}	2	3	6	7	5	9	4

i \ W	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	6	6	6	6	6	6	6	6
2	0	0	6	6	6	11	11	11	11	11
3	0	0	6	6	6	11	11	11	14	14
4	0	0	6	6	6	11	11	11	14	15
5	0	0	6	6	6	11	11	12	14	15
6	0	0	6	6	6	11	11	12	14	15
7	0	0	6	6	6	11	11	12	14	15

Frage: Wie können wir aus dem optimalen Lösungswert die Lösung berechnen?

Wir haben in T[i,W] gespeichert:

- F(i,W) und D(i,W)
- Wir wissen: F(n,K) enthält den optimalen Lösungswert für unser Originalproblem

Für Problem R(n,K): Starte bei F(n,K):

- Falls D(n,K)=0, dann packen wir Gegenstand n nicht ein. Gehe weiter zu Problem R(n-1,K).
- Falls D(n,K)=1, dann packen wir Gegenstand n ein. Damit ist das für die ersten n-1 Gegenstände erlaubte Gewichtslimit $K-w_n$. Gehe weiter zu Problem $R(n-1,K-w_n)$

Beispiel: K=9 n=7

i	1	2	3	4	5	6	7
c_{i}	6	5	8	9	6	7	3
$\mathbf{W_{i}}$	2	3	6	7	5	9	4

$i \setminus W$	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	6	6	6	6	6	6	6	6
2	0	0	6	6	6	11	11	11	11	11
3	0	0	6	6	6	11	11	11	14	14
4	0	0	6	6	6	11	11	11	14	15
5	0	0	6	6	6	11	11	12	14	15
6	0	0	6	6	6	11	11	12	14	15
7	0	0	6	6	6	11	11	12	14	15

Die optimale Lösung besteht aus den Objekten 1 und 4

- Laufzeit der Berechnung der Werte F(i,W) und D(i,W): O(nK)
- Laufzeit der Berechnung der Lösung aus der Tabelle: O(n)
- Frage: Ist diese Laufzeit polynomiell?
- Antwort: NEIN, denn die Rechenzeit muss auf die Länge (genauer die Bitlänge) der Eingabe bezogen werden.

- Antwort: NEIN, denn die Rechenzeit muss auf die Länge (genauer die Bitlänge) der Eingabe bezogen werden.
- Wenn alle Zahlen der Eingabe nicht größer als 2ⁿ sind und K=2ⁿ, dann ist die Länge der Eingabe Θ(n²), denn: (2n+1 Eingabezahlen)*(Kodierungslänge)
- Aber die Laufzeit ist von der Größenordnung n2ⁿ und damit exponentiell in der Inputlänge.
- Wenn aber alle Zahlen der Eingabe in $O(n^2)$ sind, liegt die Eingabelänge im Bereich zwischen $\Omega(n)$ und $O(n \log n)$. Dann ist die Laufzeit in $O(n^3)$ und damit polynomiell.

- Rechenzeiten, die exponentiell sein können, aber bei polynomiell kleinen Zahlen in der Eingabe polynomiell sind, heißen pseudopolynomiell.
- Theorem: Das 0/1-Rucksackproblem kann mit Hilfe von Dynamischer Programmierung in pseudopolynomieller Zeit gelöst werden.
- In der Praxis kann man Rucksackprobleme meist mit Hilfe von DP effizient lösen, obwohl das Problem NP-schwierig ist (da die auftauchenden Zahlen relativ klein sind).

- Das besprochene DP-Verfahren heißt Dynamische Programmierung durch Gewichte.
- Denn wir betrachten die Lösungswerte als Funktion der Restkapazitäten im Rucksack.
- Durch Vertauschung der Rollen von Gewicht und Wert kann auch Dynamische Programmierung durch Werte durchgeführt werden.
- Dort betrachtet man alle möglichen Lösungswerte und überlegt, wie man diese mit möglichst wenig Gewicht erreichen kann.

 In der Praxis kann man Rucksackprobleme meist mit Hilfe von DP effizient lösen, obwohl das Problem NP-schwierig ist (da die auftauchenden Zahlen i.A. polynomiell in n sind).