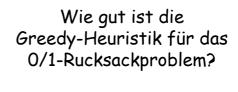


Greedy-Heuristik an Beispiel _{K=17} für das O/1-Rucksackproblem

Gegenstand	а	b	С	d	е	f	g	h
Gewicht	3	4	4	6	6	8	8	9
Wert	3	5	5	10	10	11	11	13
Nutzen	1	1,25	1,25	1,66	1,66	1,37	1,37	1,44

- Sortierung nach Nutzen:= Wert c_i / Gewicht w_i ergibt: d,e,h,f,g,b,c,a
- · Wir packen also in den Rucksack:



IHRE VORSCHLÄGE ©

Beispielinstanz für O/1-Rucksackproblem

- N Gegenstände mit Gewichten und Werten $w_i = c_i = 1$ für $i=1,\dots,N-1,c_N=K-1$ und $w_n=K=MN$, wobei M eine sehr große Zahl ist; der Rucksack hat Größe K (also sehr groß).
- Greedy packt die ersten N-1 Gegenstände in den Rucksack; kein Platz mehr für N-tes Element. Greedy-Lösungswert: N-1
- Optimale Lösung packt nur N-tes Element ein; Lösungswert: K-1=MN-1

Zusammenfassung

- TSP: NN-Heuristik: der berechnete Lösungswert kann beliebig weit vom optimalen Lösungswert entfernt sein.
- Bin-Packing: die von uns berechnete FF-Heuristik berechnete einen Lösungswert von 17, während der Optimalwert 10 war.
- Rucksackproblem: der von der Greedy-Heuristik berechnete Wert kann beliebig weit von der Optimallösung entfernt sein

Frage: Haben wir für Bin-Packing einfach keine "besonders schlechte" Instanz gefunden? Oder ist Greedy hierfür immer relativ nah am Optimum?

Vertrauen in die Lösung

- Professor: Bei meiner Lösung entstehen Produktionskosten von 1.000.000 EUR.
- Praktiker: Gibt es keine bessere Lösung?
- Professor: Wir haben tagelang gerechnet und keine bessere gefunden.
- Praktiker: (Skepsis)
- Professor: Aber ich kann garantieren, dass es keine für weniger als 950.000 EUR geben kann
- Praktiker: (höchstens 5% daneben!)
 Motivation für Approximative Algorithmen

Kap. 7.2: Approximative Algorithmen und Gütegarantien

- Approximative Algorithmen sind Heuristiken, die (im vorhinein) eine Gütegarantie für die gefundene Lösung geben können.
- Z.B. der Art: "Die gefundene Lösung ist um höchstens x% schlechter als der Wert der optimalen Lösung."

Approximative Algorithmen und Gütegarantien

- Sei A ein Algorithmus, der für jede Probleminstanz P eines Optimierungsproblems Π eine zulässige Lösung mit positivem Wert liefert. Dann def. wir:
- $c_A(P)$ als den Wert der Lösung des Algorithmus A für Probleminstanz $P \in \Pi$
- c_{ont}(P) sei der optimale Wert für P.
- Für Minimierungsprobleme gilt:
- Falls c_A(P) / c_{opt}(P) ≤ ε für alle Probleminstanzen P und ein ε>0, dann heißt A ein ε-approximativer Algorithmus und die Zahl ε heißt Gütegarantie von Algorithmus A.

Approximative Algorithmen und Gütegarantien

- Sei A ein Algorithmus, der für jede Probleminstanz P eines Optimierungsproblems Π eine zulässige Lösung mit positivem Wert liefert. Dann def. wir:
- $c_A(P)$ als den Wert der Lösung des Algorithmus A für Probleminstanz $P \in \Pi$
- c_{ont}(P) sei der optimale Wert für P.
- Für Max imierungsprobleme gilt:
- Falls c_A(P) / c_{opt}(P) ≥ ε für alle Probleminstanzen P und ein ε>0, dann heißt A ein ε-approximativer Algorithmus und die Zahl ε heißt Gütegarantie von Algorithmus A.

Approximative Algorithmen

- Für Minimierungsprobleme gilt: ε≥1
- Für Maximierungsprobleme gilt: ε ≤ 1
- $\epsilon = 1 \Leftrightarrow A$ ist exakter Algorithmus (berechnet immer den optimalen Wert)
- Für Minimierungsprobleme gilt:
- Falls $c_A(P) / c_{opt}(P) \le \epsilon$ für **alle** Probleminstanzen P und ein $\epsilon > 0$, dann heißt A ein ϵ -approximativer Algorithmus und die Zahl ϵ heißt Gütegarantie von Algorithmus A.

Gütegarantie-Überlegungen der FF-Heuristik für Bin-Packing

- Unsere Bin-Packing Beispielinstanz P:
- Lösung der FF-Heuristik: $c_{\rm A}({\rm P})$ =17 Kisten
- Optimale Lösung: $c_{opt}(P)$ =10 Kisten
- $c_A(P) / c_{opt}(P) = 17 / 10 = 1,7$
- FF-Heuristik ist vielleicht ein 1,7-approximativer Algorithmus (nur wenn ≤ 1,7 für alle Instanzen gilt)
- ε kann auf keinen Fall kleiner als 1,7 sein

Gütegarantie der FF-Heuristik

- Theorem: Die First-Fit Heuristik für Bin-Packing besitzt asymptotisch eine Gütegarantie von 2.
- Es gilt: $c_{FF}(P) / c_{opt}(P) \le 2+1/c_{opt}(P)$ für alle $P \in \Pi$
- Beweis: Offensichtlich gilt: Jede FF-Lösung füllt alle bis auf eine der belegten Kisten mindestens bis zur Hälfte (sonst hätten wir diese zusammenlegen können). Daraus folgt für alle P∈ Π:

$$K/2 \ (c_{FF}(P) - 1) \leq \sum_{j=1..N} w_j \leq c_{opt}(P) \ K$$
 Größe der verteilten Gegenstände Gesamtvolumen: in c_{opt} Kisten paßt alles rein

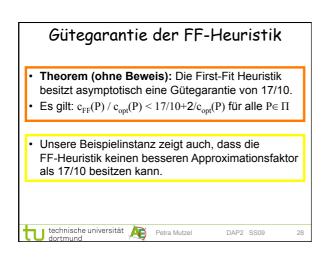
Gütegarantie der FF-Heuristik

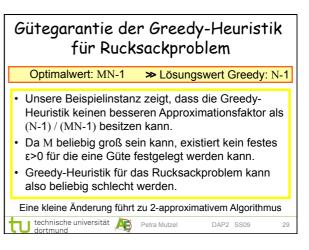
- Theorem: Die First-Fit Heuristik für Bin-Packing besitzt asymptotisch eine Gütegarantie von 2.
- Es gilt: $c_{FF}(P) / c_{opt}(P) \le 2 + 1/c_{opt}(P)$ für alle $P \in \Pi$
- Beweis: Offensichtlich gilt: Jede FF-Lösung füllt alle bis auf eine der belegten Kisten mindestens bis zur Hälfte (sonst hätten wir diese zusammenlegen können). Daraus folgt für alle P∈ Π:

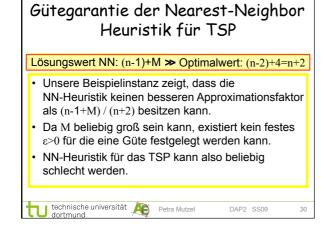
$$\begin{split} K/2 & \left(c_{FF}(P) - 1 \right) \leq \sum_{j=1..N} w_j \leq c_{opt}(P) \ K \\ \Leftrightarrow & c_{FF}(P) \leq 2 \ c_{opt}(P) + 1 \end{split}$$

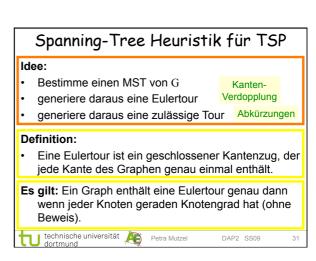
technische universität Petra Mutzel DAP2 SS09 27

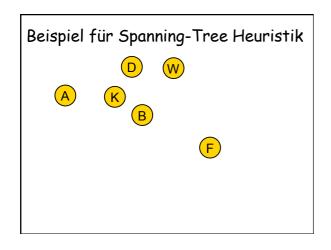
25

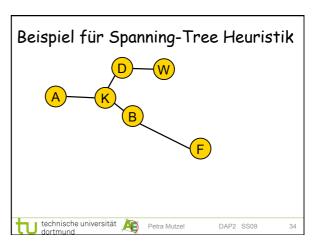




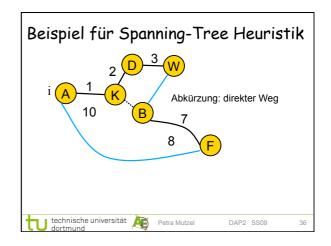








Beispiel für Spanning-Tree Heuristik technische universität App



Spanning-Tree Heuristik für TSP

- 1. Bestimme einen MST B von G
- 2. Verdopple alle Kanten aus $B \rightarrow Graph G_2:=(V,B_2)$
- 3. Bestimme eine Eulertour C in G₂ (Tour, die jede Kante genau einmal enthält)
- 4. Gib der Eulertour C eine Orientierung
- 5. Wähle einen Knoten s∈V, markiere s, setze p:=s und T:=∅
- 6. Solange noch unmarkierte Knoten existieren do {
- Laufe von p entlang der Orientierung von C bis ein
- 8. unmarkierter Knoten q erreicht ist.
- 9. Setze $T:=T \cup \{(p,q)\}, \text{ markiere } q, p:=q$

10. }

11. Setze $T:=T \cup \{(p,s)\} \rightarrow STOP; T \text{ ist Tour.}$



DAP2 SS09

Diskussion der Gütegarantie

- Auch für die Spanning-Tree Heuristik gibt es eine "schlechte" Instanz, bei der Lösungen produziert werden, die beliebig weit vom optimalen Lösungswert entfernt sind.
- Man kann zeigen: Das Problem, das TSP-Problem für beliebiges ε>1 zu approximieren ist NP-schwierig.
- Aber: wenn man nur spezielle TSP-Instanzen betrachtet, dann kann man eine Gütegarantie finden

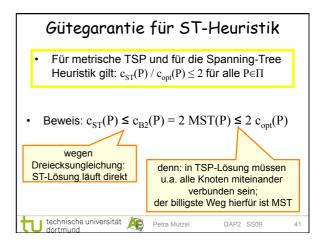
technische universität Petra Mutzel

DAP2 SS09

38

Das Metrische TSP-Problem

- Ein TSP heißt metrisch, wenn für die gegebene Distanzmatrix alle c_{ii}=0 sind und die Dreiecksungleichung erfüllt ist, d.h. für alle Knoten i,j,k gilt: $c_{ik} \le c_{ij} + c_{ik}$
- "Der direkte Weg von i nach k kann nicht länger sein als der Weg von i nach k über j."
- TSP-Probleme aus der Praxis sind sehr oft metrisch (z.B. Wegeprobleme) - sogar euklidisch: d.h. die Städte besitzen Koordinaten im 2-dim. Raum und die Distanzmatrix ist durch die euklidischen Distanzen gegeben.



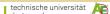
Christophides-Heuristik (CH)

Idee: Ähnlich wie die Spanning-Tree Heuristik, verzichte jedoch auf die Verdopplung der Kanten

Problem: Es existiert keine Eulertour in T.

Lösung: Füge Kanten hinzu, so dass eine Eulertour existiert.

Definition: Ein perfektes Matching M ist eine Kantenmenge, die jeden Knoten genau einmal enthält. Sie ordnet also jedem Knoten einen eindeutigen Partnerknoten zu.



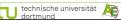
Petra Mutzel

DAP2 SS09

Christophides-Heuristik (CH)

Lösungsidee:

- Füge die Kanten eines perfekten Matchings zwischen den ungeraden Knoten zum MST hinzu.
- Nun haben alle Knoten geraden Grad und eine Eulertour
- Um eine gute Lösungsgarantie zu erhalten, bestimmen wir ein perfektes Matching M mit kleinstem Gewicht, d.h. die Summe aller Kantengewichte $c_{\scriptscriptstyle e}$ über die Kanten in M ist minimal unter allen perfekten Matchings.
- Ein minimales perfektes Matching M kann in polynomieller Zeit berechnet werden (o.Bw.)



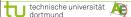
Petra Mutzel

Christophides-Heuristik (CH)

Ersetze in der Spanning-Tree Heuristik die Kantenverdopplung (Schritt (2)) durch folgende Schritte:

Sei W die Menge der Knoten in (V,B) mit ungeradem Grad und n=|W|.

- 1. Bestimme im von W induzierten Untergraphen von K_n (vollständiger Graph auf n Knoten) ein perfektes Matching M kleinsten Gewichts.
- 2. Setze B₂:=B ∪ M.
- Das Matching "geht auf", denn: |W| ist gerade.



Petra Mutzel

DAP2 SS09

Beispiel für CH-Heuristik J technische universität DAP2 SS09 46

Gütegarantie für CH-Heuristik

- Für das metrische TSP und die CH-Heuristik gilt: $c_{CH}(P) / c_{opt}(P) \le 3/2$ für alle $P \in \Pi$
- Beweis: Seien i_1, i_2, \ldots, i_{2M} die Knoten von B mit ungeradem Grad so nummeriert, wie sie in einer optimalen Tour $T_{\rm opt}$ vorkommen.
- Sei $M_1:=\{(i_1,i_2),(i_3,i_4),...\}$ und $M_2:=\{(i_2,i_3),(i_4,i_5),...,$
- Es gilt: $c_{opt}(P) \ge c_{M1}(P) + c_{M2}(P) \ge c_{M}(P) + c_{M}(P)$

wg. Dreiecksungleichung: M nimmt Abkürzung

denn: M ist Matching kleinsten Gewichts

Gütegarantie für CH-Heuristik

- Für das metrische TSP und die CH-Heuristik gilt: $c_{CH}(P) / c_{opt}(P) \le 3/2$ für alle $P \in \Pi$
- Beweis: Seien $i_1, i_2, ..., i_{2M}$ die Knoten von B mit ungeradem Grad so nummeriert, wie sie in einer optimalen Tour $T_{\rm opt}$ vorkommen.
- Sei M_1 :={ (i_1,i_2) , (i_3,i_4) ,...} und M_2 :={ (i_2,i_3) , (i_4,i_5) ,...,
- Es gilt: $c_{opt}(P) \ge c_{M1}(P) + c_{M2}(P) \ge c_{M}(P) + c_{M}(P)$
- Weiterhin gilt: $c_{CH}(P) \le c_{B2}(P) = c_{B}(P) + c_{M}(P) \le$ $\leq c_{opt}(P)+1/2 c_{opt}(P) = 3/2 c_{opt}(P)$

CH-Heuristik: Bemerkungen

- Die Christophides-Heuristik (1976) war lange Zeit die Heuristik mit der besten Gütegarantie.
- Vor kurzem zeigte Arora (1996): das euklidische TSP kann beliebig nah approximiert werden: die Gütegarantie ε>1 kann mit Laufzeit O(N^{1/(ε-1)}) approximiert werden (PTAS: polynomial time approximation scheme)
- Konstruktionsheuristiken für das symmetrische TSP erreichen in der Praxis meist eine Güte von ca. 10-15% Abweichung von der optimalen Lösung. Die CH-Heuristik liegt bei ca. 14%.

