

Tutorial for

Introduction to Computational Intelligence in Winter 2009/10

Günter Rudolph, Nicola Beume

http://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2009-10/lecture.jsp

Sheet 9, Block C

06.01.2010

Return: 13.01.2010, 10 a.m.

Exercise 9.1: (1+1)**EA** (10 Points)

Implement a (1+1)EA as described on slide 10 of lecture 10a). Optimize the following functions and empirically determine the number of generations until the optimum is found. Give a function for this time in Landau notation depending on the input size n. To this end, choose different values of n (e.g. 10, 100, 500, 1000 and others) and use whatever tools may help you (e.g. using statistics, plotting the time). Document and explain your studies and results.

- a) Minimize $f(\mathbf{x}) = \sum_{i=1}^{n} x_i$, with $x_i \in \{0, 1\}$, for $1 \le i \le n$.
- b) Minimize $g(\mathbf{x}) = -\sum_{i=1}^{n} \prod_{j=1}^{i} x_j$, with $x_j \in \{0, 1\}$, for $1 \le j \le n$.

Hand in your solutions as an offprint or a pdf file. Send your source code by e-mail to Nicola including instructions how to compile and execute your program. Demonstrate your program in the tutorial and therefore bring your own laptop with you if possible.