

Tutorial for

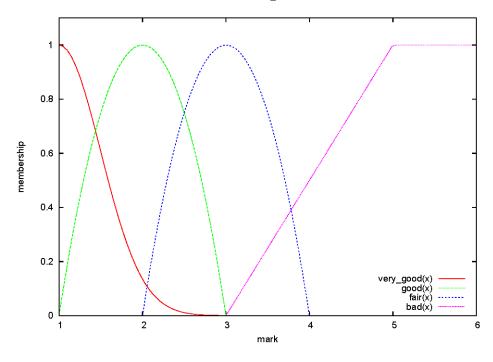
Introduction to Computational Intelligence in Winter 2009/10

Günter Rudolph, Nicola Beume

http://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2009-10/lecture.jsp

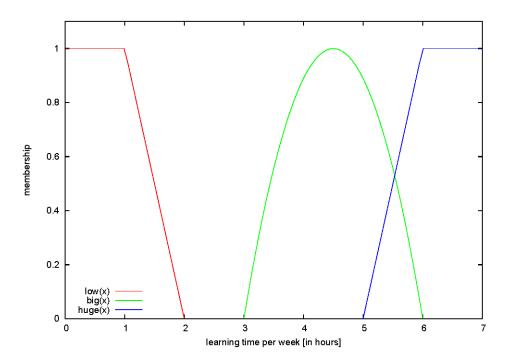
Sheet 7, Block B Return: 02.12.2009, 10 a.m.

25.11.2009


Exercise 7.1: Fuzzy Implication (5 Points)

- a) Use the increasing generator $g(x) = \sqrt{x}$ to derive a fuzzy implication. Does the resulting implication fulfill the axiom of contraposition?
- b) Check for all fuzzy implications below if they fulfill the axiom of contraposition:
 - Reichenbach Imp(a, b) = 1 a + ab
 - Lukaciewicz $Imp(a, b) = min\{1, 1 a + b\}$
 - Goguen $Imp(a, b) = 1_{[a < b]} + b \cdot 1_{[a > b]}$

Exercise 7.2: Fuzzy Inference (5 Points)


Consider the membership functions for the linguistic terms of the linguistic variable mark. Notice that outside the given range their values are zero!

$$\begin{array}{rcl} \mathtt{very_good}(x) & = & \exp(-2\,x^2) \ \mathrm{for} \ x \geq 1 \\ \\ \mathtt{good}(x) & = & -(x-1)\,(x-3) \ \mathrm{for} \ x \in (1,3) \\ \\ \mathtt{fair}(x) & = & -(x-2)\,(x-4) \ \mathrm{for} \ x \in (2,4) \\ \\ \mathtt{bad}(x) & = & \min\{1,\frac{1}{2}(x-3)\} \ \mathrm{for} \ x > 3 \end{array}$$

Below you can find the membership functions for the linguistic terms of the linguistic variable learning_time. Again, outside the given range their values are zero!

$$\begin{array}{lll} {\rm huge}(x) & = & \min\{x-5,1\} \ {\rm for} \ x \geq 5 \\ & {\rm big}(x) & = & -\frac{4}{9}(x-3) \, (x-6) \ {\rm for} \ x \in (3,6) \\ & {\rm low}(x) & = & \min\{2-x,1\} \ {\rm for} \ x < 2 \end{array}$$

Based on the fuzzy proposition

if learning_time is big then mark is good,

the Lukaciewicz implication and the max-prod composition deduce the resulting fuzzy set over learning time for the given fuzzy fact

mark is fair.

Sketch the membership function.