
Chapter �

Random Strategies

One group of optimization methods has been completely ignored in Chapter �� methods in
which the parameters are varied according to probabilistic instead of deterministic rules�
even the methods of stochastic approximation are deterministic� As indicated by the title
there is not one random strategy but many� some of which di�er considerably from each
other�

It is common to resort to random decisions in optimization whenever deterministic
rules do not have the desired success� or lead to a dead end� on the other hand random
strategies are often supposed to be essentially more costly� The opinion is widely held that
with careful thought leading to cleverly constructed deterministic rules� better results can
always be achieved than with decisions that are in some way made randomly� The strate�
gies that follow should show that randomness is not� however� the same as arbitrariness�
but can also be made to obey very re�ned rules� Sometimes only this kind of method
solves a problem e�ectively�

Profound considerations do not underlie all the procedures used in hill climbing strate�
gies� The cyclic choice of coordinate directions in the Gauss�Seidel strategy could just as
well be replaced by a random sequence� One can also consider increasing the number of
directions used� Since there is no good reason for preferring to search for the optimum
along directions parallel to the axes� one could also use� instead of only n di�erent unit
vectors� any number of randomly chosen direction vectors� In fact� suggestions along
these lines have been made 	Brooks� 
��
� in order to avoid a premature termination of
the minimum search in narrow oblique valleys 	compare Chap� �� Sect� ����
�
�� Simi�
lar concepts have been developed for example by O�Hagan and Moler 	after Wilde and
Beightler� 
����� Emery and O�Hagan 	
����� Lawrence and Steiglitz 	
����� and Bel�
trami and Indusi 	
����� to improve the pattern search of Hooke and Jeeves 	
��
� see
Chap� �� Sect� ����
���� The limitation to a �nite number of search directions is not only
a disadvantage in narrow oblique valleys but also at the border of the feasible region
as determined by inequality constraints� All the deterministic remedies against prema�
turely ending the iteration sequence assume that more information can be gathered� for
example in the form of partial derivatives of the constraint functions 	see Klingman and
Himmelblau� 
���� Glass and Cooper� 
���� Paviani and Himmelblau� 
����� Providing
this information usually means a high extra cost and is sometimes not possible at all�


�
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Random directions that are not oriented with respect to the structure of the objective
function and the allowed region also imply a higher cost because they do not take optimal
single steps� They can� however� be applied in every case�

Many deterministic optimization methods� especially those which are guided by the
gradient of the objective function� have convergence di�culties at points where the partial
derivatives are discontinuous� On the contour diagram of a two parameter objective
function� of which the maximum is sought� such positions correspond to sharp ridges
leading to the summit 	e�g�� Zwart� 
����� A narrow valley�the geometric picture in
the case of minimization�leads to the same problem if the �nite step lengths are greater
than its width� Then all attempts fail to make improvements in the coordinate directions
or� from trial steps in these directions� fail to predict a locally best direction in which
to continue 	gradient direction�� The same phenomenon can also occur when the partial
derivatives are speci�ed analytically� because of the rounding errors involved in computing
with a �nite number of signi�cant �gures� To avoid premature termination of a search in
such cases� Norkin 	
��
� has suggested the following procedure� When the optimization
according to the conventional scheme has ended� a step is taken away from the supposed
optimum in an arbitrary coordinate direction� The extremum is sought again� excluding
this one variable� and the search is only �nally ended when deviations in all directions
have led back to the same point� This rule should also prevent stagnation at saddle points�

Even the simplex method of linear programming makes random decisions if the search
for the extremum threatens to be endless because the problem is degenerate� Then follow�
ing Dantzig�s suggestion 	
���� the iteration scheme should be interrupted in favor of a
random exchange step� A problem is only degenerate� however� because the general rules
do not cover the special case 	see also Chap� �� Sect� ����� A further example of resorting
to chance when a dead end has been reached is Brent�s modi�cation of the strategy with
conjugate directions 	Brent� 
����� Powell�s algorithm 	Powell� 
���� when applied to
problems in many dimensions tends to generate linearly dependent directions and then
to proceed within a subspace of IRn� For this reason Brent now and then interrupts the
line searches with steps in randomly chosen directions 	see also Chap� �� Sect� ������
��

One very frequently comes across proposals to let chance take control when the prob�
lem is to �nd global minima of multimodal objective functions� Such problems frequently
crop up in process design 	Motskus� 
���� Mockus� 
��
� but can also be the result of re�
casting discrete problems into continuous form 	Katkovnik and Shimelevich� 
����� Prac�
tically all sequential search procedures can only lead to a local optimum�as a rule� the one
nearest to the starting point� There are a few proposals for ensuring global convergence of
sequential optimization methods 	e�g�� Motskus and Feldbaum� 
���� Chichinadze� 
����

���� Goldstein and Price� 
��
� Ueing� 
��
� 
���� Branin and Hoo� 
���� McCormick�

���� Sutti� Trabattoni� and Brughiera� 
���� Treccani� Trabattoni� and Szeg�o� 
����
Brent� 
���� Hesse� 
���� Opa�ci�c� 
���� Ritter and Tui as mentioned by Zwart� 
�����
They are often in the form of additional� heuristic rules� Gran 	
����� for example� con�
siders gradient methods that are supposed to achieve global convergence by the addition
of a random process to the deterministic changes� Hill 	
���� see also Hill and Gibson�

���� suggests subdividing the interval to be explored and gathering su�cient informa�
tion in each section to carry out a cubic interpolation� The best of the results for the
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parts is taken as an approximation to the global optimum� However� for n�dimensional
interpolations the cost increases rapidly with n� this scheme thus looks impractical for
more than two variables� To work with several� randomly chosen starting points and to
compare each of the local minima 	or maxima� obtained is usually regarded as the only
course of action for determining the global optimum with at least a certain probability
	so�called multistart techniques�� Proposals along these lines have been made by� among
others� Gelfand and Tsetlin 	
��
�� Bromberg 	
����� Bocharov and Feldbaum 	
�����
Zellnik� Sondak� and Davis 	
����� Krasovskii 	
����� Gurin and Lobac 	
����� Flood and
Leon 	
���� 
����� Kwakernaak 	
����� Casey and Rustay 	
����� Weisman and Wood
	
����� Pugh 	
����� McGhee 	
����� Crippen and Scheraga 	
��
�� and Brent 	
�����

A further problem faces deterministic strategies if the calculated or measured values
of the objective function are subject to stochastic perturbations� In the experimental
�eld� for example in the on�line optimum search� or for control of the optimal conditions
in processes� perturbations must be taken into account from the start 	e�g�� Tovstucha�

���� Feldbaum� 
���� 
���� Krasovskii� 
���� Medvedev� 
���� 
��
� Kwakernaak� 
����
Zypkin� 
����� However� in computational optimization too� where the objective function
is analytically speci�ed� a similar e�ect arises because of rounding errors 	Brent� 
�����
especially if one uses hybrid analogue computers for solving functional optimization prob�
lems 	e�g�� Gilbert� 
���� Korn and Korn� 
���� Bekey and Karplus� 
��
�� A simple� if
expensive 	in the sense of cost in computations or trials� method of dealing with this is the
repetition of measurements until a de�nite conclusion is possible� This is the procedure
adopted by Box and Wilson 	
��
� in the experimental gradient method� and by Box
	
���� in his EVOP strategy� Instead of a �xed number of repetitions� which while on
the safe side may be unnecessarily high� one can follow the concept of sequential analysis
of statistical data 	Wald� 
���� see also Zigangirov� 
���� Schumer� 
���� Kivelidi and
Khurgin� 
���� Langguth� 
����� which is to make only as many trials as the trial results
seem to make absolutely necessary� More detailed investigations on this subject have been
made� for example� by Mlynski 	
���a�b� 
���a�b��

As opposed to attempting to improve the decisive data� Brooks and Mickey 	
��
�
have found that one should work with the minimum number of n � 
 comparison points
in order to determine a gradient direction� even if this is a perturbed one� One must
however depart from the requirement that each step should yield a success� or even the
locally greatest success� The motto that following locally the best possible route seldom
leads to the best overall result is true not only for �rst order gradient strategies but also for
Newton and quasi�Newton methods � Harkins 	
����� for example� maintains that inexact
line searches not only do not worsen the convergence of a minimization procedure but in
some cases actually improve it� Similar experiences led Davies� Swann� and Campey in
their strategy 	see Chap� �� Sect� ����
��� to make only one quadratic interpolation in
each direction� Also Spendley� Hext� and Himsworth 	
����� in the formulation of their
simplex method� which generates only near�optimal directions� work on the assumption
that random decisions are not necessarily a total disadvantage 	see also Himsworth� 
�����
Based on similar arguments� the modi�cation of this strategy by M� J� Box 	
���� sets
up the initial simplex or complex by means of random numbers� Imamura et al� 	
����
even go so far as to superimpose arti�cial stochastic variations on an objective function
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in order to prevent convergence to inferior local optima�
The rigidity of an algorithm based on a �xed internal model of the objective function�

with which the information gathered during the iterations is interpreted� is advantageous
if the objective function corresponds closely enough to the model� If this is not the case�
the advantage disappears and may even turn into a disadvantage� Second order methods
with quadratic models seem more sensitive in this respect than �rst order methods with
only linear models� Even more robust are the direct search strategies that work without
an explicit model� such as the strategy of Hooke and Jeeves 	
��
�� It makes no use of
the sizes of the changes in the objective function values� but only of their signs�

A method that uses a kind of minimal model of the objective function is the stochastic
approximation 	Schmetterer� 
��
� see also Chap� �� Sect� ����� This purely deterministic
method assumes that the measured or calculated function values are samples of a nor�
mally distributed random quantity� of which the expectation value is to be minimized or
maximized� The method feels its way to the optimum with alternating exploratory and
work steps� whose lengths form convergent series with prescribed bounds and sums� In
the multidimensional case this standard concept can be the basis of various strategies for
choosing the directions of the work steps 	Fabian� 
��
�� Usually gradient methods show
themselves to best advantage here� The stochastic approximation itself is very versatile�
Constraints can be taken into account 	Kaplinskii and Propoi� 
����� and problems of
functional optimization can be treated 	Gersht and Kaplinskii� 
��
� as well as dynamic
problems of maintaining or seeking optima 	Chang� 
��
�� Tsypkin 	
��
a�b�c� 
���a�b�
see also Zypkin� 
���� 
���� 
���� discusses these topics very thoroughly� There are also�
however� arguments against the reliability of convergence for certain types of objective
function 	Aizerman� Braverman and Rozonoer� 
����� The usefulness of the strategy in
the multidimensional case is limited by its high cost� Hence there has been no short�
age of attempts to accelerate the convergence 	Fabian� 
���� Berlin� 
���� Saridis� 
��
�

���� Saridis and Gilbert� 
���� Jan�a�c� 
��
� Kwatny� 
���� see also Chap� �� Sect� �����
Ideas for using random directions look especially promising� some of the many investi�
gations of this topic which have been published are Loginov 	
����� Stratonovich 	
��
�

����� Schmitt 	
����� Ermoliev 	
����� Svechinskii 	
��
�� Tsypkin 	
��
�� Antonov and
Katkovnik 	
����� Berlin 	
����� Katkovnik and Kulchitskii 	
����� Kulchitskii 	
�����
Poznyak 	
����� and Tsypkin and Poznyak 	
�����

The original method is not able to determine global extrema reliably� Extensions of
the strategy in this direction are due to Kushner 	
���� 
���� and Vaysbord and Yudin
	
��
�� The sequence of work steps is so designed that the probability of the following
state being the global optimum is maximized� In contrast to the gradient concept� the
information gathered is not interpreted in terms of local but of global properties of the
objective function� In the case of two local minima� the e�ort of the search is gradually
concentrated in their neighborhood and only when one of them is signi�cantly better is
the other abandoned in favor of the one that is also a global minimum� In terms of the
cost of the strategy� the acceleration of the local search and the reliability of the global
search are diametrically opposed� Hill and Gibson 	
���� show that their global strategy
is superior to Kushner�s� as well as to one of Bocharov and Feldbaum� However� they only
treat cases with n � � parameters� More recent research results have been presented by
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Pardalos and Rosen 	
�
��� T�orn and �Zilinskas 	
�
��� Floudas and Pardalos 	
�����
Zhigljavsky 	
��
�� and Rudolph 	
��
� 
���b�� Now there are even specialized journals
established in the �eld� see Horst 	
��
��

All the strategies mentioned so far are fundamentally deterministic� They only resort
to chance in dead�end situations� or they operate on the assumption that the objec�
tive function is stochastically perturbed� Jarvis 	
��
�� who compares deterministic and
probabilistic optimization methods� �nds that random methods that do not stick to any
particular model are most suitable when an optimum must be located under particularly
di�cult conditions� such as a perturbed objective function or a �pathological� problem
structure with several extrema� discontinuities� plateaus� forbidden regions� etc� The
homeostat of Ashby 	
���� is probably the oldest example of the application of a ran�
dom strategy� Its objective is to maintain a condition of equilibrium against stochastic
disturbances� It may happen that no optimum is sought� but only a point in an allowed
region 	today one calls such task a constraints satisfaction problem or CSP�� Nevertheless�
corresponding solution methods are closely tied to optimization� and there are a series of
various heuristic planning methods available 	e�g�� Weinberg and Zehnder� 
����� Ashby�s
strategy� which he calls a blind homeostatic process� becomes active whenever the appara�
tus strays from equilibrium� Then the controllable parameters are randomly varied until
the desired condition is restored� The �nite number 	in this case� of discrete settings of
the variables all enter the search process with equal probability� Chichinadze 	
���� later
constructed an electronic model on the same principle and used it for synthesizing simple
optimal control systems�

Brooks 	
��
�� probably stimulated by R� L� Anderson 	
����� is generally regarded as
the initiator of the use of random strategies for optimization problems� He describes the
simple� later also called blind or pure random search for �nding a minimum or maximum
in the experimental �eld� In a closed interval a � x � b several points are chosen at
random� The probability density w	x� is constant everywhere within the region and zero
outside�

w	x� �

�

�V � for all a � x � b
� � otherwise

V � the volume of the cube with corners ai and bi for i � 
	
�n� is given by

V �
nY
i��

	bi � ai�

The value of the objective function must be determined at all selected points� The point
that has the lowest or highest function value is taken as optimum� How well the true
extremum is approximated depends on the number of trials as well as on the actual
random results� Thus one can only give a probability p that the optimum will be found
within a given number N of trials with a prescribed accuracy�

p � 
� 	
� v�V �N 	��
�

The volume v � V � � contains all points that satisfy the accuracy requirement� By
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rearranging Equation 	��
�� the number of trials is obtained

N �
ln 	
� p�

ln 	
 � v

V
�

	����

that is required in order to place with probability p at least one trial in the volume v�
Brooks concludes from this that the cost is independent of the number of variables� In
their criticism Hooke and Jeeves 	
��
� point out that it is not feasible to consider the
accuracy in terms of the volume ratio for problems with many variables� For n � 
��

parameters� a volume ratio of
v

V
� ��
 corresponds to a length ratio of the side length

D of V and d of v of
d

D
� n

s�
v

V

�
� ���


This means that the uncertainty in the variables xi is �
� of the original interval �ai� bi �
although the volume containing the optimum has been reduced to one tenth of the original�
Shimizu 	
���� makes the same mistake as Brooks and attempts to implement the strategy
for problems with more general constraints�

A comparison of the pure random search and deterministic search methods known at
the time for experimental optimization problems 	Brooks� 
���� also shows no advantage
of the stochastic strategy� The test only covers four di�erent objective functions� each
with two variables� Brooks then recommends applying his random method if the number
of parameters is large or if the determination of objective function values is subject to
large perturbations� McArthur 	
��
� concludes on the basis of numerical experiments
that the random strategy is also preferable for complicated problem structures� Just this
circumstance has led to the use� even today� of the pure random search� often called
the Monte�Carlo method� for example in computer optimization of building construction
	Goli�nski and Le�sniak� 
���� Le�sniak� 
���� Hupfer� 
�����

In principle� all the trials of the simple random strategy can be made simultaneously�
It is thus numbered among the simultaneous optimization methods� The decision to
choose a particular state vector of variables does not depend on the results of preceding
trials� since the probability of scoring according to the uniform distribution is the same at
all times� However� in applications on the traditional� serially operating computers� the
trials must be made sequentially� This can be used to advantage by storing the current
best value of the objective function and its associated variable value� In Chapter ��
Section ��
�
 and ��� the grid or tabulation method was referred to as optimal in the
minimax sense� The blind random strategy should thus not be any better� De�ning the
interval length Di � bi � ai for the variable xi� with required accuracy di� and assuming
that all the Di � D and di � d for i � 
	
�n� then for the volume ratio in Equations
	��
� and 	����

v

V
�

�
d

D

�n

If
v

V
is small� which when there are many variables must be the case� one can use the

approximation
ln 	
 � y� � y for y� 
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to write the number of required trials as

N � � ln	
� p�
�
D

d

�n

Assuming that
D

d
is an integer� the grid method requires

N �
�
D

d

�n

trials 	compare Chap� �� Sect� ���� Equation 	��
���� The value is the same for both
procedures if p � ����� Supposing that the probability of at least one score of the
required accuracy is p � ����� then the random strategy results in

N � ���
�
D

d

�n

which is clearly worse than the grid strategy 	Spang� 
����� The reason for the extra
cost� however� should not be attributed to the randomness of decisions itself� but to the
fact that for an equiprobable� continuous selection of variables� the trials can be very
close together or� in the discrete case� they can repeat themselves� If one can avoid that�
the disadvantage would no longer exist� A randomized sequence of trials even might hit
upon the optimal result earlier than an ordered one� Nevertheless Spang�s proof has for
some time brought all random methods� not only the simple Monte�Carlo strategy� into
disrepute�

Nowadays the term Monte�Carlo methods is understood to cover� in general� simu�
lation methods that have to do with stochastic events� They are applied e�ectively to
solving di�cult di�erential equations 	Little� 
���� or for evaluating integrals 	Cowdrey
and Reeves� 
���� McGhee and Walford� 
��
�� Besides the simple hit�or�miss scheme�
however� greatly improved variants have been developed 	e�g�� W� F� Bauer� 
��
� Ham�
mersley and Handscomb� 
���� Korn� 
���� 
��
� Hull� 
���� Brandl� 
����� Amann
	
��
a�b� reports a Monte�Carlo method with information storage and a sequential ex�
tension for the solution of a linear boundary value problem� and Curtiss 	
���� describes
a Monte�Carlo procedure for solving systems of linear equations� Both are supposed to be
less costly than comparable deterministic strategies� Pinkham 	
���� and Pincus 	
����
describe modi�cations for the problems of �nding zeros of a non�linear function and of con�
strained optimization� Since only relatively few publications treat random optimization
methods in any depth 	Karnopp� 
��
� 
���� Idelsohn� 
���� Dickinson� 
���� Rastrigin�

���� 
���a�b� 
���� 
���� 
��
� 
���� 
���� Lavi and Vogl� 
���� Schumer� 
���� Jarvis�

��
� Heydt� 
���� Cockrell� 
���� White� 
���� 
��
� Aoki� 
��
� Kregting and White�

��
�� the improved strategies will be brie!y presented here� They all operate with se�
quential and sometimes both simultaneous and sequential random trials and in one way
or another exploit the information from preceding trials to accelerate the convergence�

Brooks himself already suggests several improvements� Thus to exclude repetitions or
closely situated trials� the volume to be investigated can be subdivided into� for example�
cubic subspaces� into each of which only one random trial is placed� According to one�s
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knowledge of the approximate position of the optimum� the subspaces will be assigned
di�erent sizes 	Idelsohn� 
����� The original uniform distribution is thereby replaced by
one with a greater density in the neighborhood of the expected optimum� Karnopp 	
��
�

���� 
���� has treated this problem in detail without� however� giving any practical
procedure� Mathematically based investigations of the same topic are due to Motskus
	
����� Hupfer 	
����� Pluznikov� Andreyev� and Klimenko 	
��
�� Yudin 	
���� 
����

����� Vaysbord 	
���� 
��
� 
����� Taran 	
��
a�b�� Karumidze 	
����� and Meerkov
	
����� If after several 	simultaneous� samples the search is continued in an especially
promising looking subregion� the procedure becomes sequential in character� Suggestions
of this kind have been made for example by McArthur 	
��
�� Motskus 	
����� and
Hupfer 	
���� 	shrinkage random search�� Zakharov 	
���� 
���� applies the stochastic
approximation for the successive shrinkage of the region in which Monte�Carlo samples
are placed� The most thoroughly worked out strategy is that of McMurtry and Fu 	
����
probabilistic automaton� see also McMurtry� 
����� The problem considered is to adjust
the variable parameters of a control system for a dynamic process in such a way that the
optimum of the system is found and maintained despite perturbations and 	slow� drift
	Hill� McMurtry� and Fu� 
���� Hill and Fu� 
����� Initially the probabilities are equal
for all subregions� at the center of which the function values are measured 	assumed to be
stochastically perturbed�� In the course of the iterations the probability matrix is altered
so that regions with better objective function values are tested more often than others�
The search ends when only one subregion remains� the one with the highest probability
of containing the global optimum� McMurtry and Fu use a so�called linear intensi�cation
to adjust the probability matrix� Suggestions for further improving the convergence rate
have been made by Nikoli�c and Fu 	
����� Fu and Nikoli�c 	
����� Shapiro and Narendra
	
����� Asai and Kitajima 	
����� Viswanathan and Narendra 	
����� and Witten 	
�����
Strongin 	
���� 
��
� treats the same problem from the point of view of decision theory�

All these methods lay great emphasis on the reliability of global convergence� The
quality of the approximation depends to a large extent on the number of subdivisions
of the n�dimensional region under investigation� High accuracy requirements cannot be
met for many variables since� at least initially� the number of subregions to investigate
rises exponentially with the number of parameters� To improve the local convergence
properties� there are suggestions for replacing the midpoint tests in a subvolume by the
result of an extreme value search� This could be done with one of the familiar search
strategies such as a gradient method 	Hill� 
���� or any other purely sequential random
search method 	Jarvis 
��
� 
���� with a high convergence rate� even if it were only
guaranteed to converge locally� Application� however� is limited to problems with at most
seven or eight variables� as reported�

Another possibility for giving a sequential character to random methods consists of
gradually shifting the expectation value of a random variable with a restricted probability
density distribution� Brooks 	
��
� calls his proposal of this type the creeping random

search� Suitable random numbers are provided for example by a Gaussian distribution
with expectation value � and standard deviation �� Starting from a chosen initial condition
x���� several simultaneous trials are made� which most likely fall in the neighborhood of the
starting point 	� � x����� The coordinates of the point with the best function value form
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the expectation value for the next set of random trials� In contrast to other procedures� the
data from the other trials are not exploited to construct a linear or even quadratic model
from which to calculate a best possible step 	e�g�� Brooks and Mickey� 
��
� Aleksandrov�
Sysoyev� and Shemeneva� 
��
� Pugachev� 
����� For small � and a large number of
samples� the best value will in any case fall in the locally most favorable direction� In
order to approach a solution with high accuracy� the variance �� must be successively
reduced� Brooks� however� gives no practical rule for this adjustment� Many algorithms
have since been published that are extensions of Brooks� basic concept of the creeping
random search� Most of them no longer choose the best of several trials� they accept each
improvement and reject each worsening 	Favreau and Franks� 
��
� Munson and Rubin�

���� Wheeling� 
�����

The iteration rule of a creeping random search is� for the minimum search�

x�k��� �

�
x�k� � z�k� � if F 	x�k� � z�k�� � F 	x�k�� 	success�
x�k� � otherwise 	failure�

The random vector z�k�� which in this notation e�ects the change in the state vector x�
belongs to an n�dimensional 	�� ��� normal distribution with the expectation value � � �
and the variance ��� which in the simplest case is the same for all components� One can
thus regard �� or better �

p
n� as a kind of average step length� The direction of z�k� is uni�

formly distributed in IRn� i�e�� purely random� Gaussian distributions for the increments
are also used by Bekey et al� 	
����� Stewart� Kavanaugh� and Brocker 	
����� and De
Graag 	
����� Gonzalez 	
���� and White 	
���� use instead of a normal distribution a
uniform distribution that covers a small region in the form of an n�dimensional cube cen�
tered on the starting point� This clearly favors the diagonal directions� in which the total
step lengths are on average a factor

p
n greater than in the coordinate directions� Pierre

	
���� therefore restricts the uniformly distributed random probe to an n�dimensional
hypersphere of �xed radius� Rastrigin 	
����
���� gives the total step length

s �

vuut nX
i��

z�i

a �xed value� Instead of the normal distribution he thus obtains a circumferential or
hypersphere�surface distribution� In addition� he repeats the evaluation of the objective
function when there is a failure in order to reduce the e�ect of stochastic perturbations�
Taking two model functions

F�	x� � F�	x�� � � � � xn� �
nX
i��

xi 	inclined plane�

F�	x� � F�	x�� � � � � xn� �

vuut nX
i��

x�i 	hypercone�

he investigates the average convergence rate of his strategy and compares it with that
of an experimental gradient method� in which the partial derivatives are approximated
by quotients of di�erences obtained from exploratory steps � He shows that for a linear
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problem structure like F� the random strategy needs only O	
p
n� trials� whereas the

gradient strategy needs O	n� trials to cover a prescribed distance� For n � �� the random
strategy is always superior to the deterministic method� Whereas Rastrigin shows that the
random search always does better than the gradient search in the spherically symmetric
�eld F�� Movshovich 	
���� maintains the opposite� The discrepancy can be traced to
di�ering assumptions about the choice of step length 	see also Yvon� 
���� Gaviano and
Fagiuoli� 
�����

To choose suitable step lengths or variances poses the same problems for sequential
random searches as are familiar from deterministic strategies� Here too� a closely related
problem is to achieve global convergence with reference to a suitable termination rule� the
convergence criterion� and with a degree of reliability� Khovanov 	
���� has conceived
an individual manner of controlling the random step lengths� He accepts every random
change� irrespective of success or failure� increases the variance at each failure and reduces
it otherwise� The objective is to increase the probability of lingering in the more promising
regions and to abandon states that are irrelevant to the optimum search� No applications
of the strategy are known to the author� Favreau and Franks 	
��
�� Bekey et al� 	
�����
and Adams and Lew 	
���� use a constant ratio between �i and xi for i � 
	
�n� This
measure does have the e�ect of continuously altering the �step lengths�� but its merit is
not obvious� Just because a variable value xi is small in no way indicates that it is near to
the extreme position being sought� Karnopp 	
��
� was the �rst to propose a step length
rule based on the number of successes or failures� according to which the �i or s are all
uniformly reduced or enlarged such that a success always occurs after two or three trials�
Schumer 	
����� and Schumer and Steiglitz 	
��
�� submit Rastrigin�s circumferential
random direction method to a thorough examination by probability theory� For the
model

F�	x� �
nX
i��

x�i � r�

with the condition n � 
 and the continuously optimal step length

s � 
����
rp
n

they obtain a rate of progress �� which is the average distance covered in the direction of
the objective 	minimum� per random step�

� � �����
r

n

and a success rate ws which is the average number of successes per trial�

ws � �����

They are only able to treat the general quadratic case theoretically for n � �� Their
result can be interpreted in the sense that � is dependent on the smallest radius of
curvature 	 of the elliptic contour passing through r� Since neither r nor s can be assumed
to be known in advance� it is not clear how to keep to the optimal step length� Schumer
and Steiglitz 	
��
� give an adaptive method with which the correct size of s can be
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maintained at least approximately during the course of the iterations� At the starting
point x��� two random changes are made with step lengths s��� and s��� 	
 � a�� where
� � a � 
� If both samples are successful� for the next iteration s��� � s��� 	
 � a� is
taken� i�e�� the greater value� If only one sample yields an improvement in the objective
function� its step length is taken� �nally if no success is scored� s��� remains equal to s����

A reduction in s is only made if several consecutive trials are unsuccessful� This is
also the procedure of Maybach 	
����� This adjustment to the local conditions assists the
strategy in achieving high convergence rates but reduces the chances of locating global
optima among several local ones� For this reason a sample with a signi�cantly larger step
length 	a � 
� should be included from time to time� Numerical tests show that the
computation cost� or number of trials� actually only increases linearly with the number
of variables� Schumer and Steiglitz have tested this using the model functions F� and

F		x� �
nX
i��

x	i

A comparison with a Newton�Raphson strategy� in which the partial �rst and second
derivatives are determined numerically and the cost increases as O	n��� favors the random
method when n � �
 for F� and when n � � for F	� For the second� biquadratic model
function� Nelder and Mead 	
���� state that the number of trials or function evaluations
in their simplex strategy grows as O	n������ so that the sequential random method is
superior from n � 
�� White and Day 	
��
� report numerical tests in which the cost in
iterations with Schumer�s strategy increases more sharply than linearly with n� whereas
a modi�cation by White 	
���� shows exact linear dependence� A comparison with the
strategy of Fletcher and Powell 	
���� favors the latter� especially for truly quadratic
functions�

Rechenberg 	
����� with an n�dimensional normal distribution 	see Chap� �� Sect� ��
��
reaches almost the same theoretical results as Schumer for the circumferential distribution�
if one notes that the overall step length

�tot �

vuut nX
i��

��i � �
p
n

for equal variances ��i � �� in each random component zi is proportional to the square
root of the number of variables� The reason for this lies in the property of Euclidean
space that� as the number of dimensions increases� the volume of a hypersphere becomes
concentrated more and more in the boundary region near the surface� Rechenberg�s adap�
tation rule is founded on the relation between optimal variance and probability of success
derived from two essentially di�erent models of the objective function� The adaptation
rule which is thereby formulated makes the frequency and size of the � increments re�
spectively dependent on the number of variables and independent of the structure of the
objective function� This will be discussed in more detail in Chapter �� Section ��
�

Convergence proofs for the sequential random strategy have been given by Matyas
	
���� 
���� and Rechenberg 	
���� only for the case of constant variance ��� Gurin
	
���� has proved convergence also for stochastically perturbed objective functions� The
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convergence rate is still reduced by perturbations 	Gurin and Rastrigin� 
����� but not
as much as in gradient methods� Global convergence can be achieved if the reference
value of the objective function is measured more than once at the comparison point
	Saridis and Gilbert� 
����� As soon as any attempt is made to achieve higher rates of
convergence by adjusting the variances or step lengths� the chance of �nding a global
optimum diminishes� Then the random strategy itself becomes a path�oriented instead
of a volume�oriented strategy� The probability of global convergence still always remains
�nite� it may simply become very small� especially in the case of many dimensions�

Apart from adjusting the step lengths� one can consider modifying the directions� Sev�
eral proposals of this kind have been published� Satterthwaite 	
���a� following McArthur�

��
�� Wheeling 	
����� Smith and Rudd 	
���� following Dickinson� 
����� Matyas 	
����

����� Bekey et al� 	
����� Stewart� Kavanaugh� and Brocker 	
����� De Graag 	
�����
and Lawrence and Emad 	
����� They are all heuristic in nature� In the simplest case
of a directed random search� a successful random direction is maintained until a failure
occurs 	Satterthwaite�� Bekey� Lawrence� and Rastrigin actually make use of each ran�
dom direction� If the �rst step leads to a failure� they use the opposite direction 	positive
and negative absolute biasing�� Smith and Rudd store the two currently best points from
a larger series of samples and obtain from their separation a step length for continuing
the optimization� Wheeling�s history vector method adds to each random increment a
deterministic portion� derived from experience� This additional vector is initially zero� It
is increased at each success by a fraction of the increment vector� and correspondingly
decreased at each failure� Such a learning and forgetting process also forms the basis of
the algorithms of De Graag and Matyas� The latter has received the most attention�
in spite of the fact that it gives no precise guidance on how to choose the variances�
Schrack and Borowski 	
����� who apply their own step length rule in Matyas� strategy�
were able to show by numerical tests that the simple algorithm of Schumer and Steiglitz�
without direction orientation� is at least as good as Matyas� for unperturbed as well as
perturbed measurements of the objective function� A quite di�erent kind of method� due
to Kjellstr�om 	
����� in which the random search takes place in varying three dimensional
subspaces of the space IRn� shows itself here to be very much worse�

Another method that sets out to accept only especially favorable directions is the
threshold strategy of Stewart� Kavanaugh and Brocker 	
����� in which only those random
changes are accepted that result in a speci�ed minimum improvement in the objective
function value� A more recent version of the same idea has been given by Dueck and
Scheuer 	
����� The simultaneous adjustment of step lengths and directions has seldom
been attempted� The suggestions of Favreau and Franks 	
��
� and Matyas 	
���� 
����
remain too imprecise to be practicable� Gaidukov 	
���� see also Hupfer� 
���� and
F�urst� M�uller� and Nollau 	
��
� provide more exact information for this purpose� based
on either the concepts of Rastrigin or Matyas� Modi�cation of the expectation values and
variances of the random vectors is made according to the success or failure of iterations� No
applications of the strategy are known� however� so that for the time being the observation
of Schrack and Borowski 	
���� still stands� namely that a careful choice of the step lengths
is the most important prerequisite for the rapid convergence of a random method�

A method devised by Rastrigin 	
���a�b� 
��
� and developed further by Heydt 	
����
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works entirely with a restricted choice of directions� With a �xed step length� a direction
can be randomly selected only from within an n�dimensional hypercone� The angle sub�
tended by the cone and its height 	and thus the overall step length� are controlled in an
adaptive way� For a spherical objective function� e�g�� the model functions F� 	hypercone��
F� 	hypersphere�� or F	 	something intermediate between hypersphere and hypercube��
there is no improvement in the convergence behavior� Advantages can only be gained
if the search has to follow a particular direction for a long time along a narrow valley�
Sudden changes in direction present a problem� however� which leads Heydt to consider
substituting for the cone con�guration a hyper�parabolic or hyper�hyperbolic distribution�
with which at least small step lengths would retain su�cient freedom of direction�

In every case the striving for rapid convergence is directly opposed to the reliability of
global convergence� This has led Jarvis 	
��
� 
���� to investigate a combination of the
method of Matyas 	
���� 
���� with that of McMurtry and Fu 	
����� Numerical tests
by Cockrell 	
���� 
���� see also Fu and Cockrell� 
���� show that even here the basic
strategy of Matyas 	
���� or Schumer and Steiglitz 	
���� is clearly the better alternative�
It o�ers high convergence rates besides a fair chance of locating global optima� at least
for a small number of variables� In the case of many dimensions� every attempt to reach
global reliability is thwarted by the excessive cost� This leaves the globally convergent
stochastic approximation method of Vaysbord and Yudin 	
��
� far behind the rest of
the �eld� Furthermore� the sequential or creeping random search is the least susceptible
if perturbations act on the objective function�

Users of random strategies always draw attention to their simplicity� !exibility and
resistance to perturbations� These properties are especially important if one wishes to
construct automatic optimalizers 	e�g�� Feldbaum� 
��
� Herschel� 
��
� Medvedev and
Ruban� 
���� Krasnushkin� 
����� Rastrigin actually built the �rst optimalizer with a
random search strategy� which was designed for automatic frequency control of an electric
motor� Mitchell 	
���� describes an extreme value controller that consists of an analogue
computer with a permanently wired�in digital part� The digital part serves for storage and
!ow control� while the analogue part evaluates the objective function� The development of
hybrid analogue computers� in which the computational inaccuracy is determined by the
system� has helped to bring random methods� especially of the sequential type� into more
general use� For examples of applications besides those of the authors mentioned above�
the following publications can be referred to� Meissinger 	
����� Meissinger and Bekey
	
����� Kavanaugh� Stewart� and Brocker 	
��
�� Korn and Kosako 	
����� Johannsen
	
���� 
����� and Chatterji and Chatterjee 	
��
�� Hybrid computers can be applied to
best advantage for problems of optimal control and parameter identi�cation� because they
are able to carry out integrations and di�erentiations more rapidly than digital computers�
Mutseniyeks and Rastrigin 	
���� have devised a special algorithm for the dynamic control
problem of keeping an optimum� Instead of the variable position vector x� a velocity vector
with components 
xi�
t is varied� A randomly chosen combination is retained as long as
the objective function is decreasing in value 	for minimization 
F�
t � ��� As soon as
it begins to increase again� a new velocity vector is chosen at random�

It is always striking� if one observes living beings� how well adapted they are in shape�
function� and lifestyle � In many cases� biological structures� processes� and systems even
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surpass the capabilities of highly developed technical systems� Recognition of this has for
years led many authors to suspect that nature is in possession of optimal solutions to her
problems� In some cases the optimality of biological subsystems can even be demonstrated
mathematically� for example for the ratios of diameters in branching arteries 	Cohn� 
�����
for the hematocrit value 	the volume fraction of solid particles in the blood� Lew� 
�����
and the position of branch points in a level system of blood vessels 	Kamiya and Togawa�

���� see also Grassmann� 
���� 
��
� Rosen� 
���� Rein and Schneider� 
��
��

According to the theory of the descent of the species� all organisms that exist today
are the 	intermediate� result of a long process of development� evolution� Based on the
multitude of �nds of transitional species that have since become extinct� paleontology is
providing a gradually more complete picture of this development� Leaving aside super�
natural explanations� one must assume that the development of optimal or at least very
good structures is a property of evolution� i�e�� evolution is� or possesses� an optimization
	or better� meliorization� strategy�

In evolution� the mechanism of variation is the occurrence of random exchanges� even
�errors�� in the transfer of genetic information from one generation to the next� The se�
lection criterion favors the better suited individuals in the so�called struggle for existence�
The similarity of variation and selection to the iteration rules of direct optimization meth�
ods is� in fact� striking� This analogy is most often drawn for random strategies� since
mutations can best be interpreted as random changes� Thus Ashby 	
���� regards as
mutations the stochastic parameter variations in his blind homeostatic process� For many
variables� however� the pure or blind random search requires so many trials that it of�
fers no acceptable explanation of the capabilities of natural structures� processes� and
systems� With the highest possible physical rate of transfer of information� as given by
Bremermann 	
���� see also Ashby� 
���� 
��
� of 
�	
 bits per second and gram of com�
puter mass� the mass of the earth and the extent of its lifetime up to now would not
be su�cient to solve even simple combinatorial problems by complete enumeration or a
blind random search� never mind to determine the optimal con�guration of the 
�	 to 
��

genes with their information content of around 
��� bits 	Bremermann� 
����� Evolution
must rather be considered as a sequential process that exploits the information from pre�
ceding successes and failures in order to follow a trajectory� although not a completely
deterministic one� in the n�dimensional parameter space� Brooks 	
��
� and Favreau and
Franks 	
��
� are therefore right to compare their creeping random search with biological
evolution� Yet it is also certainly a very much simpli�ed imitation of the natural process
of development� In the 
���s� two proposals that consciously think of higher evolution
principles as optimization rules to be simulated are due to Rechenberg 	
���� 
���� and
Bremermann 	
���� 
���� 
���� 
��
a�b�c� 
���� 
��
� 
���a�b� see also Bremermann�
Rogson� and Sala�� 
���� 
���� Bremermann and Lam� 
����� Bremermann reasons from
the 	nowadays"� low mutation rates observed in nature that only one component of the
variable vector should be varied at a time� He then encounters with this scheme the
same di�culties as arise in the coordinate method� On the basis of his failure with the
mutation�selection scheme� for example on linear programming problems� he comes to the
conclusion that ecological niches are actually only stagnation points in development� and
they do not represent optimal states of adaptation� None of his many attempts to invoke
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the principles of population� sexual inheritance� recombination� dominance� and reces�
siveness to improve the convergence behavior yield the hoped for breakthrough� He thus
eventually resigns himself to a largely deterministic strategy� In the linear programming
problem� he chooses from the starting point several random directions and follows these in
turn up to the boundary of the feasible region� The best states on the individual bounding
hyperplanes are used to determine a new starting point by taking the arithmetic mean
of the component parameters� Because of the convexity of the allowed region� the new
starting point is always within it� The simultaneous choice of several search directions
is supposed to be the analogue of the population principle and the construction of the
average the analogue of recombination in sexual propagation� To tackle the problem of
�nding the minimum or maximum of an unconstrained� non�linear function� Bremermann
even applies a �ve point Lagrangian interpolation to determine relative extrema in the
random directions�

Rechenberg�s evolution strategy changes all the components of the variable vector at
each mutation� In his case� the low mutation rate for many dimensions is expressed by
choosing small values for the step lengths� or the spread in the random changes� On the
basis of theoretical work with two model functions he �nds that the standard deviations
of the random components are set optimally when they are inversely proportional to the
number of parameters� His two membered evolution strategy resembles the scheme of
Schumer and Steiglitz 	
��
�� which is acknowledged to be particularly good� except that
a 	�� ��� normally distributed random quantity replaces the �xed step length s� He has
also added to it a step length modi�cation rule� again derived from theory� which makes
this look a very promising search method� It is re�ned in Chapter �� Section ��
 to meet
the requirements of numerical optimization with digital computers� A multimembered
strategy is treated in Section ���� which follows the same basic concept� however� by im�
itating the principles of population and recombination� it can operate without external
control of the step lengths� Incorporating more than one descendant at a time and forget�
ting �parental wisdom� at the end of each iteration loop has provoked �erce objections
against a more natural evolution strategy�

Box 	
���� also considers that his EVOP 	evolutionary operation� strategy resem�
bles the biological mutation�selection process� He regards the vertices of his pattern of
trial points� of which the best becomes the center of the next pattern� as individuals of
a population� of which only the best �survives�� The �o�spring� are� however� gener�
ated by purely deterministic rules� Random decisions� as used by Satterthwaite 	
���a�
after Lowe� 
���� in his REVOP 	random evolutionary operation� variant� are actually
explicitly rejected by Box 	see Youden et al�� 
���� Satterthwaite� 
���b� Budne� 
����
Anscombe� 
�����

From a biological or cybernetic point of view� Pask 	
���� 
��
�� Schmalhausen 	
�����
Berg and Timofejew�Ressowski 	
����� Dobzhansky 	
����� Moran 	
����� and Kussul and
Luk 	
��
� among others have examined the analogy between optimization and evolution�
The fact that no practical algorithms have come out of this is no doubt because the
evolutionary processes are described only verbally� Although they sometimes even include
their more subtle e�ects� they have so far not produced a really quantitative� predictive
theory� Exceptions� such as the work of Eigen 	
��
� see also Schuster� 
����� Merzenich
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����� and Papentin 	
���� are so di�erent in emphasis that they are not applicable to
the kind of problems considered here� The ways in which a process of mathematization

can be implemented in theoretical biology are documented in for example the books by
Waddington 	
��
� and Locker 	
����� which contain a number of contributions of interest
from the optimization point of view� as well as many articles in the journal Mathematical

Biosciences� which has been published by R� W� Bellman since 
���� and some papers
from two Berkeley symposia 	LeCam and Neyman� 
���� LeCam� Neyman� and Scott�

����� Whereas many modern books on biology� such as Riedl 	
���� and Roughgarden
	
����� still give mainly verbal explanations of organic evolution� in general� this is no
longer the case� Physicists like Ebeling and Feistel 	see Feistel and Ebeling� 
�
�� and
biologists like Maynard Smith 	
�
�� 
�
�� meanwhile have contributed mathematical
models� The following two paragraphs thus no longer represent the actual situation� but
before we add some new aspects they will be presented� nevertheless� to characterize the
situation as perceived by the author in the early 
���s 	Schwefel� 
���a��

Relationships have been seen between random strategies and biological evolu�
tion on the one hand and the psychology of recognition processes on the other�
for example� by Campbell 	
���� and Khovanov 	
����� The imitation of such
processes�the catch phrase is arti�cial intelligence�always leads to the prob�
lem of choosing or designing a suitable search algorithm� which should rather
be heuristic than strictly deterministic� Their simplicity� reliability 	even in
extreme� unfamiliar situations�� and !exibility give the random strategies a
special r#ole in this �eld� The topic will not be discussed more fully here� ex�
cept to mention some publications that explicitly deal with the relationship
to optimization strategies� Friedberg 	
��
�� Friedberg� Dunham� and North
	
����� Minsky 	
��
�� Samuel 	
����� J� L� Barnes 	
����� Vagin and Rudel�
son 	
��
�� Thom 	
����� Minot 	
����� Ivakhnenko 	
����� Michie 	
��
��
and Slagle 	
����� A particularly impressive example is given by the work of
Fogel� Owens� and Walsh 	
���� 
���a�b�� in which imitation of the biologi�
cal evolutionary principles of mutation and selection gives a 	mathematical�
automaton the ability to recognize prescribed sequences of numbers�

It may be that in order to match the capabilities of the human brain�and
to understand them�there must be a move away from the digital methods of
present serial computers to quite di�erent kinds of switching elements and
coupling principles� Such concepts� as pursued in neurocybernetics and neu�
robionics� are described� for example� by Brajnes and Sve�cinskij 	
��
�� The
development of the perceptron by Rosenblatt 	
��
� can be seen as a �rst step
in this direction�

Two research teams that have emphasized the adaptive capacity of evolutionary pro�
cedures and who have shown interesting computer simulations are Allen and McGlade
	
�
��� and Galar� Kwasnicka� and Kwasnicki 	see Galar� Kwasnicka� and Kwasnicki�

�
�� Galar� 
����� In terms of the optimization tasks looked at throughout this book�
one might call their point of view dynamic or on�line optimization� including optimum
holding against environmental changes� As Schwefel and Kursawe 	
���� have pointed



Random Strategies 
��

out� a limited life span of all individuals is an important ingredient in such cases 	principle
of forgetting��

Two others who have tried to explain brain processes on an evolutionary� at least
selectionist� basis are Edelman 	
�
�� and Conrad 	
�

�� Though their approach has
not yet been embraced by the main stream of neural network research� this might happen
in the near future 	e�g�� Banzhaf and Schmutz� 
�����

An even more general paradigm shift in the �eld of arti�cial intelligence 	AI� has
emerged under the label arti�cial life 	AL� see Langton� 
�
�� 
���a�b� Langton et al��

���� Varela and Bourgine� 
����� Whereas Lindenmayer 	see Prusinkiewicz and Lin�
denmayer� 
���� demonstrates the possibility of 	re��creating plant forms by means of
rather simple computer algorithms� the AL community tries to imitate animal behavior
computationally� In most cases the goal is to design �intelligent� robots� sometimes called
knowbots or animats 	Meyer and Wilson� 
��
� Meyer� 
���� Meyer� Roitblat� and Wilson�

�����

The attraction of even simple evolutionary models 	re��producing fairly complex be�
havior of multi�individual systems simulated on computers is already spreading across
the narrow bounds of computer science as such� New ideas are emerging from evolution�
ary computation� not only towards the organization of software development 	Huberman�

�

�� but also into the �eld of economics 	e�g�� Witt� 
���� Nissen� 
���� 
���� and even
beyond 	Schwefel� 
�

� Haefner� 
����� It may be questionable whether worthwhile con�
clusions from the new �ndings can reach as far as that� but ecology at least should be a
�eld that could bene�t from a consequent use of evolutionary thinking 	see Wol�� Soeder�
and Drepper� 
�

��

Computers have opened a third way of systems analysis aside from the classical math�
ematical$analytical and experimental$empirical main roads� i�e�� numerical and$or sym�
bolical simulation experiments� There is some hope that we may learn this way quickly
enough so that we can maintain life on earth before we more or less unconsciously destroy
it� Real evolution always had to deal with unpredictable environmental changes� not only
those resulting from exogenous in!uences� but also self�induced endogenous ones� The
landscape is some kind of n�dimensional trampoline� and every good imitation of organic
evolution� whether it be called adaptive or meliorizing� must be able to work properly un�
der such hard conditions� The multimembered evolution strategy 	see Chap� �� Sect� ����
with limited life span of the individuals ful�lls that requirement to some extent�
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Chapter �

Evolution Strategies for Numerical

Optimization

The task of mimicking biological structures and processes with the object of solving
technical problems is as old as engineering itself� Mimicry itself� as a natural �strategy��
is even older than mankind� The legend of Daedalus and Icarus bears early witness
to such human endeavor� A sign of its scienti�c coming of age is the formation of the
distinct branch of science known as bionics 	e�g�� Hertel� 
���� G�erardin� 
��
� Beier
and Gla%� 
��
� Nachtigall� 
��
� Heynert� 
���� Zerbst� 
�
��� which is concerned with
the recognition of existing biological solutions to problems that also happen to arise
in engineering� and with the adequate emulation of these examples� It is always thereby
supposed that evolution has found particularly good� perhaps even optimal solutions� This
assumption has often proved to be correct� or at any rate useful� Only a few attempts to
imitate the actual methods of natural development are known 	Ashby� 
���� Bremermann�

����
���� Rechenberg� 
���� 
���� Fogel� Owens� and Walsh� 
���� 
���a�b� Holland�

���� see also Chap� �� since they are curiously regarded a priori as being especially bad�
meaning costly�

Rechenberg proposed the hypothesis �that the method of organic evolution represents
an optimal strategy for the adaptation of living things to their environment�� and he
concludes �it should therefore be worthwhile to take over the principles of biological
evolution for the optimization of technical systems��

��� The Two Membered Evolution Strategy

Rechenberg�s two membered evolution scheme� suggested in similar form by other authors
as a random strategy 	see Chap� �� will be expressed in this chapter as an algorithm for
solving non�discrete� non�stochastic� parameter optimization problems� As in Chapter ��
the problem is

F 	x� � min

where x � IRn� In the constrained case x has to be in an allowed region G 	 IRn� where

G � fx � IRn jGj	x� 
 � � j � 
	
�n �Gj restriction functionsg

��
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In this� as in all direct search methods� it is not possible to deal with constraints in the
form of equalities�

����� The Basic Algorithm

The two membered scheme is the minimal concept for an imitation of organic evolution�
The two principles of mutation and selection� which Darwin 	

��� recognized to be most
important� are taken as rules for variation of the parameters and for �ltering during the
iteration sequence respectively�

In the language of biology� the rules are as follows�

Step �� 	Initialization�
A given population consists of two individuals� one parent and one descendant�
They are each identi�ed by their genotype according to a set of n genes� Only
the parental genotype has to be speci�ed as starting point�

Step 
� 	Mutation�
The parent E�g� of the generation g produces a descendant N �g�� whose geno�
type is slightly di�erent from that of the parent� The deviations refer to the
individual genes and are random and independent of each other�

Step �� 	Selection�
Because of their di�erent genotypes� the two individuals have a di�erent ca�
pacity for survival 	in the same environment�� Only one of them can produce
further descendants in the next generation� namely the one which represents
the higher survival value� It becomes the parent E�g��� of the generation g � 
�

Thus the simplest possible assumptions are made�

� The population size remains constant

� An individual has in principle an in�nitely long life span and capacity for producing
descendants 	asexually�

� No di�erence exists between genotype 	encoding� and phenotype 	appearance�� or
that one is unambiguously and reproducibly associated with the other

� Only point mutations occur� independently of each other at all single parameter
locations

� The environment and thus the criterion of survival is constant over time

This minimal concept takes no account of the evolutionary factors familiar to the mod�
ern synthetic evolution theory 	e�g�� Stebbins� 
��
� �C�i�zek and Hod�a�nov�a� 
��
� Osche�

����� such as chromosome mutations� bisexuality� recombination� diploidy� dominance
and recessiveness� population size� niching� isolation� migration� etc� Even the concepts
of mutation and selection are not applied here with their full biological meaning� Natural
selection does not simply mean the struggle between just two individuals in which the
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better survives� but far more accurately that an individual with more favorable proper�
ties produces on average more descendants than one less well adapted to the environment�
Neither does the present work go more deeply into the connections between cause and
e�ect in the transmission of inherited information� of which so much has been revealed
by molecular biology� Mutation is used in the widest biological sense as a synonym for
all types of alteration of the substance of inheritance� In his book Evolutionsstrategie�
Rechenberg 	
���� examines in more detail the analogy between natural evolution and
technical optimization� He compares in particular the biological with the technical pa�
rameter space� and interprets mutations as steps in the nucleotide space�

Expressed in mathematical language� the rules are as follows�

Step �� 	Initialization�
There should be storage allocated in a 	digital� computer for two points of
an n�dimensional Euclidean space� Each point is characterized by a position
vector consisting of a set of n components�

Step 
� 	Variation�

Starting from point E�g�� with position vector x
�g�
E � in iteration g� a second

point N �g�� with position vector x
�g�
N � is generated� the components x

�g�
N�i of

which di�er only slightly from the x
�g�
E�i� The di�erences come about by the

addition of 	pseudo� random numbers z
�g�
i � which are mutually independent�

Step �� 	Filtering�
The two points or vectors are associated with di�erent values of an objec�
tive function F 	x�� Only one of them serves as a starting point for the new
variation in the next iteration g � 
� namely the one with the better 	for
minimization� smaller� value of the objective function�

Taking account of constraints in the form of a barrier penalty function� this algorithm
can be formalized as follows�

Step �� 	Initialization�

De�ne x
���
E � fx���E�i � i � 
	
�ngT � such that Gj	x

���
E � 
 � for all j � 
	
�m�

Set g � ��

Step 
� 	Mutation�

Construct x�g�N � x
�g�
E � z�g� with components

x
�g�
N�i � x

�g�
E�i � z

�g�
i for all i � 
	
�n�

Step �� 	Selection�
Decide

x
�g���
E �

�
x
�g�
N � if F 	x�g�N � � F 	x�g�E � and Gj	x

�g�
N � 
 � for all j � 
	
�m

x
�g�
E � otherwise�

Increase g � g � 
 and go to step 
 as long as the termination criterion does
not hold�
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The question remains of how to choose the random vectors z�g�� This choice has the
r#ole of mutation� Mutations are understood nowadays to be random� purposeless events�
which furthermore only occur very rarely� If one interprets them� as is done here� as a sum
of many individual events� it is natural to choose a probability distribution according to
which small changes occur frequently� but large ones only rarely 	the central limit theorem
of statistics�� For discrete variations one can use a binomial distribution� for example� for
continuous variations a Gaussian or normal distribution�

Two requirements then arise together by analogy with natural evolution�

� That the expectation value �i for a component zi has the value zero

� That the variance ��i � the average squared deviation from the mean� is small

The probability density function for normally distributed random events is 	e�g�� Heinhold
and Gaede� 
�����

w	zi� �

p

�� �i
exp

�
�	zi � �i��

���i

�
	��
�

If �i � �� one obtains a so�called 	�� ��i � normal distribution� There are still however a
total of n free parameters f�i� i � 
	
�ng with which to specify the standard deviations
of the individual random components� By analogy with other� deterministic search strate�
gies� the �i can be called step lengths� in the sense that they represent average values of
the lengths of the random steps�

For the occurrence of a particular random vector z � fzi� i � 
	
�ng� with the
independent 	�� ��i � distributed components zi� the probability density function is

w	z�� z�� � � � � zn� �
nY
i��

w	zi� �



	���
n
�

nQ
i��

�i
exp

�
�


�

nX
i��

�
zi
�i

���
	����

or more compactly� if �i � � for all i � 
	
�n�

w	z� �

�

p
�� �

�n

exp

��z zT
���

�
	����

For the length of the overall random vector S �
qPn

i�� z
�
i a �

p
�� distribution is ob�

tained� The �� distribution with n degrees of freedom approximates� for large n� to

a 	�
q
n � �

�
� �

�

�
� normal distribution� Thus the expectation value for the total length

of the random vector for many variables is E	S� � �
p
n� the variance is D�	S� �

E		S � E	S���� � ��

� � and the coe�cient of variation is

D	S�

E	S�
�


p
�n

This means that the most probable value for the length of the random vector at constant �
increases as the square root of the number of variables and the relative width of variation
decreases with the reciprocal square root of parameters�
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Figure ���� Two membered evolution strategy

The geometric locus of equally likely changes in variation of the variables can be
derived immediately from the probability density function� Equation 	����� It is an n�
dimensional hyperellipsoid 	n�fold variance ellipse� with the equation

nX
i��

�
zi
�i

��
� const�

referred to its center� which is the starting point x
�g�
E � In the multidimensional case� the

random changes can be regarded as a vector ending on the surface of a hyperellipsoid
with the semi�axes �i� or if �i � � for all i � 
	
�n� in the language of two dimensions
they are distributed circumferentially� Figure ��
 serves to illustrate two iteration steps
of the evolution strategy on a two dimensional contour diagram� Whereas in other�
fully deterministic search strategies both the direction and length of the search step are
determined in the procedure in a �xed manner� or on the basis of previously gathered
information and plausible assumptions about the topology of the objective function� in
the evolution strategy the direction is purely random and the step length�except for
a small number of variables�is practically �xed� This should be emphasized again to
distinguish this random method from Monte�Carlo procedures� in which the selected trial
point is always fully independent of the previous choice and its outcome� Darwin 	

���
himself emphasized that the evolution of living things is not a purely random process� Yet
against his theory of descendancy� a polemic is still waged in which the impossibility is
demonstrated that life could arise by a purely random process 	e�g�� Jordan� 
����� Even
at the level of the simplest imitation of organic evolution� a suitable choice of the step
lengths or variances turns out to be of fundamental signi�cance�
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����� The Step Length Control

In experimental optimization� the appropriate step lengths can frequently be predicted�
The values of the variables usually have to be determined exactly at only a few points�
Thus constant values of the variances are often all that is required to complete an extreme
value search� It is a matter of fact that in most experimental applications of the simple
evolution strategy �xed 	and discrete� distributions of mutations have been used�

By contrast� in mathematically formulated problems that are to be solved on a digital
computer� the variables often run over much of the number range of the computer� which
corresponds to many powers of 
�� In a numerical optimum search the step lengths
must be continuously modi�ed if the algorithm is to be e�cient�a problem reminiscent
of steering safely between Scylla and Charybdis� for if the step length is too small the
search takes an unnecessarily large number of iterations� if it is too large� on the other
hand� the optimum can only be crudely approached and the search can even get stuck
far from the optimum� for example� if the route to the minimum passes along a narrow
valley� Thus in all optimization strategies the step length control is the most important
part of the algorithm after the recursion formula� and it is furthermore closely linked to
the convergence behavior�

The corresponding remarks hold for the evolution strategy� with the following di�er�
ence� In place of a predetermined step length for a parameter of the objective function
there is the variance of the random changes in this parameter� and instead of the state�
ment that an improvement will or will not be made in a given direction with a speci�ed
step length� there can only be a statement of probability of the success or failure for a
chosen variance�

In his theoretical investigations of the two membered evolution strategy� Rechenberg
discovered using two basically di�erent model objective functions 	sphere model � Prob�
lem 
�
� corridor model � Problem ��
 of the problem catalogue� see Appendix A� that
the maximal rate of convergence corresponds to a particular value for the probability of a
success� i�e�� an improvement in the objective function value� He was thus led to formulate
the following rule for controlling the size of the random changes�

The 
�� success rule�

From time to time during the optimum search obtain the frequency of suc�
cesses� i�e�� the ratio of the number of successes to the total number of trials
	mutations�� If the ratio is greater than 
��� increase the variance� if it is less
than 
��� decrease the variance�

In many problems this rule proves to be extremely e�ective in maintaining approx�
imately the highest possible rate of progress towards the optimum� While in the right�
angled corridor model the variances are adjusted once and for all in accordance with this
rule and subsequently remain constant� in the sphere model they must steadily become
smaller� The question then arises as to how often the success criterion should be tested
and by what factor the variances are most e�ectively reduced or increased�

This question will be answered with reference to the sphere model introduced by
Rechenberg� since this is the simplest non�linear model objective function and requires
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the greatest and most frequent changes in the step lengths� The following results of
Rechenberg�s theory can be used here�
For the maximum rate of progress

�max � k�
r

n
� k� � ������ 	����

with a common variance ��� which is always optimal given by

�opt � k�
r

n
� k� � 
���� 	����

for all components zi of the random vector z� In these expressions r is the current distance
from the goal 	optimum� and n is the number of variables� The rate of progress is de�ned
as the expectation value of the radial di�erence covered per trial 	mutation�� as illustrated
in Figure ����

��g� � r�g� � r�g��� 	����

From Equations 	���� to 	���� one obtains a relation for the changes in the variance
after a generation 	iteration� or mutation� under the condition of maximum convergence
rate
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Figure ���� The rate of progress for the sphere model
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�
�g���
opt

�
�g�
opt

�
r�g���

r�g�
� 
� k�

n

or after n generations

�
�g�n�
opt

�
�g�
opt

�

�

� k�

n

�n

If n is large compared to one� and the formulae derived by Rechenberg are only valid
under this assumption� the step length factor tends to a constant�

lim
n��

�

 � k�

n

�n

� e�k� � ��

� � 



����

The same result is obtained by considering the rate of progress as a di�erential quotient
� � dr�dg� in which g represents the iteration number�

This matches the limiting case of very many variables because� according to Equation
	���� the rate of progress is inversely proportional to the number of variables� The fact
that the rate of progress � near its maximum is quite insensitive to small changes in the
variances� together with the fact that the probability of success can only be determined
from an average over several mutations� leads to the following more precise formulation
of the 
�� success rule for numerical optimization�

After every n mutations� check how many successes have occurred over the
preceding 
�n mutations� If this number is less than �n� multiply the step
lengths by the factor ��
�� divide them by ��
� if more than �n successes
occurred�

The 
�� success rule enables the step lengths or variances of the random variations
to be controlled� One might do even better by looking for a control mechanism with
additional di�erential and integral coe�cients to avoid the oscillatory behavior of a mere
proportional feedback� However� the probability of success unfortunately gives no indi�
cation of how appropriate are the ratios of the variances ��i to each other� The step
lengths can only be all reduced together� or all increased� One would sometimes rather
like to build in a scaling of the variables� i�e�� to determine ratios of the step lengths to
each other� This can be achieved by a suitable formulation of the objective function� in
which new parameters are introduced in place of the original variables� The functional
dependence can be freely chosen and in the simplest case it is given by multiplicative
factors� In the formulation of the numerical procedure for the two membered evolution
strategy 	Appendix B� Sect� B�
� the possibility is therefore included of specifying an
initial step length for each individual variable� The ratios of the variances to each other
remain constant during the optimum search� unless speci�ed lower bounds to the step
lengths are not operating at the same time�

All digital computers handle data only in the form of a �nite number of units of
information 	bits�� The number of signi�cant �gures and the range of numbers is thereby
limited� If a quantity is repeatedly divided by a factor greater than one� the stored value of
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the quantity eventually becomes zero after a �nite number of divisions� Every subsequent
multiplication leaves the value as zero� If it happens to one of the standard deviations �i�
the a�ected variable xi remains constant thereafter� The optimization continues only in a
subspace of IRn� To guard against this it must be required that �i � � for all i � 
	
�n�
The random changes should furthermore be su�ciently large that at least the last stored
place of a variable is altered� There are therefore two requirements�
Lower limits for the �step lengths��

�
�g�
i 
 
a� for all i � 
	
�n

and

�
�g�
i 
 
b

���x�g�i

��� � for all i � 
	
�n

where

a � �


 � 
b � 


�
according to the computational accuracy

It is thereby ensured that the random variations are always active and the region of the
search stays spanned in all dimensions�

����� The Convergence Criterion

In experimental optimization it is usually decided heuristically when to terminate the
series of trials� for example� when the trial results indicate that no further signi�cant
improvement can be gained� One always has an overall view of how the experiment is
running� In numerical optimization� if the calculations are made by computer� one must
build into the program a rule saying when the iteration sequence is to be terminated� For
this purpose objective� quantitative criteria are needed that refer to the data available at
any time� Sometimes� although not always� one will be concerned to obtain a solution as
exactly as possible� i�e�� accurate to the last stored digit� This requirement can relate to
the variables or to the objective function� Remember that the optimum may be a weak
one�

Towards the minimum� the step lengths and distances covered normally become
smaller and smaller� A frequently used convergence criterion consists of ending the search
when the changes in the variables become zero 	in which case no further improvement in
the objective function is made�� or when the step lengths have become zero� As a rule one
sets the lower bound not to zero but to a su�ciently small� �nite value� This procedure
has however one disadvantage that can be serious� Small step lengths occur not only if
the minimum is nearby� but also if the search is moving through a narrow valley� The
optimization may then be practically halted long before the extreme value being sought is
reached� In Equations 	���� and 	����� r can equally well be thought of as the local radius
of curvature� Neither �� the distance covered� nor �� the step length� are a measure of the
closeness to the optimum� Rather they convey information about the complexity of the
minimum problem� the number of variables and the narrowness of valleys encountered�
The requirement � � 
 or kx�g� � x�g���k � 
 for the continuation of the search is thus
no guarantee of su�cient convergence�
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Gradient methods� which seek a point with vanishing �rst derivatives� frequently also
apply this necessary condition for the existence of an extremum as a termination criterion�
Alternatively the search can be continued until 
F � F 	x�k���� � F 	x�k��� the change
in the objective function value in one iteration� goes to zero or to below a prescribed
limit� But this requirement can also be ful�lled far from the minimum if the valley in
which the deepest point is sought happens to be very !at in shape� In this case the
step length control of the two membered evolution strategy ensures that the variances
become larger� and thus the function value di�erences between two successful trials also
on average become larger� This is guaranteed even if the function values are equal 	within
computational accuracy�� since a change in the variables is always then registered as a
success� One thus has only to take care that 
F is summed over a number of results
in order to derive a termination criterion� Just as lower bounds are de�ned for the step
lengths� an absolute and a relative bound can be speci�ed here�

Termination rule�

End the search if

F 	x
�g��g�
E �� F 	x

�g�
E � � 
c

or




d

h
F 	x

�g��g�
E �� F 	x

�g�
E �

i
� jF 	x

�g�
E �j

where


g 
 ��n

and


c � �

 � 
d � 


�
according to the computational accuracy

The condition 
g 
 ��n is designed to ensure that in the extreme case the stan�
dard deviations are reduced or increased within the test period by at least the factor
	��
����� � 	������ in accordance with the 
�� success rule� This will prevent the search
being terminated only because the variances are forced to change suddenly� It is clear
from Equation 	���� that the more variables are involved in the problem� the slower is
the rate of progress� Hence it does not make sense to test the convergence criterion very
frequently� A recommended procedure is to make a test every ��n mutations� Only one
additional function value then needs to be stored�

Another reason can be adduced for linking the termination of the search to the function
value changes� While every success in an optimum search means� in the end� an economic
pro�t� every iteration costs computer time and thus money� If the costs exceed the pro�t�
the optimization may well provide useful information� but it is certainly not on the whole
of any economic value� Thus someone who only wishes to optimize from an economic
point of view can� by a suitable choice of values for the accuracy parameters� restrain the
search process as soon as it starts running into a loss�
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����� The Treatment of Constraints

Inequality constraints Gj	x� 
 � for all j � 
	
�m are quite acceptable� Sign conditions
may be formulated in the same manner and do not receive any special treatment� In
contrast to linear and non�linear programming� no sign conditions need to be set in order
to keep within a bounded region� If a mutation falls in the forbidden region it is assessed
as a worsening 	in the sense of a lethal mutation� and the variation of the variables is not
accepted�

No particular penalty function� such as Rosenbrock chooses for his method of rotating
coordinates� has been developed for the evolution strategy� The user is free to use the
techniques for example of Carroll 	
��
�� Fiacco and McCormick 	
��
�� or Bandler and
Charalambous 	
����� to construct a suitable sequence of substitute objective functions
and to solve the original constrained problem as a sequence of unconstrained problems�
This� however� can be done outside the procedure�

It is sometimes di�cult to specify an allowed initial vector of the variables� If one were
to wait until by chance a mutation satis�ed all the constraints� it could take a very long
time� Besides� during this search period the success checks could not be carried out as
described above� It would nevertheless be desirable to apply the normal search algorithm
e�ectively to �nd an allowed state� Box 	
���� has given in the description of his complex
method a simple way of proceeding from a forbidden starting point� He constructs an
auxiliary objective function from the sum of the constraint function values of the violated
constraints�

&F 	x� �
mX
j��

Gj	x� �j	x�

where

�j	x� �

�
�
 � if Gj	x� � �
� � otherwise

	����

Each decrease in the value of &F 	x� represents an approach to the feasible region� When
eventually &F 	x� � �� then x satis�es all the constraints and can serve as a starting vector
for the optimization proper� This procedure can be taken over without modi�cation for
the evolution strategy�

����� Further Details of the Subroutine EVOL

In Appendix B� Section B�
 a complete FORTRAN listing is given of a subroutine cor�
responding to the two membered evolution scheme that has been described� Thus no
detailed algorithm will be formulated here� but a few further programming details will be
mentioned�

In nearly all digital computers there are library subroutines for generating uniformly
distributed pseudorandom numbers� They work� as a rule� according to the multiplicative
or additive congruence method 	see J�ohnk� 
���� Niederreiter� 
���� Press et al�� 
�����
From any two numbers taken at random from a uniform distribution in the range ��� 
 � by
using the transformation rules of Box and Muller 	
��
� one can generate two independent�





� Evolution Strategies for Numerical Optimization

normally distributed random numbers with the expectation values zero and the variances
unity� The formulae are

and
Z �� �

q
�� lnY� sin 	�� Y��

Z �� �
q
�� lnY� cos 	�� Y��

	��
�

where the Yi are the uniformly distributed and the Z �i 	�� 
��normally distributed random
numbers respectively� To obtain a distribution with a variance di�erent from unity� the
Z �i must simply be multiplied by the desired standard deviation �i 	the �step length���

Zi � �i Z
�
i

The transformation rules are contained in a function procedure separate from the actual
subroutine� To make use of both Equations 	��
� a switch with two settings is de�ned�
the condition of which must be preset in the subroutine once and for all� In spite of
Neave�s 	
���� objection to the use of these rules with uniformly distributed random
numbers that have been generated by a multiplicative congruence method� no signi�cant
di�erences could be observed in the behavior of the evolution strategy when other random
generators were used� On the other hand the trapezium method of Ahrens and Dieter
	
���� is considerably faster�

Most algorithms for parameter optimization include a second termination rule� inde�
pendent of the actual convergence criterion� They end the search after no more than a
speci�ed number of iterations� in order to avoid an in�nite series of iterations in case the
convergence criterion should fail� Such a rule is e�ectively a bound on the computation
time� The program libraries of computers usually contain a procedure with which the
CPU time used by the program can be determined� Thus instead of giving a maximum
number of iterations one could specify a maximum computation time as a termination
criterion� In the present program the latter option is adopted� After every n iterations
the elapsed CPU time is checked� As soon as the limit is reached the search ends and
output of the results can be initiated from the main program�

The 
�� success rule assumes that there is always some combination of variances
�i � � with which� on average� at least one improvement can be expected within �ve
mutations� In Figure ��� two contour diagrams are shown for which the above condition
cannot always be met� At some points the probability of a success cannot exceed 
�� � for
example� at points where the objective function has discontinuous �rst partial derivatives
or at the edge of the allowed region� Especially in the latter case� the selection principle
progressively forces the sequence of iteration points closer up to the boundary and the
step lengths are continuously reduced in size� without the optimum being approached
with comparable accuracy�

Even in the corridor model 	Problem ��
 of Appendix A� Sect� A��� di�culties can
arise� In this case the rate of progress and probability of success depend on the current
position relative to the edges of the corridor� Whereas the maximum probability of success
in the middle of the corridor is 
��� at the corners it is only ��n� If one happens to be in the
neighborhood of the edge of the corridor for several mutations� the probability of success
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Figure ���� Failure of the ��� success rule

calculated by the above rule will be very di�erent from that associated with the same
step length if an average over the corridor cross section were taken� If now� on the basis
of this low estimate of the success probability� the step length is further reduced� there
is a corresponding decrease in the probability of escaping from the edge of the corridor�
It would therefore be desirable in this special case to average the probability of success
over a longer time period� Opposed to this� however� is the requirement from the sphere
model that the step lengths should be adjusted to the topology as directly as possible�
The present subroutine o�ers several means of dealing with the problem� For example�
the lower bounds on the variances 	variables EA� EB in the subprogram EVOL� can be
chosen to be relatively large� or the number of mutations 	the variable LS� after which
the convergence criterion is tested can be altered by the user� The user has besides a free
choice with regard to the required probability of success 	variable LR� and the multiplier
of the variance 	variable SN�� The rate of change of the step lengths� given by the factor
��
� per n mutations� was �xed on the basis of the sphere model� It is not ideal for all
types of problems but rather in the nature of a lower bound� If it seems reasonable to
operate with constant variances� the parameter in question should be set equal to one�

An indication of a suitable choice for the initial step lengths 	variable array SM� can be
obtained from Equation 	����� Since r increases as the root of the number of parameters�
one is led to set

�
���
i �


xip
n

in which 
xi is a rough measure of the expected distance from the optimum� This does
not actually give the optimal step length because r is a kind of local scale of curvature of
the contours of the objective function� However� it does no harm to start with variances
that are too large� they will quickly be reduced to a suitable size by the 
�� success rule�
During this transition phase there is still a chance of escaping from the neighborhood
of a merely local optimum but very little chance afterwards� The global convergence
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property 	see Rechenberg� 
���� of the evolution strategy can only be proved under the
condition of constant step lengths� With the introduction of the success rule� it is lost�
or to be more precise� the probability of �nding the global minimum among several
local minima decreases continuously as a local minimum is approached with continuous
reduction in the step lengths� Rapid convergence and reliable global convergence behavior
are two contradictory requirements� They cannot be reconciled if one has absolutely no
knowledge of the topology of the objective function� The 
�� success rule is aimed at high
convergence rates� If several local optima are expected� it is thus advisable to keep the
variances large and constant� or at least to start with large �

���
i and perhaps to require a

lower success probability than 
$�� This measure naturally costs extra computation time�
Once one is sure of having located a point near the global extremum� the accuracy can be
improved subsequently in a follow�up computation� For more sophisticated investigations
of the global convergence see Born 	
��
�� Rappl 	
�
��� Scheel 	
�
��� B�ack� Rudolph�
and Schwefel 	
����� and Beyer 	
�����

��� A Multimembered Evolution Strategy

While the simple� two membered evolution strategy is successful in application to many
optimization problems� it is not a satisfactory method of solving certain types of problem�
As we have seen� by following the 
�� success rule� the step lengths can be permanently
reduced in size without thereby improving the rate of progress� This phenomenon occurs
frequently if constraints become active during the search� and greatly reduce the size of
the success scoring region� A possible remedy would be to alter the probability distri�
bution of the random steps in such a way as to keep the success probability su�ciently
large� To do so the standard deviations �i would have to be individually adjustable�
The contour surfaces of equal probability could then be stretched or contracted along
the coordinate axes into ellipsoids� Further possibilities for adjustment would arise if the
random components were allowed to depend on each other� For an arbitrary quadratic
problem the rate of convergence of the sphere model could even be achieved if the random
changes of the individual variables were correlated so as to make the regression line of
the random vector run parallel to the concentric ellipsoids F 	x� � const�� which now lie
at some angle in the space� To put this into practice� information about the topology
of the objective function would have to be gathered and analyzed during the optimum
search� This would start to turn the evolution strategy into something resembling one
of the familiar deterministic optimization methods� as Marti 	
�
�� and recently again
Ostermeier 	
���� have done� this is contrary to the line pursued here� which is to apply
biological evolution principles to the numerical solution of optimization problems� Fol�
lowing Rechenberg�s hypothesis� construction of an improved strategy should therefore be
attempted by taking into account further evolution principles�

����� The Basic Algorithm

When the ground rules of the two membered evolution strategy were formulated in the
language of biology� reference was to one parent and one o�spring� the basic population
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thus consisted of two individuals� In order to reach a higher level of imitation of the
evolutionary process� the number of individuals must be increased� This is precisely the
concept behind the evolution strategy referred to in the following as multimembered� In
his basic work 	Rechenberg� 
����� Rechenberg already presented a scheme for a mul�
timembered evolution� The one considered here is somewhat di�erent� It turns out to
be particularly useful with respect to the individual control of several step lengths to be
described later� As yet� however� no detailed comparison of the two variants has been
undertaken�

It is useful to introduce at this point a nomenclature for the di�erent evolution strate�
gies� We shall call the number of parents of a generation �� and the number of descendants
�� so that the selection takes place between ��� � 
�
 � � individuals in the two mem�
bered strategy� We thus characterize the simplest imitation of evolution in abbreviated
notation as the 	
�
� strategy� Since the multimembered evolution scheme described by
Rechenberg allows a selection between � � 
 parents and � � 
 o�spring it should be
called the 	��
� strategy� Accordingly a more general form� a 	���� evolution strategy�
should be formulated in such a way that a basic population of � parents of generation g
produces � o�spring� The process of selection only allows the � best of all � � � indi�
viduals to proceed as parents of the following generation� be they o�spring of generation
g or their parents� In this model it could happen that a parent� because of its vitality�
is far superior to the other parents in the same generation� �lives� for a very long time�
and continues to produce further o�spring� This is at variance to the biological fact of a
limited life span� or more precisely a limited capacity for reproduction� Aging phenomena
do not� as far as is known� a�ect biological selection 	see Savage� 
���� Osche� 
����� As
a further conceptual model� therefore� let us introduce a population in which � parents
produce � � � o�spring but the � parents are not included in the selection� Rather
the parents of the following generation should be selected only from the � o�spring� To
preserve a constant population size� we require that each time the � best of the � o�spring
become parents of the following generation� We will refer to this scheme in what follows
as the 	� � �� strategy� As for the 	
�
� strategy in Section ��
�
� the algorithm of the
multimembered 	� � �� strategy will �rst be formulated in the language of biology�

Step �� 	Initialization�
A given population consists of � individuals� Each is characterized by its
genotype consisting of n genes� which unambiguously determine the vitality�
or �tness for survival�

Step 
� 	Variation�
Each individual parent produces ��� o�spring on average� so that a total of
� new individuals are available� The genotype of a descendant di�ers only
slightly from that of its parents� The number of genes� however� remains to
be n in the following� i�e�� neither gene duplication nor gene deletion occurs�

Step �� 	Filtering�
Only the � best of the � o�spring become parents of the following generation�

In mathematical notation� taking constraints into account� the rules are as follows�
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Step �� 	Initialization�

De�ne x
���
k � x

���
Ek

� 	x
���
k��� � � � � x

���
k�n�T for all k � 
	
���

x
���
k � x

���
Ek

is the vector of the kth parent Ek� such that

Gj	x
���
k � 
 � for all k � 
	
�� and all j � 
	
�m�

Set the generation counter g � ��

Step 
� 	Mutation�

Generate x
�g���
� � x

�g���
k � z�g�� ���

such that Gj	x
�g���
� � 
 �� j � 
	
�m� � � 
	
���

where k � �
� � 

e�g�� k �

�
�� if � � p � � p integer
�	mod ��� otherwise�

x
�g���
� � x

�g���
N�

� 	x
�g���
��� � � � � � x

�g���
��n �T is the vector of the �th o�spring N��

and z�g���� is a normally distributed random vector with n components�

Step �� 	Selection�

Sort the x
�g���
� for all � � 
	
�� so that

F 	x
�g���
��

� � F 	x
�g���
��

�� for all �� � 
	
��� �� � � � 
	
��

Assign x
�g���
k � x

�g���
��

� for all k� �� � 
	
���
Increase the generation counter g � g � 
�
Go to step 
� unless some termination criterion is ful�lled�

What happens in one generation for a 	� � �� evolution strategy is shown schematically on
the two dimensional contour diagram of a non�linear optimization problem in Figure ����

����� The Rate of Progress of the �� � �	 Evolution Strategy

In this section we attempt to obtain approximately the rate of progress of the multi�
membered� or 	� � �� strategy�at least for � � 
� For this purpose the n�dimensional
sphere and corridor models� as used by Rechenberg 	
����� are employed for calculating
the progress for the 	
�
� strategy�

In the two membered evolution strategy � was the expectation value of the useful
distance covered in each mutation� It is convenient here to de�ne the rate in terms of the
number of generations�

� � expectation value
�
k#x� 'x�g�k � k#x� 'x�g���k

	

where #x is the vector of the optimum and 'x�g� is the average vector of the parents of
generation g�

From the chosen n�dimensional normal distribution of the random vector� which has
expectation value zero and variance �� for all independent vector components� the prob�
ability density for going from a point E with vector xE � 	xE��� � � � � xE�n�T to another
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point N with vector xN � 	xN��� � � � � xN�n�T is

w	E � N� �

�

p
�� �

�n

exp

�
� 


���

nX
i��

	xE�i � xN�i�
�

�
	����

The distance kxE � xNk between xE and xN is

kxE � xNk �

vuut nX
i��

	xE�i � xN�i��

But of this� only a part� s � f	xE� xN�� is useful in the sense of approaching the objective�
To discover the total probability density for covering a useful distance s� an integration
must be performed over the locus of points for which the useful distance is s� measured
from the starting point xE� This locus is the surface of a �nite region in n�dimensional
space�

p	s� �

Z
� � �

Z
f	xE� xN� � s

w	E � N� dxN�� dxN�� � � � dxN�n 	��
��

The result of the integration depends on the weighting function f	xE� xN � and thus on
the topology of the objective function F 	x��

So far only one random change has been considered� In the multimembered evolution
strategy� however� the average over the � best of the � o�spring must be taken� in which
each of the o�spring is to be associated with its own distance s�� We �rst have to �nd the
probability density w�	s�� for the �th best descendant of a generation to cover the useful
distance s�� It is a combinatorial product of
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� The probability density w	s�� � s�� that a particular descendant N�� gets exactly
s� closer to the objective

� The probability p	s�� � s�� that a descendant N�� advances further than s�

� The probability p	s�� � s�� that a descendant N�� advances less than s�

Better results must be given by � � 
 descendants and worse by � � �� This results in a
large number of combinations� since it is of no signi�cance which descendant is in which
place�

w�	s
�� �

�X
����

�
w	s�� � s�� �

�����X
����

�� ����

�
p	s�� � s�� �

�����X
�������

�� ����

�
p	s�� � s�� �

�
����	X
�������

�� ��f�����g

�
p	s�� � s�� � � �

�X
���������

�� �� f��� ������� ����g

�
p	s�� � s�� �

�
�Y

������

���� �� f��� ������� ��g

p	s���� � s��

�
� � �

����
	��

�

As an average of the � best descendants one obtains

w	s�� �



�

�X
���

w�	s
�� 	��
��

and hence the rate of progress

� �

�Z
s��su

s�w	s�� ds� 	��
��

The meaning of su will be described later�
To evaluate �� besides � and �� all components of the position vectors of all parents of

the generation must be given� together with the values of � for producing each descendant�
If � is to become independent of a particular initial con�guration� it is necessary to
de�ne representative or average values of the relative positions of the parents� which are
established during the optimization as a function of the topology� To do so would require
setting up and solving an integral equation� This has not yet been achieved�

To be able to say something nevertheless about the rate of convergence some simplify�
ing assumptions will be made� All parents will be represented by a single position vector
xk� and the standard deviations ���i will be assumed equal for all components i � 
	
�n
and for the descendants � � 
	
��� Equation 	��

� thereby simpli�es to

w�	s
�� � �

�
� � 

� � 


�
w	s� � s�� �p	s� � s�� ��� �p	s� � s�� ���

Since
p	s� � s�� � p	s� � s�� � 
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and �
� � 

� � 


�
�

	�� 
� "

	� � 
� " 	� � �� "

we have

w�	s
�� �

� "

	� � 
� " 	� � �� "
w	s� � s�� �p	s� � s�� ��� �
� p	s� � s�� ��� 	��
��

Henceforth the number of parents is reduced to � � 
� One parent produces all �
descendants� Of these� because of the assumption of constant population size� only the
best survives� All the others are rejected� Accordingly we are now dealing with a 	
 � ��
strategy� for which Equation 	��
�� reduces to

w	s�� � w�	s
�� � �w	s� � s�� �p	s� � s�� ��� 	��
��

where

w	s� � s�� �

Z
� � �

Z
f	xE� xN� � s

�

p
�� �

�n

exp

�
� 


���

nX
i��

	xE�i � xN�i�
�

�
dxN�� � � � dxN�n

and

p	s� � s�� �

s�Z
s����

w	s� � s�� ds�

If we now make use of the corridor and sphere model objective functions� as chosen
by Rechenberg in his work� we can directly take over some of his results� in particular
the integrations for the calculation of w	s� � s�� and p	s� � s��� The �nal integration
	Equation 	��
��� for determining � turns out to be impossible to evaluate in closed form�
To �nd a suitable way around this let us take a closer look at Equation 	��
��� It has the
form of an equation for the mean value 	expectation value� of the probability density w	s��
in the interval su � s� � �� The lower limit su of the range depends on whether� in cases
when none of the o�spring represent an improvement over the parent� the selection allows
either the parent to survive 	so�called �plus� version�� or only the best of all o�spring 	so�
called �comma� version�� in which case the chance of deterioration is greater than zero�
It will turn out later that the optimization can actually bene�t if setbacks are permitted�

We therefore distinguish the two cases�

� The parent is included in the selection process and can in theory survive an in�nite
number of generations� su � �� 	
��� strategy

� The parent is no longer considered in the selection� su � ��� 	
 � �� strategy

In the second case the integral for p extends over the total interval in which the
variable of integration s� can lie� Now if the function w	s�� happens to be symmetrical
and unimodal� the expectation value can be found in a di�erent way� Namely� it would be
equal to the value of s� at which the probability density w	s�� reaches its maximum� For
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a skew distribution this is not the case� Perhaps� however� the skewness is only slight� so
that one can determine at least approximately the expectation value from the position of
the maximum�

Before treating the sphere and corridor models in this way� we will check the usefulness
of the scheme with an even simpler objective function�

������� The Linear Model �Inclined Plane�

The simplest way the objective function can depend on the variables is linearly� Imagining
the function to be a terrain in the 	n � 
��dimensional space� it appears as an inclined
plane� In the two dimensional projection the contours are straight� parallel lines in this
case� Without loss of generality one can orient the coordinate system so that the plane only
slopes in the direction of one axis x� and the starting point or parent under consideration
lies at the origin 	Fig� �����

The useful distance s� towards the objective that is covered by descendant N� of the
parent E is just the part of the random vector z lying along the x� axis� Since the
components zi of z are independent� we have

w	s� � s�� �

p
�� �

exp

�
� s��

���

�

and

p	s� � s�� �

s�Z
s����


p
�� �

exp

�
� s��

���

�
ds� �




�




 � erf

�
s�p
� �

��

Substituting these two results in Equation 	��
�� we obtain the probability density for
the best of � o�spring of a parent covering the useful distance s��

w	s�� � �

p
�� �

exp

��s��
���

��



�




 � erf

�
s�p
� �

������
	��
��

To obtain the position of the maximum we di�erentiate with respect to s� and set the
result equal to zero� The associated value of s� is then the sought for approximation &� to
the rate of progress ��

From

w	s��

s�

�����
s����



� �

it follows that

� � 
 �

p
� &�p
� �

exp

�
&��

���

�


 � erf

�
&�p
��

��
	��
��

Figure ��� shows how the function &���� which is just &� for � � 
� depends on �� For
� � 
 the rate of progress is equal to zero� independent of the step length� This must
be so because for only one descendant the probability of improvement is the same as
that of worsening� As the number of descendants increases so does the rate of progress�
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sublinearly however� probably proportional to the logarithm of �� To compare the above
approximation &� with the exact value � the following integral must be evaluated�

� �

�Z
s��su

�
s�p
�� �

exp

�
� s��

���

��



�




 � erf

�
s�p
� �

������
ds�

For small values of � the integration can be performed by elementary methods� but
not for general values of �� The value of � was therefore obtained by simulation on the
computer� �rst for the case in which the parent survives if the best of the descendants is
worse than the parent 	�sur with su � �� and secondly for the case in which the parent
is no longer considered in the selection 	�ext with su � ���� The two results are shown
in Figure ��� for comparison with the approximate solution &�� It is immediately striking
that for only �ve o�spring the extinction of the parent has hardly any e�ect on the rate
of progress� i�e�� for � 
 � it is as good as certain that at least one of the descendants
will be better than the parent� The greatest di�erences between �sur and �ext naturally
appear when � � 
� Whereas �ext goes to zero� �sur keeps a �nite value� This can be
determined exactly� Omitting here the details of the derivation� which is straightforward�
the result is simply

�sur	� � 
� �
�p
��

The relationship to the 	
�
� evolution scheme is thereby established� The di�erences
between the approximate theory 	 &�� and the simulation 	�ext� indicate that the assump�
tion of the symmetry of w	s�� is not correct� The discrepancy with regard to ��� seems
to tend to a constant value as � increases� While the approximate theory is shown by this
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comparison to be poor for making exact quantitative predictions� it nevertheless correctly
reproduces the qualitative relation between the rate of progress and the number of descen�
dants in a generation� The probability distributions w	s�� are illustrated in Figure ���
for �ve di�erent values of � � f
� �� 
�� ��� 
��g� according to Equation 	��
���

For the inclined plane model the question of an optimal step length does not arise� The
rate of progress increases linearly with the step length� Another question that does arise�
however� is how to choose the optimal number of o�spring per parent in a generation�
The immediate answer is� the bigger � is� the faster the evolution advances� But in
nature� since resources are limited 	territory� food� etc�� it is not possible to increase
the number of descendants arbitrarily� Likewise in applications of the strategy to solving
problems on the digital computer� the requirements for computation time impose limits�
The computers in common use today can only work in a serial rather than parallel way�
Thus all the mutations must be produced one after the other� and the more descendants
the longer the computation time� We should therefore turn our attention instead to �nding
the optimum value of ���� In the case where the parent survives if it is not bettered by
any descendant� we have the trivial solution

�opt � 


The corresponding value for the 	
 � �� strategy is� however� larger� With Equation 	��
��
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one obtains from the requirement





�

�
&�

�

�����
���opt



� �

the relation

�opt � &�

�


 &�

�����
���opt

�
��

&��

and� by substituting it back in Equation 	��
��� the result

�opt � 
 �

s
�

��opt
exp

�



��opt

��

 � erf

�
� 
q

��opt

�
A
�
�

The value obtained iteratively is

�opt � ��� 	as an integer� �opt � � or ��

������� The Sphere Model

We will now try to calculate the rate of progress for the simple spherically symmetrical
model� which is of importance for considering the convergence rate properties of the
strategy� The contours of the objective function F 	x� are concentric hypersphere surfaces�
given for example by

F 	x� �
nX
i��

x�i � const�
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Figure ��
 illustrates the case of two variables� The solution is obtained in much the
same way as for the inclined plane� We shall take over some of the steps and subsidiary
results from the derivation of Rechenberg 	
���� in the two membered evolution strategy�

The normalized probability density for production of a descendant N� with position
vector x� � 	x���� � � � � x��n�T from parent E with position vector xE � 	xE��� � � � � xE�n�T

again corresponds to an n�dimensional normal distribution with expectation value � � �
and variance �� 	the same for all vector components�� Without a�ecting the generality of
the result� the special position xE � 	rE� �� � � � � ��T can be selected for the starting point
E in relation to the coordinate system�

With the notation

r� �

vuut nX
i��

x���i

Equation 	���� yields

w	E � N�� �

�

p
�� �

�n

exp
�
� 


���
	r�� � r�E � � rE x����

�
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For the distance covered towards the objective� s�� the portion is now calculated that
contributes to an improvement of the objective function� i�e�� in this case the radial dif�
ference s� � rE � r� 	see Fig� ��
�� The locus of all points N� for which s� is the same is
the surface of the n�dimensional hypersphere about the origin with radius r� � rE � s��
Accordingly the total probability density that a mutation 	index �� starting from point
E will cover the distance s� is the n�fold line integral�

w	s�� �
Z
� � �

Z
rE � r� � s�

�

p
�� �

�n

exp
�
� 


���

�
r�� � r�E � � rE x���

	�
dx��� � � � dx��n

By transforming to spherical coordinates one obtains a simple integral

w	s�� �

�

p
�� �

�n
�

n��
�

(
�
n��
�

	 exp

�
�r�E � r��

���

�
rn���

�	Z

��

exp
�
rE r� cos�

��

�
sinn�� � d�

The remaining integral can be expressed as a modi�ed Bessel function�

w	s�� �
r
n
�
� r

��n
�

E

��
exp

�
�r�E � r��

���

�
In
���

�
rE r�
��

�

To simplify the notation we now introduce the following de�nitions�

� �
n

�
� a �

r�E
��

� v �
r�
rE

We thereby obtain

w	s�� �
a

rE
e�

a
� v� e�

a v�

� I���	a v� with s� � rE 	
� v�

In order to use Equation 	��
�� to calculate the total probability that the best of �
descendants will cover the distance

s� � max
�
fs� j � � 
	
��g � rE � r�

the following quantities are still required�

w	s� � s�� �
a

rE
e�

a
� u� e�

au�

� I���	au�

with
r�

rE
� u and s� � rE 	
� u�

and

p	s� � s�� � 
� p	s� � s��

� 
�
s�R

s��rE
w	s�� ds�

� 
�
uR

v��
a e�

a
� v� e�

a v�

� I���	a v� dv
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This �nally gives the probability function for the useful distance s� covered in one gener�
ation� expressed in units of u�

w	s�� �
a

rE
e�

a
� u� e�

a u�

� I���	au�

�
�
� a e�

a
�

uZ
v��

v� e�
a v�

� I���	a v� dv

�
A���

Since the expectation value of this distribution is not readily obtainable� we shall deter�
mine its maximum to give an approximation &�� From the necessary condition


w	s��

s�

�����
s����



� �

with the more concise notation

D	y� � a e�
a
� y� e�

a y�

� I���	a y�

we obtain the relation

� � 
 �

D	u�


u

�����
u��� ���rE

�D	
 � &��rE� ��

�
B�
�

�����rEZ
v��

D	v� dv

�
CA 	��

�

Except for the upper limit of integration� this is the same integral that made it so di�cult
to obtain the exact solution for the rate of progress in the 	
�
� evolution strategy 	see
Rechenberg� 
����� Under the condition � � 
 and ��a � 
� which means for many
variables and at a large enough distance from the optimum� Rechenberg obtained an
estimate by expanding Debye�s asymptotic series representation of the Bessel function
	e�g�� Jahnke�Emde�L�osch� 
���� in powers of ��a� Without giving here the individual
steps in the derivation� the result is

�Z
v��

D	v� dv � 


�




� erf

�
�p
� a

��
�

p
a

� �
p

��



exp

�
�	� � 
��

� a

�
� exp

�
� ��

� a

��
	��
��

It is clear from Equation 	���� that the rate of progress of the 	
�
� strategy for the
two membered evolution varies inversely as the number of variables� Even if a higher
convergence rate is expected from the multimembered scheme� with many descendants
per parent� there will be no change in the relation to n� the number of parameters� In
addition to the assumptions already made regarding � and ��a� without further risk to
the validity of the approximate theory we can assume that 
� &��rE � 
� Equation 	��
��
can now also be applied here�

For the partial di�erential

D	u�


u

�����
u��� ���rE

we obtain with the use of the Debye series again�


D	u�


u

�����
u��� ���rE

� D	
 � &��rE�



a exp

�
�

a 	
� &��rE�

�
�





 � &��rE
� a 	
 � &��rE�

�
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Figure ���� Rate of progress for the sphere model
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If the result is substituted into Equation 	��

� a longer expression is obtained� of the
form�

� � �	 &�� �� rE� n�

In the expectation of an end result similar to Equation 	���� and since a particular starting
point rE is of no interest� we will introduce new variables�

�	 �
&�n

rE
and �	 �

� n

rE

If &� and � are now replaced by �� and �	� taking the limit

lim
n�� �	�	� �	� rE� n�

we �nd that the quantities n and rE disappear from the parameter list of �� �	 and �	

can therefore be regarded as �universal� variables� We obtain

� � �	�	� �	� � 
 �
p
�

�
��p
� �	

�
�	p




�
exp

�

� ��p

��	
�

�	p



��
�
� 

 � erf

�
�	p




��
	�����

As in the case of the inclined plane considered previously� this equation cannot be
simply solved for �	� Figure ��� shows the family of curves �	 � �		�	� ���

For �	 � �� as expected� �	 � �� For � � 
� the rate of progress is always negative�
Since the parent in the 	
 � �� strategy is not included in the selection after it has served
to produce a descendant� � � 
 means that every mutation is adopted� whether better
or worse� For the sphere model� except for �	 � �� the region of success is always smaller
than half of the variable space� With increasing �	� the ratio becomes even worse� �	 is
thus always � �� and more strongly negative the greater is �	�

For � 
 � the rate of progress increases at �rst as a function of the variance� reaches a
maximum� and then decreases continuously until it becomes negative� From this behavior
one can see even more clearly than in the 	
�
� strategy how important the correct choice
of variance is for the optimization�

In the 	
 � �� strategy� the progress can turn retrograde if all the o�spring are worse
than the parent that produced them� Only with an immortal parent having an in�nite
capacity for reproduction would progress be guaranteed or� at least� would retrogression
be ruled out� We shall see later why the model with �extinction� is nevertheless advan�
tageous� Except for small values of �� the maximum rate of progress is almost the same
in the �survival� and �extinction� cases� So if the optimal variance can be maintained
throughout� leaving the parents out of the selection is not a disadvantage�

The position of the maxima of �	 with respect to �	 at a constant � is obtained by
simple di�erentiation and equating the partial derivative to zero� De�ning

�	optp



� �� and
�	maxp
� �	opt

� ��

the equation is

��	�� � ��� exp	����� �
p
�	�� � ���

�



�
� 	�� � ����

��

 � erf	���

	


� � 	���
�
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Figure ����� Maximal rate of progress for the sphere model

Points on the curve �	max � �		�	 � �	opt� can only be obtained iteratively� To
express � � �	�	max�� the non�linear system of equations consisting of Equations 	�����
and 	���
� must be solved� The results as obtained with the multimembered evolution
strategy are shown in Figure ��
�� A convenient formula can only be obtained by assuming

�� � ��� i�e�� ��	max � �	�opt

This estimate is actually not far wrong� since the second term in Equation 	���
� goes to
zero� We thus �nd

� � 
 �
q
��	max exp	�	max�

�

 � erf

�



�

q
�	max

��
	�����

a relation with comparable structure to the result for the inclined plane�
Finally we ask whether �	max�� has a maximum� as in the inclined plane case� If the

parent can survive the o�spring� �opt � 
 here too� if not the condition

�opt � �
p
�
�



�
� 	�� � ����

�
exp�	�� � ���� �
 � erf	��� �� 	�����

must be added to Equations 	����� and 	���
�� The solution� obtained iteratively� is�

�opt � ��� 	as an integer� �opt � ��
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Both the 	
 � �� and 	
��� schemes were run on the computer for the sphere model�
with n � 
��� rE � 
��� and variable �� In each case � was evaluated over 
�� ���
generations� The resulting data are shown in terms of �	 and �	 in Figure ���� In
comparison with the approximate theory� deviations are apparent mainly for �	 � �	opt�
The skewness of the probability distribution w	s�� and the error in the estimate of the
integral

R
D	y� dy have only a weak e�ect in the region of greatest interest� where the

rate of progress is maximum� Furthermore� the results of the simulation fall closer to
the approximate theory if n is taken to be greater than 
��� however� the computation
time then becomes excessive� For large values of � the possible survival of the parent
only becomes noticeable when the variance is too large to allow rapid convergence� The
greatest di�erences� as expected� appear for � � 
�

On the whole we see that the theory worked out here gives at least a qualitative
account of the behavior of the 	
 � �� strategy� A much more elegant method yielding an
even better approximation may be found in B�ack� Rudolph� and Schwefel 	
����� or Beyer
	
���� 
���a�b��

������� The Corridor Model

As a third and last model objective function� we will now consider the right�angled cor�
ridor� The contours of F 	x� in the two dimensional picture 	Fig� ��

� are straight and
parallel� but not necessarily equidistant�

F 	x� � c� �
nX
i��

ci xi

For the sake of simplifying the calculation we will again give the coordinate system a
particular position and orientation with c� � �
� ci � � for all i � �� �� � � � � n� The
right�angled corridor 	Problem ����� see Appendix A� Sect� A����we are using here three
dimensional concepts for the essentially n�dimensional case�is de�ned by constraints of
the form

Gj	x� � jxjj � b� for j � �	
�n

It has the width � b for all coordinate directions xi� i � �	
�n� hence the cross section
	� b�n��� As a starting point� the position xE of the parent E� we choose the origin with
respect to x� � �� The useful part of a random step is just its component z� in the
x� direction� which is the negative gradient direction� The formulae for w	s� � s�� and
p	s� � s�� derived previously for the inclined plane also apply here� We cannot� however�
insert them immediately into Equation 	��
��� �rst we must pay attention to the rule that
mutants that violate one or more of the constraints are not accepted�

For a given mutation� the probability of not jumping through the corridor wall asso�
ciated with the variable xi� i � �	
�n� is

p	jx��ij � b� �

bZ
x��i��b


p
�� �

exp



�	xE�i � x��i��

���

�
dx��i
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Figure ����� Corridor model function
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erf

�
b� xE�ip

� �

�
� erf

�
b � xE�ip

��

��

That is� the probability depends on the current position xE�i of the starting point E� We
can only construct an average value for all possible situations if we know the probability
pa of certain situations occurring� It could well be that� during the minimum search�
positions near the border are occupied less often than others� The same problem of
�nding the occupation probability pa has arisen already in the theoretical treatment of
the 	
�
� strategy� Rechenberg 	
���� discovered that

pa �



� b
	with respect to one of the variables xi� i � �	
�n�

which is a constant independent of the current values of the variables� We will assume
that this also holds here� Thus the average probability that one of the n � 
 constrained
variables will remain within the corridor can be given as�

&p	jx��ij � b� �

bZ
xE�i��b

pa p	jx��ij � b� dxE�i

�



� b

bZ
xE�i��b



erf

�
b� xE�ip

� �

�
� erf

�
b � xE�ip

��

��
dxE�i
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Making use of the relation 	see Ryshik and Gradstein� 
����

pZ
y��

erf	�y� dy � p erf	� p� �
exp	��� p��� 
p

� �

one �nally obtains

&p	jx��ij � b� � erf

�p
� b

�

�
�




�

�p
� b



exp

�
�� b�

��

�
� 


�
	�����

In the following we refer to this expression as item v�

v � &p	jx��ij � b�

With the above de�nition of v� the total probability that a descendant N� is feasible� i�e��
that it satis�es all the constraints� is

pfeas �
nY
i��

&p	jx��ij � b�

� vn��

and the probability that N� is lethal is

pleth � 
� pfeas � 
� vn��

Only non�lethal mutants come into consideration as parents of the next generation� Hence�
instead of w	s� � s�� we must insert into Equation 	��
�� the expression

w	s� � s�� pfeas �

p
�� �

exp

�
� s��

���

�
vn��

and instead of p	s� � s�� we should take

p	s� � s�� pfeas � pleth �



�




 � erf

�
s�p
� �

��
vn�� � 
 � vn��

The �rst term expresses the probability that the descendant N� both falls within the
allowed region and progresses by s�� the second term represents the probability that a
descendant N� is either non�lethal and advanced by s� � s�� or lethal� If we now insert
both these quantities into Equation 	��
�� we obtain

&w	s�� �
� vn��p
�� � ����

exp

�
� s��

���

��


 � erf

�
s�p
��

��
vn�� � � 	
 � vn���

����
	�����

where v is given by Equation 	������
So far we have not considered the special case of all the descendants being lethal

mutants� If we were to abide by the rules of the 	
 � �� strategy as followed up to now� the



A Multimembered Evolution Strategy 
��

outcome would be extinction of the population and the rate of progress would no longer
be de�ned� The probability of extinction of the population is given by the product of the
lethal probabilities�

pstop � 	
 � vn����

To be able to optimize further in such situations let us adopt the following procedure� If
all the mutations lead to forbidden points� the parent will survive and produce another
generation of descendants� Thus for this generation the rate of progress takes the value
zero� Equation 	����� then only holds for s� �� � and we must reformulate the probability
of advancing by s� in one generation as follows�

w	s�� � &w	s�� � � pstop

where

� �

�
� � if s� �� �

 � if s� � �

The distribution w	s�� is no longer continuous� and even if w�	s�� is symmetric we cannot
assume that the maximum of the distribution is a useful approximation to the average
rate of progress 	Fig� ��
��� The following condition must be satis�ed�

�Z
s����

w	s�� ds� �

�Z
s����

&w	s�� ds� � wstop � 
 	�����

We can think of w	s�� as a superposition of two density distributions� with conditional
mathematical expectation values

�� �

�Z
s����

s� &w	s�� ds�

and
�� � �

and with associated frequencies

p� �

�Z
s����

&w	s�� ds� � 
� pstop

and
p� � pstop

The events belonging to the two density distributions are mutually exclusive and by virtue
of Equation 	����� they make up together a complete set of events� The expectation value
is then given by 	e�g�� Gnedenko� 
���� Sweschnikow � 
�����

� �

�Z
s����

s�w	s�� ds� � �� p� � �� p� � �� 	
� pstop�
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Figure ����� Estimation of the rate of progress from the probability density for
the corridor model

Since we are unable to calculate �� directly� we make an approximation�

&� � #� 	
 � pstop� � #��
� 	
 � vn���� 	�����

taking for #� the position of the maximum of &w	s���
We require


 &w	s��

s�

�����
s����



� �

By di�erentiating Equation 	����� and setting the �rst derivative to zero�

� � 
 �
p
�

#�p
� �

exp

�
#��

���

�


 � erf

�
#�p
� �

�
� � 	v��n � 
�

�
	���
�

Apart from an extra term� this formula is similar to the relation � � �	 &�� �� found for
the inclined plane 	Equation 	��
���� The main di�erence here� however� is that in place
of &�� #� appears� as de�ned by Equation 	������

As in the case of the sphere model� we will introduce here �universal parameters�

�	 �
&�n

b
and �	 �

� n

b

and take the limit n � � in order to arrive at a practically useful relation � � �	�	� �	��
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With the new quantities �	 and �	� Equation 	����� for v becomes

v � erf

�p
� n

�	

�
� �	p

�� n




 � exp

�
��n�

�	�

��

Since the argument of the error function increases as n� the number of variables� the
approximation

erf	y� � 
 � 
p
� y

exp 	�y��

can be used to give

v � 
� �	

n
p

��
for n� 


and with

lim
n��

�

 �




n

�n
� e

�nally

v��n � exp

�
�	p
��

�

The desired relation � � �	�	� �	� is thus

� � 
 �

p
� &�	p
� �	

exp

�


�

&�	p
� �	

��
�
�



erf

�
&�	p
� �	

�
� � exp

�
�	p
��

�
� 


�
	�����

in which� from Equation 	������

&�	 �
�	


�
h

� exp

�
� ��p

�	

	i�
Pairs of values obtained iteratively are shown in Figure ��
� together with simulation

results for the cases of �survival� and �extinction� of the parent 	n � 
��� b � 
���
average over 
�� ��� successful generations��

As in the case of the sphere model� the deviations can be attributed to the simplifying
assumptions made in deriving the approximate theory� For � � 
� �	 is always zero if
the parent is not included in the selection� The transition to the inclined plane model is
correctly reproduced in this respect� Negative rates of progress cannot occur�

The position of the maxima �	max � �		�	 � �	opt� at constant � are obtained in the
same way as for the sphere model� The condition to be added to Equation 	����� is�

�

c
exp 	���� �
� exp 	���� ��� � 


��

�
�

�
�h

erf	��� � � exp 	���� 

i h


 � ����
i

�
�p
�
�� exp 	����

�

�
� � exp 	���



� �

	�����
in which the following new quantities are introduced again for compactness�
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Figure ����� Rate of progress for the corridor model
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�� �
�	optp

��

�� �
�	maxp
��	opt c

c � 
 �



� exp

�
� �	optp

��

���

Pairs of values found by iteration are shown in Figure ��
�� Figure ��
� shows �	max

versus �� To determine �opt for the 	
 � �� strategy� i�e�� the value of � for which �	max�� is
a maximum� it is necessary to solve the system of three non�linear equations� comprising
Equation 	������ Equation 	������ and

�opt � ��
np

� exp 	����� erf 	��� � � exp 	���� 
 �
 � ����
 � ���

o
�

�
�
�opt
c

�
� exp 	���� � ln�
� exp	���� � 


�
	���
�

The result is
�opt � ��� 	as an integer� �opt � ��
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����� The Step Length Control

How should one proceed in order to still achieve the maximum rate of progress� i�e��
to maintain the optimum variances ��i � i � 
	
�n� for the case of the multimembered
evolution scheme) For the 	
�
� strategy this aim was met by the 
�� success rule�
which was based on the probability of success at maximum convergence rate of the sphere
and corridor model functions� Such control from outside the actual mutation�selection
game does not correspond to the biological paradigm� It should rather be assumed that
the step lengths� or more precisely the variances� have adapted and are still adapting to
circumstances arising in the course of natural evolution� Although the environmentally
induced rate of mutation cannot be interfered with directly� the existence of mutator
genes and repair enzymes strongly suggests that the consequences of such environmental
in!uences are always reduced to the appropriate level� In the multimembered evolution
strategy the fact that the observed rates of mutation are also small� indeed that they
must be small to be optimal� comes out of the universal rate of progress and standard
deviation introduced above� which require � to be inversely proportional to the number
of variables� as in the 	
�
� strategy�

If we wish to imitate organic evolution� we can proceed as follows� Besides the variables
xE�i� i � 
	
�n� a set of parameters �E�i� i � 
	
�n� is assigned to a parent E� These
describe the variances of the random changes� Each descendant N� of the parent E should
di�er from it both in x��i and ���i� The changes in the variances should also be random
and small� and the most probable case should be that there is no change at all� Whether
a descendant can become a parent of the next generation depends on its vitality� thus
only on its x��i� Which values of the variables it represents depends� however� not only
on the xE�i of the parent� but also on the standard deviations ���i� which a�ect the size of
the changes zi � x��i � xE�i� In this way the �step lengths� also play an indirect r#ole in
the selection mechanism�

The highest possible probability that a descendant is better than the parent is normally

wemax � ���

It is attained in the inclined plane case� for example� and for other model functions in the
limit of in�nitely small step lengths� In order to prevent that a reduction of the �i always
gives rise to a selection advantage� � must be at least 
 �� But the optimal step lengths
can only take e�ect if

� �



weopt

This means that on average at least one descendant represents an improvement of the
value of the objective function� The number of descendants per parent thus plays a
decisive r#ole in the multimembered scheme� just as does the check on the success ratio in
the two membered evolution scheme� For comparison let us tabulate here the �opt of the
	
 � �� strategy and weopt of the 	
�
� strategy for the three model functions considered�
The values of weopt are taken from the work of Rechenberg 	
�����
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Model function weopt
�

weopt
�opt

Inclined plane �
� � ���

Sphere ���� ��� ���
Corridor �

�e
��� ���

How should the step lengths now be altered) We shall �rst consider only a single
variance �� for changes in all the variables� In the production of the random changes�
the standard deviation � is always a positive factor� It is therefore reasonable to generate
new step lengths from the old by a multiplicative rather than additive process� according
to the scheme

�
�g�
N � �

�g�
E

'Z�g� 	�����

The median '� of the random distribution for the quantity 'Z must equal one to satisfy the
condition that there is no deterministic drift without selection� Furthermore an increase
of the step length should occur with the same frequency as a decrease� more precisely� the
probability of occurrence of a particular random value must be the same as that of its re�
ciprocal� The third requirement is that small changes should occur more often than large
ones� All three requirements are satis�ed by the log�normal distribution� Random quan�
tities obeying this distribution are obtained from 	�� � �� normally distributed numbers Y
by the process

'Z � eY 	�����

The probability distribution for 'Z is then

w	'z� �

p
�� �




'z
exp

�
�	ln 'z��

� � �

�

The next question concerns the choice of � � and we shall answer it� in the same way as
for the 	
�
� strategy� with reference to the rate of change of step lengths that maintains
the maximum rate of progress in the sphere model� Regarding � as a di�erential quotient
�dr�dg leads to the relation 	see Sect� ��
���

�
�g���
opt

�
�g�
opt

� exp
�
��	max

n

�
	�����

for the optimal step lengths of two consecutive generations� where �	max now has a dif�
ferent� larger value that depends on � and �� The actual size of the average changes in
the variances� using the proposed mutation scheme based on Equations 	����� and 	������
depends on the topology of the objective function and the number of parents and de�
scendants� If n� the number of variables� is large� the optimal variance will only change
slightly from generation to generation� We will therefore assume that the selection in
any generation is more or less indi�erent to reductions and increases in the step length�
We thereby obtain the multiplicative change in the random quantity X� averaged over n
generations�

X �

�
� nY
g��

'Z�g�

�
A

�
n

� exp

�
�


n

nX
g��

Y �g�

�
A
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Since the Y �g� are all 	�� � �� normally distributed� it follows from the addition theorem
of the normal distribution 	Heinhold and Gaede� 
���� that




n

nX
g��

Y �g�

is a 	�� � ��n� normally distributed random quantity� Accordingly� the two quantities
exp	��� pn� are characteristic of the average changes 	minus sign for reduction� in the
step lengths per generation� The median of w	'z� is of course just e� � 
� Together with
Equation 	������ our observation leads us to the requirement

exp
�
�	max

n

�
� exp

�
�p
n

�

or

� � �	maxp
n

	�����

The variance � � of the normally distributed random numbers Y � from which the log�
normally distributed random multipliers for the standard deviations 	�step sizes�� of the
changes in the object variables are produced� thus must vary inversely as the number of
variables� Its actual value should depend on the expected rate of convergence �	 and
hence on the choice of the number of descendants ��

Instead of only one common strategy parameter �� each individual can now have a
complete set of n di�erent �i� i � 
	
�n� for every alteration in the corresponding n
object variables xi� i � 
	
�n� The two following schemes can be envisioned�

�
�g�
N�i � �

�g�
E�i

'Z�g�
i 	�����

or
�
�g�
N�i � �

�g�
E�i

'Z�g�
i

'Z�g�
� 	�����

But only the second one should be taken into further consideration� because otherwise in
the case of n � 
 the average overall step size of the o�spring

sN �

vuut nX
i��

��N�i

could not be substantially di�erent from that of its parent

sE �

vuut nX
i��

��E�i

due to the levelling e�ect of the many random multiplication events 	law of large number
of events�� In order to split the mutation e�ects to the overall step size and the individual
step sizes one could choose

�� � ��p
�n
� for 'Z� 	���
�

� � ��p
�
p
n
� for all 'Zi� i � 
	
�n 	�����
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We shall not go into further details since another kind of individual step length control
will o�er itself later� i�e�� recombination�

At this point a further word should be said about the alternative 	
��� or 	
 � ��
strategies� Let us assume that by virtue of a jump landing far from the expectation value�
a descendant has made a very large and useful step towards the optimum� thus becoming
a parent of the next generation� While the variance allocated to it was eminently suitable
for the preceding situation� it is not suited to the new one� being in general much too
big� The probability that one of the new descendants will be successful is thereby low�
Because the 	
��� strategy permits no worsening of the objective function value� the
parent survives�and may do so for many generations� This increases the probability of a
successful mutation still having a poorly adapted step length� In the 	
 � �� strategy such
a stray member will indeed also turn up in a generation� but it will be in e�ect revoked in
the following generation� The descendant that regresses the least survives and is therefore
probably the one that most reduces the variance� The scheme thus has better adaptation
properties with regard to the step length� In fact this phenomenon can be observed in the
simulation� Since we have seen that for � 
 � the maximum rate of progress is practically
independent of whether or not the parent survives� we should favor a 	� � �� strategy� at
least when ��� is not chosen to be very small� e�g�� less than � or ��

����� The Convergence Criterion for � � � Parents

In Section ����� we were really looking for the rate of progress of a 	� � �� evolution method�
Because of the analytical di�culties� however� we had to fall back on the � � 
 case�
with only one parent� We shall now proceed again on the assumption that � � 
� In
each generation � state vectors xE and associated step lengths are stored� which should
always be the � best of the � mutants of the previous generation� We naturally require
more storage space for doing this on the computer� but on the other hand we have more
suitable values at our disposal for each variable� Supposing that the topology of the
objective function is complicated or even �pathological�� and an individual reaches a point
that is unfavorable to further progress� we still have su�cient alternative starting points�
which may even be much more favorable� According to the usefulness of their parameter
sets� some parents place more mutants in the prime group of descendants than others�
In general the best individuals of a generation will di�er with respect to their variable
vectors and objective function values as long as the optimum has not been reached� This
provides us with a simple convergence criterion�

From the population of � parents Ek� k � 
	
��� we let Fb be the best objective
function value�

Fb � min
k
fF 	x�g�k �� k � 
	
��g

and Fw the worst

Fw � max
k
fF 	x�g�k �� k � 
	
��g

Then for ending the search we require that either

Fw � Fb � 
c
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or
�


d
	Fw � Fb� �

�����
�X

k��

F 	x
�g�
k �

�����
where 
c and 
d are to be de�ned such that


c � �

 � 
d � 


�
according to the computational accuracy

Either absolutely or relatively� the objective function values of the parents in a generation
must fall closely together before convergence is accepted� The reason for basing the
criterion on function values� rather than variable values or step lengths� has already been
discussed in connection with the 	
�
� strategy 	see Sect� ��
����

����� Scaling of the Variables by Recombination

The 	� � �� method opens up the possibility of imitating a further principle of organic
evolution� which is of particular interest from the point of view of numerical optimization
problems� namely sexual propagation� By combining the genes of two parents a new source
of variation is added to point mutation� The fact that only a few primitive organisms do
without this mechanism of recombination leads us to expect that it is very favorable for
evolution� Instead of one vector x�g�E now there are � distinct vectors x�g�k for k � 
	
��
in a population� In biology� the totality of all genes in a generation is known as a gene

pool� Among the concerns of population genetics 	e�g�� Wilson and Bossert� 
���� is the
frequency distribution of certain alleles in a population� the so�called gene frequencies�
Until now� we did not argue on that level of detail� nor did we go down to the !oor of only
four nucleic acids in order to model� for example� the mutation process within evolution
strategies� This might be worthwhile for quaternary optimization� but not in our case of
continuous parameters� It would be a tedious task to model all the intermediate processes
from nucleic acids to proteins� cell� organs� etc�� taking into account the genetic code and
the whole epigenetic apparatus� We shall now apply the principle of recombination to
numerical optimization with continuous parameters� once again in a simpli�ed fashion�

In our population of � parents we have stored � di�erent values of each component
xi� i � 
	
�n� From this gene pool we now draw one of the � values of xi for each
i � 
	
�n� The draw should be random so that the probability that an xi comes from any
particular parent 	k� of the � is just 
�� for all k � 
	
��� The variable vector constructed
in this way forms the starting point for the subsequent variation of the components� The
Figure ��
� should help to clarify that kind of global recombination�

By imitating recombination in this way we have� so as to speak� replaced bisexuality
by multisexuality� This was less for reasons of principle than as a result of practical
considerations of programming� A crude test yielded only a slight further increase in
the rate of progress in changing from the bisexual to the multisexual scheme� whereas
appreciable acceleration was achieved by introducing the bisexual in place of the asexual
scheme� which allowed no recombination� A more detailed and exact comparison has yet
to be carried out� Without some guidance from theory it is hard to choose the correct
initial step lengths and rates of change of step lengths for each of the di�erent algorithms�
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Figure ����� Scheme of global uniform recombination

This is� however� the only way to arrive at quantitative statements� free from confusing
side e�ects�

It is thus hard to explain the origin of the accelerating e�ect of recombination� It
may� for example� lie in the fact that instead of � di�erent starting points� the bisexual
scheme o�ers

�� � � 	� � 
�
n��X
i��

�i

possible combinations in the case of n variables� With multirecombination� as chosen
here� there are as many as �n� which is far more than could be put into e�ect� A more
detailed investigation may be found in B�ack 	
���a��

So far we have only considered recombination of the object variables� but the strategy
variables� the step lengths� can be recombined in just the same way� Even if all the parents
start with equal �i � � for all i � 
	
�n� and if all the step length components are varied
by a common random factor in the production of descendants� the variances �i of all the
individuals for each i � 
	
�n di�er from each other in the subsequent generations�

Thus by recombination is it possible for the step lengths to adapt individually in
this way to circumstances� A better combination a�ords a higher chance of survival to
its bearer� It can therefore be expected that in the course of the optimum search� the
currently best combination of the f�i� i � 
	
�ng prevails�the one that is associated with
the fastest rate of progress� In attempting to verify this in a practical test� an unpleasant
phenomenon occurs� It can happen that one of the standard deviations �i is suddenly
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	e�g�� by a random value very far from the expectation value� so much reduced in size that
the associated variable xi can now hardly be changed� The total change in the vector x is
then roughly speaking within an 	n � 
��dimensional subspace of IRn� Contrary to what
one might hope� that such a descendant would have less chance of surviving than others�
it turns out that the survival of such a descendant is actually favored� The reason is that
the rate of progress with an optimal step length is proportional to 
�n� If the number
of variables n decreases� the rate of convergence� together with the optimal step length�
increases� The optimum search therefore only proceeds in a subspace of IRn� Not until
the only improvement in the objective function entails changing the variable that has
hitherto been omitted from the variation will the mutation�selection mechanism operate
to increase its associated variance and so restore it to the range for which noticeable
changes are possible�

The minimum search proceeds by jumps in the value of the objective function and
with rates of progress that vary alternately above and below what would otherwise be
smooth convergence� Such unstable behavior is most pronounced when �� the number
of parents� is small� With su�ciently large � the reserve of step length combinations
in the gene pool is always big enough to avoid overadaptation� or to compensate for it
quickly� From an experimental study 	Schwefel� 
�
�� the conclusion could be drawn
that punctuated equilibrium evolution 	Gould and Eldredge� 
���� 
���� can be avoided
by using a su�ciently large population 	� � 
� and a su�ciently low selection pressure
	��� � ��� A further improvement can be made by using as the starting point in the
variation of the step lengths the current average of two parents� variances� rather than the
value from only one or the other parent� This measure too has its biological justi�cation�
it represents an imitation of what is called intermediary recombination 	instead of discrete
recombination��

In this context chromosome mutations should be very e�ective� those in which for
example� the positions of two individual step lengths are exchanged� As well as the haploid
scheme of inheritance on which the present work is based� some forms of life also exhibit the
diploid scheme� In this case each individual stores two sets of variable values� Whilst the
formation of the phenotype only makes use of one allele� the production of o�spring brings
both alleles into the gene pool� If both alleles are the same one speaks of homozygosity�
otherwise of heterozygosity� Heterozygote alleles enlarge the set of variants in the gene
pool and thus the range of possible combinations� With regard to the stability of the
evolutionary process this also appears to be advantageous� The true gain made by diploidy
only becomes apparent� however� when the additional evolutionary factors of recessiveness
and dominance are included� For multiple criteria optimization� the usefulness of this
concept has been demonstrated by Kursawe 	
��
� 
����� Many possible extensions of
the multimembered scheme have yet to be put into practice� To �nd their theoretical
e�ect on the rate of progress� one would �rst have to construct a theory of the 	� � ��
strategy for � � 
� If one goes beyond the � � 
 scheme followed here� signi�cant
di�erences between approximate theory and simulation results arise for � � 
 because of
the greater asymmetry of the probability distribution w	s���
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����
 Global Convergence

In our discussion of deterministic optimization methods 	Chap� �� we have established
that only simultaneous strategies are capable of locating with certainty global minima
of arbitrary objective functions� The computational cost of their application increases
with the volume of the space under consideration and thus with the power of n� The
dynamic programming technique of Bellman allows the reliability of global convergence to
be maintained at less cost� but only if the objective function has a rather special structure�
such that only a part of the space IRn needs to be investigated� Of the stochastic search
procedures� the Monte�Carlo method has the best chance of global convergence� it o�ers a
high probability rather than certainty of �nding the global optimum� If one requires a ���
probability� its cost is greater than that of the equidistant grid search� However� the 	
�
�
evolution strategy can also be credited with a �nite probability of global convergence if the
step lengths 	variances� of the random changes are held constant 	see Rechenberg� 
����
Born� 
��
� Beyer� 
�
�� 
����� How great the chance is of �nding an absolute minimum
among several local minima depends on the topology� in particular on the disposition and
�width� of the minima�

If the user wishes to realize the possibility of a jump from a local to a global extremum�
it requires a trial of patience� The requirement of approaching an optimum as quickly and
as accurately as possible is always diametrically opposed to maintaining the reliability of
global convergence� In the formulation of the algorithms of the evolution strategies we
have mainly strived to satisfy the �rst requirement of rapid convergence� by adaptation
of the step lengths� Thus for both strategies no claims can be made for good global
convergence properties�

With � � 
 in the multimembered evolution scheme� several state vectors x
�g�
k �

IRn� k � 
	
��� are stored in each generation g� If the x
�g�
k are very di�erent� the

probability is greater that at least one point is situated near the global optimum and that
the others will approach it in the process of generation� The likelihood of this is less if
the x

�g�
k fall close together� with the associated reduction in the step lengths� It always

remains �nite� however� and increases with �� the number of parents� This advantage
over the 	
�
� strategy is best exploited if one starts the search with � initial vectors x

���
k

roughly evenly distributed over the whole region of interest� and chooses fairly large initial
values of the standard deviations ����k � IRn� k � 
	
��� Here too the 	�� �� scheme is
preferable to the 	� � �� because concentration at a locally very favorable position is at
least delayed�

����� Program Details of the �� �� �� ES Subroutines

Appendix A� Section A�� contains FORTRAN listings of the multimembered 	� �� ��
evolution strategy developed here� with the alternatives

GRUP without recombination
REKO with recombination 	intermediary recombination for the step lengths�
KORR the so far most general form with correlated mutations as well as �ve

di�erent recombination types 	see Chap� ��
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In the choice of � 	number of parents� and � 	number of descendants� there is no
need to ensure that � is exactly divisible by �� The association of descendants to parents
is made by a random selection of uniformly distributed random integers from the range
�
� � � It is only necessary that � exceeds � by a su�cient margin that on average at least
one descendant can be better than its parent� From the results of Section ����� a suitable
choice would be for example � 
 ���

The transformation from ��� 
 evenly distributed random numbers to 	�� ��� normally
distributed pseudorandom numbers is carried out in the same way as in subroutine EVOL
of the 	
�
� strategy 	see Sect� ��
���� The log�normally distributed variance multipliers
are produced by the exponential function� The step lengths 	standard deviations of the
individual random components� can initially be speci�ed individually� During the subse�
quent process of generation they satisfy the constraints

�
�g�
i 
 
a

and �
�g�
i 
 
b jx�g�i j

�
for all i � 
	
�n

where

a � �

and 
 � 
b � 


�
according to the computational accuracy

can be speci�ed in advance�
The parameter � which in!uences the average rate of change of the step lengths

should be given a value roughly proportional to 
�
p
n� in case of two factors 	the case

to be preferred�� a global and an individual one� the values given in Section ����� are
recommended� The constant of proportionality depends mainly on another adjustable
feature� ���� which may be called the selection pressure� For a 	
� � 
��� strategy it should
be set at about unity to allow the fastest convergence of simple optimization problems like
the hypersphere� With increasing � this value �	 can be changed sublinearly according
to

� � p�	 e��

	compare Equation 	�������

If the initial step lengths �
���
i are chosen to be too large� what may have been an

especially well situated starting point x��� can be thrown away� Nevertheless� this step
backwards in the �rst generation works in favor of reaching a global minimum among
several local minima� In principle� for � � 
 each of the � di�erent starting vectors
x
���
k � IRn and �

���
k � IRn� k � 
	
�� can be speci�ed� In the present program this

di�erentiation of the parent generation is carried out automatically� the x���k are produced

from x��� by addition of 	�� 	������� normally distributed random vectors� The ����k � ����

are initially equal for all parents�
The convergence criterion is described in Section ������ It is based on the di�erence

in objective function values between the current best and worst parents of a generation�
As accuracy parameters� an absolute and a relative quantity 	
c and 
d� must be speci�ed
	compare Sect� ��
���� Furthermore� an upper bound on the computation time for the
search can be given so that whatever the outcome results can be output from the main
program 	see also Sect� ��
����

Inequality constraints are treated as described for subroutine EVOL 	Sect� ��
���� so
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too is the case of the starting point x��� lying outside the feasible region�
Whereas the subroutine GRUP with option REKO has been taken into account in

the test series of Chapter �� this is not so for the third version KORR� which was created
later 	Schwefel� 
����� Still� more often than any multimembered version� the 	
�
�
strategy has been used in practice� Nonetheless it has proved its usefulness in several
applications� for example� in conjunction with a linearization method for minimizing
quadratic functions in surface �tting problems 	Plaschko and Wagner� 
����� In this case
the evolution process provides useful approximate values that enable the deterministic
method to converge� It should also serve to locate the global minimum of the multimodal
objective function� Another practically oriented multiparameter case was to �nd the
optimum weight disposition of lightweight rigidly jointed frameworks 	H�o!er� Ley%ner�
and Wiedemann� 
���� Ley%ner� 
����� Here again the evolution strategy is combined
with another method� this time the simplex method of linear programming� Each strategy
is applied in turn until the possible improvements remaining at a step are very small�
The usefulness of this procedure is demonstrated by checking against known solutions�
A third example is provided by Hartmann 	
����� who seeks the optimal geometry of
a statically loaded shell support� He parameterizes the functional optimization problem
by assuming that the shape of the cross section of the cylindrical shell is described by a
suitable polynomial� Its coe�cients are to be determined such that the largest absolute
value of the transverse moment is as small as possible� For various cases of loading�
Hartmann �nds optimal shell geometries di�ering considerably from the shape of circular
cylinders� with sometimes almost vanishingly small transverse moments� More examples
are mentioned in Chapter ��

��� Genetic Algorithms

At almost the same time that evolution strategies 	ESs� were developed and used at the
Technical University of Berlin� two other lines of evolutionary algorithms 	EAs� emerged
in the U�S�A�� all independently of each other� One of them� evolutionary programming

	EP�� was mentioned at the end of Chapter � and goes back to the work of L� J� Fogel
	
���� see also Fogel� Owens� and Walsh� 
���� 
���a�b�� For a long time� activity on this
front seemed to have become quiet� However� in 
��� a series of yearly conferences was
started by D� B� Fogel and others 	Fogel and Atmar� 
���� 
���� Sebald and Fogel� 
����
to disseminate recent results on the theory and applications of EP� Since EP uses concepts
that are rather similar to either ESs or genetic algorithms 	GAs� 	Fogel� 
��
� 
����� it
will not be described in detail here� nor will it be compared to ESs on the basis of test
results� This was done in a paper presented at the second EP conference 	B�ack� Rudolph�
and Schwefel� 
����� Similarly� contributions to comparing ESs and GAs in detail may
be found in Ho�meister and B�ack 	
���� 
��
� 
���� see also B�ack� Ho�meister� and
Schwefel� 
��
� B�ack and Schwefel� 
�����

The third line of EAs mentioned above� genetic algorithms� has become rather popular
today and di�ers from the others in several aspects� This approach will be explained in
the following according to its classical 	also called canonical� form�

Even to attentive scientists� GAs did not become apparent before 
��� when the �rst
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book of Holland 	
���� and the dissertation of De Jong 	
���� were published� Thus this
work was unknown in Europe at the time when Rechenberg�s and the author�s disserta�
tions were completed and� later on� published as books� Only 
� years later� however� in

�
�� a series of biennial conferences 	ICGA� International Conferences on Genetic Al�
gorithms� has been started 	Grefenstette� 
�
�� 
�
�� Scha�er� 
�
�� Belew and Booker�

��
� Forrest� 
���� to bring together those who are interested in the theory or applica�
tion of GAs� On the Eastern side of the Atlantic� a similar revival of the �eld began in

��� with the �rst conference on parallel problem solving from nature 	PPSN� 	Schwefel
and M�anner� 
��
� M�anner and Manderick� 
���� Davidor� Schwefel� and M�anner� 
�����
During the PPSN �� and the ICGA �
 events� proponents of GAs and ESs agreed upon
the common denominators evolutionary algorithms 	EAs� for both approaches as well as
evolutionary computation 	EC� for a new international journal 	see De Jong� 
����� The
latter term has been adopted among others by the Institute of Electrical and Electronics
Engineers 	IEEE� for an international conference during the 
��� World congress on com�

putational intelligence 	WCCI�� Surveys of the history have been attempted by De Jong
and Spears 	
���� and Spears et al� 	
����� As forerunners of the genetic simulation�
Fraser 	
����� Friedberg 	
��
�� and Hollstien 	
��
� should at least be mentioned here�

����� The Canonical Genetic Algorithm for Parameter
Optimization

Even if the originators of the GA approach emphasized that GAs were designed for general
adaptation processes� most applications reported up to now concern numerical optimiza�
tion by means of digital computers� including discrete as well as combinatorial optimiza�

tion� Books by Ackley 	
�
��� Goldberg 	
�
��� Davis 	
�
�� 
��
�� Davidor 	
�����
Rawlins 	
��
�� Michalewicz 	
���� 
����� Stender 	
����� and Whitley 	
���� may serve
as sources for more details in this �eld� As for so�called classi�er systems 	CS� see Holland
et al�� 
�
�� and genetic programming 	GP� see Koza� 
����� two very interesting spe�
cial areas of evolutionary computation�in which GAs play an important r#ole in searching
for production rules in so�called knowledge�based systems and for correct expressions in
computer programs� respectively�the reader must be referred to the relevant and vast
literature 	Alander� 
���� he compiled more than ����� references��

The GA for parameter optimization usually has been presented in the following general
form�

Step �� 	Initialization�
A given population consists of � individuals� Each is characterized by its
genotype consisting of n genes� which determine the vitality� or �tness for
survival� Each individual�s genotype is represented by a 	binary� bit string�
representing the object parameter values either directly or by means of an
encoding scheme�

Step 
� 	Selection�
Two parents are chosen with probabilities proportional to their relative posi�
tion in the current population� either measured by their contribution to the
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mean objective function value of the generation 	proportional selection� or by
their rank 	e�g�� linear ranking selection��

Step �� 	Recombination�
Two di�erent preliminary o�spring are produced by recombination of two
parental genotypes by means of crossover at a given recombination probabil�
ity pc� only one of those o�spring 	at random� is actually taken into further
consideration�
Steps 
 and � are repeated until � individuals represent the 	next� generation�

Step �� 	Mutation�
The o�spring eventually 	with a given �xed and small probability pm� underly
further modi�cation by means of point mutations working on individual bits�
either by reversing a one to a zero� or vice versa� or by throwing a dice for
choosing a zero or a one� independent of the original value�

At �rst glance� this scheme looks very similar to that of a multimembered ES with
discrete recombination� To reveal the di�erences one has to take a closer look at the
so�called operators� �selection 	S��� �mutation 	M��� and �recombination 	R��� The GA
sequence of events� i�e�� S � R � M� as opposed to M � R � S within ESs� should not matter
signi�cantly since the whole process is a circular one� and whether one likes to reverse the
order of mutation and recombination is a matter of avoiding unnecessary operations or
not� In applications� the evaluation of the individuals with respect to their corresponding
objective function values normally dominates all other operations� Canonical values for
the recombination probability are pc � ���� for the number of crossover points nc � ��
and for the mutation probability pm � ����
�

����� Representation of Individuals

One of the most apparent di�erences between GAs and ESs is the fact� that completely
di�erent representations of the object variables are used� Organic evolution uses four
di�erent nucleotides to encode the genotype in pairs of triplets� By means of the genetic
code these are translated to �� di�erent amino acids� Since there are �� � �� di�er�
ent triplets� the genetic code is largely redundant� A closer look reveals its property of
maintaining similarity on the amino acid level despite most of the small variations on the
level of single nucleotides� Similar transmission laws between chains of amino acids and
proteins� proteins and higher aggregates like cells and organs� up to the overall pheno�
type are called the epigenetic apparatus 	Riedl� 
����� As a matter of fact� biologists as
well as behaviorists report that di�erences among several children of the same parents as
well as di�erences between two consecutive generations can well be described by normal
distributions with zero mean and characteristic� probably genetically coded� variances�
That is why ESs� when used for seeking optimal values for continuous variables use the
more aggregate model of normal distributions for mutations and discrete or intermediary
recombination as described in Sections ��
 and ����

GAs� however� rely on binary representations of the object variables� One might call
this genotypic modelling of the variation process� instead of phenotypic modelling as is
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practiced in ESs and EP� An important link between both levels� i�e�� the genetic code
as well as the so�called epigenetic apparatus� is neglected at least in the canonical GA�
For dealing with integer or real values on the level of the object variables GAs make use
of a normal Boolean representation or they use the so�called Gray code� Both� however�
present the di�culty of so�called Hamming cli�s� Depending on its position� a single
bit reversal thus can lead to small or very large changes on the phenotypic level� This
important fact has advantages and disadvantages� The advantage lies in the broad range
of di�erent phenotypes available in a GA population at the same time� a matter a�ecting
its global convergence reliability 	for a thorough convergence analysis of the canonical GA
see Rudolph� 
���a�� The corresponding disadvantage stems from the other side of the
same coin� i�e�� the inability to focus the search e�ort in a close enough vicinity of the
current positions of individuals in one generation�

There is a second reason to cling to binary representations of object variables within
GAs� i�e�� Holland�s schema theorem 	Holland� 
���� 
����� This theorem tries to assure
exponential penetration of the population by individuals with above average �tness under
proportional selection� with su�ciently higher reproduction rates for better individuals�
one point crossover with �xed crossover probability� and small� �xed mutation rates�

If� at some time� especially when starting the search� the population contains the
globally optimal solution� this will persist in the case where there are zero probabilities
for mutation and recombination� Mutation� according to the theorem� is an always de�
structive force and thus called a subordinate operator� It only serves to introduce missing
or reintroduce lost correct bits into �nite populations� Recombination 	here� one point

crossover� may or may not be destructive� depending on whether the crossover point hap�
pens to lie within a so�called building block� i�e�� a short substring of the bit string that
contributes to above�average �tness of one of the mating individuals� or not� Building
blocks are especially important in case of decomposable objective functions 	for a more
detailed description see Goldberg� 
�
���

GAs in their original form do not permit the handling of implicit inequality or equality
constraints� On the other hand� explicit upper and lower bounds have to be provided for
the range of the object variables�

ui � xi � vi� for all i � 
	
�n

in order to have a basis for the binary decoding and encoding process� e�g��

xi � ui �
vi � ui
�l � 


lX
j��

ai�j �j��

where ai�j for j � 
	
�l represents the bit string segment of length l for encoding the ith
element of the object variable vector x�

Instead of this Boolean mapping one also may choose the Gray code� which has the
property that neighboring values for the xi di�er in one bit position only� Looking for
the probability distribution p	*xi� of phenotypic changes *xi from one generation to the

next at a given position x
���
i and a given mutation probability pm shows that changing

the code from Boolean to Gray only shifts� but never avoids� the so�called Hamming
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Figure ����� Probability distributions for GA mutations � left� normal binary
code� right� Gray code

cli�s� As Figure ��
� clearly shows for a one dimensional case with x��� � �� l � �� and
pm � ����
� the expectation values for changes *x are di�erent from zero in both cases�
and the distribution is in no case unimodal�

����� Recombination and Mutation

Innovation during evolutionary processes occurs in two di�erent ways� for so�called higher
organisms at least� Only the most early and primitive species operate asexually� People
have often said that GAs can do their work without mutations� which� according to
the schema theorem� always hamper the adaptation or optimization process� and that�
on the other hand� ESs can do their work without recombination� The latter is not
true if self�adaptation of the individual mutation variances and covariances is to work
properly 	see Schwefel� 
�
��� whereas the former conjecture has been disproved by B�ack
	
���� 
���a�b�� For a GA the probability of containing the correct bits for the global
solution� dispersed over its random start population� is 
 � L ���� which may be close
enough to 
 for � � �� as population size and L � 
��� as length of the bit string
	actually it is ���������������� however� it cannot be guaranteed that those bits will not
get lost in the course of generations� Whether this happens or not� largely depends on
the problem structure� the phenomenon being called deception 	e�g�� Whitley� 
��
� Page
and Richardson� 
�����

If one looks for recombination e�ects within GAs on the level of phenotypes� one
stumbles over the fact that a recombined o�spring of two parents that are close together
in the phenotype space may largely deviate from both parental positions there� This
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Table ��
� Two point crossover within a GA and its e�ect on the
phenotypes

Bit strings Phenotype
Parent 
 ���� ���� � 
�
Parent � ���� ���� 
 



Two point crossover
O�spring 
 ���� ���� � 

O�spring � ���� ���� 
� 
�

completely contradicts the proverbial saying that the apple never falls far from the tree�
Table ��
 shows a simple situation with two parents producing two o�spring by means of
two point crossover� on a bit string of length 
� and encoding two phenotypic variables
in the range ��� 
� in the standard Boolean form� Neither discrete nor intermediary
recombination within ESs can be that disruptive� intermediary recombination always
delivers phenotypic values for the o�spring between those of their parents� The assumption
that mutations are not necessary for the GA process may even stem from that disruptive
character of recombination that permits crossover points not only at the boundaries of
meaningful parental information but also within the genes themselves�

ESs obey the general rule� that mutations are undirected� by means of using normally
distributed changes with zero mean�even in the case of correlated mutations� That this
is not so for GAs can easily be seen from Figure ��
�� Without selection� the GA process
thus provides biased genetic drift� depending on the actual situation�

Table ��� presents the probability transition matrix for one phenotypic integer variable
xi in the range ��� � encoded by means of two bits only� Let

p � pm � 


�
single bit inversion probability and

q � 
 � pm probability of not inverting the bit

From Table ��� it is obvious that among all possible transitions 	except for those with�

Table ���� Transition probabilities for mutations within a GA

xi new
Genotype �� �
 
� 



Phenotype � 
 � �
�� � q� p q p q p�

xi old �
 
 p q q� p� p q

� � p q p� q� p q


 � p� p q p q q�
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out any change� between the four di�erent genetic states ��� �
� 
�� 

 	e�g�� phenotypes
�� 
� �� ��� those from �
 to 
� and from 
� to �
 are the most improbable ones despite their
phenotypic vicinity� Let pm � 
���� then q� � ����
��
� p q � ��������� and p� �
�������
�

����� Reproduction and Selection

Whether selection is the �rst or last operator in the generation loop of EAs should not
matter except for the �rst iteration� The di�erence in this respect between ESs and GAs�
however� is that both mingle several aspects of the generation transition� Let us look �rst�
therefore� at the biological facts to be modelled by a selection operator�

An o�spring may or may not be able to survive the time span between birth and
reproduction� If it is vital up to its reproductive age it may have varying numbers of
o�spring with one or more partners of its own generation� Thus� the term �selection� in
EAs comprises at least three di�erent aspects�

� Survival to adult state 	ontogeny�

� Mating behavior 	perhaps including promiscuity�

� Reproductive activity

Both ESs and GAs select parents for each o�spring anew� thus modelling maximal
promiscuity� GAs assign higher mating and reproductive activities to individuals with
better objective function values 	both for proportional as well as linear or other ranking
selection�� But even the worst o�spring of generation g may become parents for generation
g � 
� The probability� however� may be very low� If this is the case� most o�spring
are descendants of a few best parents only� The corresponding loss of diversity in the
population may lead to premature stagnation 	not convergence"� of the evolutionary
seeking process� Reducing the proportionality factor in the selection function� on the
other hand� ultimately leads to random walk behavior� This enhances the reliability in
multimodal situations� but reduces the convergence velocity and the precision of locating
the optimum�

For proportional selection� after Holland derived from an analogy to the game�theoretic
multiarmed bandit problem� the average number of o�spring for an individual with geno�
type ak� phenotype xk� and vitality f	xk� is

�	ak� � � ps	ak� �
+	f	xk��




�

�X
i��

+	f	xi��

�
+k

'+

The transformation +	f� is necessary for introducing the proportionality factor mentioned
above as well as for dealing with negative values of the objective function� ps often is called
the survival probability� which is misleading� No parent really survives its generation
except in an elitist GA version� Then the best parent is put into the next generation
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without applying the selection operator� Otherwise it may happen simply by chance that
one or the other descendant is not di�erent from one of its parents�

In contrast to ESs� the number of o�spring always is equal to the number of par�
ents 	� � ��� There is no surplus of descendants to cope with lethal mutations and
recombinations� ESs need that kind of surplus for handling constraints� at least� In
the non�preserving case of its comma�version� a multimembered ES also needs a surplus
	� � �� for the selection process� The � � � worst o�spring are handled as if they do
not survive to the adult reproductive state� the � best� however� have the same repro�
duction probability ps � 
��� which does not depend on their individual phenotypes or
corresponding objective function values� Thus� on average� every parent has ��� descen�
dants� This is depicted on the left�hand side of Figure ��
�� where the average number
of descendants of the two best of � � 
� descendants 	evenly distributed on the �tness
scale just for simpli�cation purposes� is just ��� � � for a 	��
�� ES� and zero for all
others�

Within a GA it largely depends on the scaling function +	f�� how many o�spring are
produced on average by their ancestors� The right�hand part of Figure ��
� presents two
possible situations� Crosses 	�� belong to a steep� triangles 	
� to a !at reproduction
probability curve 	average number of o�spring� over the �tness of the individuals� In
the former case it typically happens that� just like in ESs� only the best individuals
produce o�spring 	here the best parent has �� the second best �� the third best only 
�
and all others zero o�spring�� One would call this strong selection� Weak selection� on
the contrary� characterizes the other case 	only the worst parent has no o�spring� the
best one just �� and all others 
�� It will strongly depend on the actual topology how one
should choose the proportionality factor and it may even be necessary to change it during
one optimum seeking process�

Self�adaptation of internal strategy parameters is possible within the framework of
GAs� too� B�ack 	
���a�b� 
���� 
���a�b� has demonstrated this with respect to the
mutation rate� For that purpose he adopts the selection mechanism of the multimembered
ES�

Last but not least� the question remains whether a stochastic or a deterministic ap�
proach to modelling selection is more appropriate� The argument that a stochastic model
is closer to reality� is not su�cient for the purpose at hand� optimization and adaptation�

����� Further Remarks

Of course� one would like to incorporate at least one close�to�canonical GA version into the
comparative test series with all the other optimization procedures� But there are problems
with that kind of endeavor� First� GAs do not permit general inequality constraints�
This does not matter too much� since there are other algorithms that are not applicable
directly in such cases� too� Next� GAs must be provided with lower and upper bounds for
all parameters� which of course have to be chosen to contain the solution� probably in or
near the middle of the hypercube de�ned by the explicit bounds� The GA thus would be
provided with information that is not available for the other algorithms�

For all other methods the starting point is of great importance� not only because it
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Figure ���
� Comparison of selection consequences in EAs
left� ES� right� GA

de�nes the initial distance from the optimum and thus determines largely the number of
iterations needed to approximate the solution at the prede�ned accuracy� but also because
it may provide more or less topological di�culties in its vicinity� GAs� however� should
be started at random in the whole hypercube de�ned by the lower and upper bounds
of the variables� in order to give them a chance of approaching the global or� at least�
a very good local optimum� Reliability tests 	see Appendix A� Sect� A���� especially
in cases of multimodal functions would thus be biased against all other methods� if one
allows the GA to start from many points at the same time and if one gives the GA the
needed extra information about the relevant search region that is not available for the
other methods� One might provide special test conditions to compare di�erent EAs with
each other without giving one of them an advantage from the very beginning� but no large
e�ort of this kind has been made so far�

Even in cases of special constraints or side conditions one may formulate appropri�
ate instantiations of suitable GA versions� This has been done� for example� for the
combinatorial optimization task of solving the travelling salesperson problem 	TSP� by
Gorges�Schleuter 	
��
a�b�� repair mechanisms were used in cases where unfeasible tours
were caused by recombination� Beyer 	
���� has investigated ESs for solving TSP�like op�
timization problems� It is much better to look for data structures �tted to the special task
and to rede�ne the genetic operators to keep to the feasible solution set 	see Michalewicz�

���� 
����� The time for developing such special EAs must be added to the run time
on the computer� and one argument in favor of EAs is lost� i�e�� their simplicity of use or
generality of application�

As the short analysis of GA mutation and recombination operators above has clearly
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shown� GAs other than ESs favor in�breadth search and thus are especially prepared to
solve global and discrete optimization problems� where a volume�oriented approach is
more appropriate than a path�oriented one� They have so far done their best in all kinds
of combinatorial optimization 	e�g�� Lawler et al�� 
�
��� a �eld that has not been pursued
in depth throughout this book� One example in the domain of computational intelligence
has been the combined topology and parameter optimization of arti�cial neural networks
	e�g�� Mandischer� 
����� another is the optimization of membership function parameters
within fuzzy controllers 	e�g�� Meredith� Karr� and Kumar� 
�����

��� Simulated Annealing

The simulated annealing approach to solve optimization problems does not really belong
to the biologically motivated evolutionary algorithms� However� it belongs to the realm of
problem solving methods that make use of other natural paradigms� This is the reason why
this section has not been placed elsewhere among the traditional hill climbing strategies�

In order to harden steel one �rst heats it up to a high temperature not far away
from the transition to its liquid phase� Subsequently one cools down the steel more or
less rapidly� This process is known as annealing� According to the cooling schedule the
atoms or molecules have more or less time to �nd positions in an ordered pattern 	e�g��
a crystal structure�� The highest order� which corresponds to a global minimum of the
free energy� can be achieved only when the cooling proceeds slowly enough� Otherwise
the frozen status will be characterized by one or the other local energy minimum only�
Similar phenomena arise in all kinds of phase transitions from gaseous to liquid and from
liquid to solid states�

A descriptive mathematical model abstracts from local particle�to�particle interac�
tions� It describes statistically the correspondences between macro variables like density�
temperature� and entropy� It was Boltzmann who �rst formulated a probability law to
link the temperature with the relative frequencies of the very many possible micro states�
Metropolis et al� 	
���� simulated on that basis the evolution of a solid in a heat bath
towards thermal equilibrium� By means of a Monte�Carlo method new particle con�g�
urations were generated� Their free energy Enew was compared with that of the former
state 	Eold�� If Enew � Eold then the new con�guration �survives� and forms the basis
for the next perturbation� The new state may survive also if Enew � Eold� but only with
a certain probability w

w �



c
exp

�
Eold �Enew

K T

�

where K denotes the famous Boltzmann constant and T the current temperature� The
constant c serves to normalize the probability distribution� This Metropolis algorithm
thus is in line with the probability law of Boltzmann�

Kirkpatrick� Gelatt� and Vecchi 	
�
�� and �Cerny 	
�
�� published optimization meth�
ods based on Metropolis� simulation algorithm� These methods are used quite frequently
nowadays as simulated annealing 	SA� procedures� Due to the fact that good intermediate
positions may be �forgotten� during the search for a minimum or maximum� the algorithm
is able to escape from local extrema and �nally might reach the global optimum�
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There are two loops within the SA process�

� Lowering the temperature 	outer loop�
Tnew � f	Told� � Told� e�g�� Tnew � �Told� � � � � 

until the ground state T � � is reached

� Waiting until the equilibrium state is found 	inner loop�
Metropolis simulations are performed at T � const� until no further improvements
occur

Two questions arise immediately� First� how long should the equilibration phase last�
or which constructive criterion should be used for stopping the search for an optimum at
a given temperature) Secondly� how large should the cooling steps be) Another question
concerns the step size for the perturbations of the variables during the equilibration stage�

There are many empirical suggestions for partial answers to the questions� a lot of
successful applications of the method� e�g�� for the combinatorial optimization of the trav�
elling salesperson problem 	TSP�� as well as some rigorous theoretical results concerning
the global convergence� but very few investigations about the convergence rates that can
be obtained� A good summary may be found in the books of van Laarhoven and Aarts
	
�
��� Aarts and Korst 	
�
��� and Azencott 	
����� The relation between SA and evo�
lutionary algorithms 	EAs� has been stressed by Rudolph 	
����� especially under the
parallel computing point of view�

In the following a more detailed pseudocode is given�

Step �� 	Initialization�
Choose a start position x������

a start temperature T ����
a start width d��� for the variations of x�

Set x	 � &x � x������ k � �� and � � 
�

Step 
� 	Metropolis simulation�
Construct x�k�l� � &x � d�k� z�
where z is uniformly distributed for all components
zi� for all i � 
	
�n in the range zi � ���

���
�
� 

or normally distributed according to w	zi� � �p
�	

exp
�
��

� z
�
i

	
�

If F 	x�k�l�� � F 	x	� � set x	 � x�k�l��
If F 	x�k�l�� � F 	&x� � go to step ��
otherwise draw a uniform random number� �� from the interval ��� 
 �

If � � exp
�
F �x�k�l���F ��x�

T �k�

	
� go to step ��

Step �� 	Check for equilibrium�
If F 	x	� has not been improved within the last N trials�
go to step ��

Step �� 	Inner loop�
Set &x � x�k�l�� increase �� � � 
� and go to step 
�
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Step �� 	Termination criterion�
If T �k� � 
� end the search with result x	�

Step �� 	Cooling� outer loop�
Set x�k����� � x	� &x � x	�
and T �k��� � �T �k�� � � � � 
�
Eventually� decrease d�k��� � � d�k�� � � � � 
�
Set � � 
� increase k � k � 
� and go to step 
�

The most important feature of the SA algorithm is its ability to escape from inferior
local optima by allowing deteriorations with a certain probability� This kind of forgetting
principle cannot be found in most numerical optimization routines� In EAs� however� it
is more or less built�in as well�

Though the overall structure of the algorithm is rather simple� it turns out to be quite
di�cult to decide upon the free parameters

T ��� the temperature to start with
d��� the start width for the step sizes
� the cooling factor
� the step size reduction factor
N the criterion upon which to state �equilibrium�

 the lower bound on the temperature

All rules that have been devised rely upon assumptions concerning the special type
of objective function� The reader is referred to the literature in this special �eld� which
is closely related to the �eld of global and stochastic optimization� Lau%ermair 	
���a�b�
recently devised a special set of rules called hyperplane annealing� and Rudolph 	
����
points to similarities with ESs in case of parallel function evaluations�

��� Tabu Search and Other Hybrid Concepts

Many heuristic optimum seeking methods� especially those that are called more or less
greedy� are in danger of getting trapped in inferior local optima in case of multimodal ob�
jective functions� This is especially enhanced by measures to achieve ultimate e�ciency�
e�g�� by controlling the step size or search domain� Tabu search 	TS� is a metastrat�
egy aimed at avoiding the local optimality trap and can be superimposed onto many
traditional direct optimization methods�

Glover 	
�
�� 
�
�� see also Glover and Greenberg� 
�
�� tries to overcome the prob�
lem by setting up short�� medium�� and long�term memories of successful as well as un�
successful trials� According to that history of events� some rules are set up to alternate
between three modes of operation�

� Aggressive exploration

� Intensi�cation

� Diversi�cation
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Aggressive exploration using a short�term memory forms the core of the TS� From
a candidate list of 	non�exhaustive� moves the best admissible one is chosen� The de�
cision is based on tabu restrictions on the one hand and on aspiration criteria on the
other� Whereas aspiration criteria aim at perpetuating former successful operations� tabu
restrictions help to avoid stepping back to inferior solutions and repeating already in�
vestigated trial moves� Although the best admissible step does not necessarily lead to
an improvement� only better solutions are stored as real moves� Successes and failures
are used to update the tabu list and the aspiration memory� If no further improvements
can be found� or after a speci�ed number of iterations� one transfers the results to the
longer�term memories and switches to either an intensi�cation or a diversi�cation mode�

Intensi�cation combined with the medium�term memory refers to procedures for rein�
forcing move combinations historically found good� whereas diversi�cation combined with
the long�term memory refers to exploring new regions of the search space� The �rst arti�
cles of Glover 	
�
�� 
�
�� present many ideas to decide upon switching back and forth
between the three modes� Many more have been conceived and published together with
application results� In some cases complete procedures from other optimization paradigms
have been used within the di�erent phases of the TS� e�g�� line search or gradient�like tech�
niques during intensi�cation� and GAs during diversi�cation�

Instead of going into further details here� it seems appropriate to give some hints that
point to rather similar hybrid methods� more or less centered around either GAs� ESs� or
SA as the main strategy�

One could start again with Powell�s rule to look for further restart points in the
vicinity of the �nal solutions of his conjugate direction method 	Chap� �� Sect� ������
�
or with the restart rule of the simplex method according to Nelder and Mead 	Chap� ��
Sect� ����
���� in order to interpret them in terms of some kind of diversi�cation phase� But
in general� both approaches cannot be classi�ed as better ideas than starting a speci�c
optimum seeking method from di�erent initial solutions and simply comparing all the
	maybe di�erent� outcomes� and choosing the best one as the �nal solution� It might
even be more promising to use di�erent strategies from the same starting point and to
select the overall best outcome again as a new start condition� On MIMD 	multiple
instructions� multiple data� parallel computers or nets of workstations the competition of
di�erent search methods could even be used to set up a knowledge base that adapts to
a speci�c situation 	e�g�� Peters� 
�
�� 
��
�� Only individual conclusions for one or the
other special application can be drawn from this kind of metastrategic approach� however�

At the close of this general survey� only a few further hints will be given regarding the
vast number of recent proposals�

Ablay 	
�
��� for example� uses a basic search routine similar to Rechenberg�s 	
�
�
ES and interrupts it more or less frequently by a pure random search in order to avoid
premature stagnation as well as convergence to a non�global local optimum�

The replicator algorithm of Voigt 	
�
�� also refers to organic evolution as a metaphor
	see also Voigt� M�uhlenbein� and Schwefel� 
����� Its modelling technique may be called
descriptive� according to earlier work of Feistel and Ebeling 	
�
��� Ebeling 	
���� even
proposes to incorporate ontogenetic learning features 	so�called Haeckel strategy��

M�uhlenbein and Schlierkamp�Voosen 	
���a�b� proposed a so�called breeder GA� which
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combines a greedy algorithm to locate nearest local optima very quickly� with a genetic
algorithm to allocate recombined start positions for further local optimum seeking cycles�
This has proven to be very successful in special situations where the local optima are
situated in a regular pattern in the search space�

Dueck and Scheuer 	
���� have devised a so�called threshold accepting strategy� which
is rather similar to the simulated annealing approach but pretends to deliver superior
results� Later on Dueck 	
���� elaborated his great deluge algorithm� which adds to the
threshold accepting method some kind of diversi�cation mode like the tabu search in order
to avoid premature stagnation at a non�global local optimum�

Lohmann 	
���� and Herdy 	
���� propose a hierarchical ES according to Rechen�
berg�s extended notation 	Rechenberg� 
��
� 
�
�� 
���� of the multimembered scheme
to solve so�called structural optimization problems� Whereas this term normally points
to situations in which a solid structure subject to stresses and deformations has to be
designed in order to have least weight or production cost� Lohmann and Herdy do not
mean anything else than a mixed�integer optimization problem� The solution is sought
for in an outer ES�loop that varies the integer object variables only and an inner ES�
loop that varies the real�valued variables� Thus the outer loop compares relative optima
found in the inner loops� This kind of cyclical subspace search� somehow similar to the
Gauss�Seidel approach� must not represent the ultimate solution to mixed�integer prob�
lems� however� It is more or less prone to �nding non�global local optima only� A more
general evolutionary algorithm should be able to change�at the same time� by appropri�
ate mutation and recombination operators�both the discrete and the real�valued object
variables� But this speculation must be proved in forthcoming further steps towards a
more general evolutionary algorithm� perhaps a hybrid of ES and GA ingredients�


