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Introduction

There is scarcely a modern journal� whether of engineering� economics� management�
mathematics� physics or the social sciences� in which the concept optimization is missing
from the subject index� If one abstracts from all specialist points of view� the recurring
problem is to select a better or best �Leibniz� ����� eventually� he introduced the term
optimal � alternative from among a number of possible states of a	airs� However� if one
were to follow the hypothesis of Leibniz� as presented in his Theodicee� that our world
is the best of all possible worlds� one could justi
ably sink into passive fatalism� There
would be nothing to improve or to optimize�

Biology� especially since Darwin� has replaced the static world picture of Leibniz� time
by a dynamic one� that of the more or less gradual development of the species culminat�
ing in the appearance of man� Paleontology is providing an increasingly complete picture
of organic evolution� So�called missing links repeatedly turn out to be not missing� but
rather hitherto undiscovered stages of this process� Very much older than the recogni�
tion that man is the result �or better� intermediate state� of a meliorization process is
the seldom�questioned assumption that he is a perfect end product� the pinnacle of cre�
ation�� Furthermore� long before man conceived of himself as an active participant in
the development of things� he had unconsciously in�uenced this evolution� There can be
no doubt that his ability and e	orts to make the environment meet his needs raised him
above other forms of life and have enabled him� despite physical inferiority� to 
nd� to
hold� and to extend his place in the world�so far at least� As long as mankind has existed
on our planet� spaceship earth� we� together with other species have mutually in�uenced
and changed our environment� Has this always been done in the sense of meliorization�

In ����� the French philosopher Voltaire ������� dissatis
ed with the conditions of his
age� was already taking up arms against Leibniz� philosophical optimism and calling for
conscious e	ort to change the state of a	airs� In the same way today� when we optimize
we 
nd that we are both the subject and object of the history of development� In the
desire to improve an object� a process� or a system� Wilde and Beightler ������ see an
expression of the human striving for perfection� Whether such a lofty goal can be attained
depends on many conditions�

It is not possible to optimize when there is only one way to carry out a task�then one
has no alternative� If it is not even known whether the problem at hand is soluble� the
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situation calls for an invention or discovery and not� at that stage� for any optimization�
But wherever two or more solutions exist and one must decide upon one of them� one
should choose the best� that is to say optimize� Those independent features that distin�
guish the results from one another are called �independent� variables or parameters of the
object or system under consideration� they may be represented as binary� integer� other�
wise discrete� or real values� A rational decision between the real or imagined variants
presupposes a value judgement� which requires a scale of values� a quantitative criterion
of merit� according to which one solution can be classi
ed as better� another as worse�
This dependent variable is usually called an objective �function� because it depends on
the objective of the system�the goal to be attained with it�and is functionally related to
the parameters� There may even exist several objectives at the same time�the normal
case in living systems where the mix of objectives also changes over time and may� in fact�
be induced by the actual course of the evolutionary paths themselves�

Sometimes the hardest part of optimization is to de
ne clearly an objective function�
For instance� if several subgoals are aimed at� a relative weight must be attached to each of
the individual criteria� If these are contradictory one only can hope to 
nd a compromise
on a trade�o	 subset of non�dominated solutions� Variability and distinct order of merit
are the unavoidable conditions of any optimization� One may sometimes also think one
has found the right objective for a subsystem� only to realize later that� in doing so�
one has provoked unwanted side e	ects� the rami
cations of which have worsened the
disregarded total objective function� We are just now experiencing how narrow�minded
scales of value can steer us into dangerous plights� and how it is sometimes necessary to
consider the whole Earth as a system� even if this is where di	erences of opinion about
value criteria are the greatest�

The second di�culty in optimization� particularly of multiparameter objectives or
processes� lies in the choice or design of a suitable strategy for proceeding� Even when the
objective has been su�ciently clearly de
ned� indeed even when the functional dependence
on the independent variables has been mathematically �or computationally� formulated�
it often remains di�cult enough� if not completely impossible� to 
nd the optimum�
especially in the time available�

The uninitiated often think that it must be an easy matter to solve a problem expressed
in the language of mathematics� that most exact of all sciences� Far from it� The problem
of how to solve problems is unsolved�and mathematicians have been working on it for
centuries� For giving exact answers to questions of extremal values and corresponding
positions �or conditions� we are indebted� for example� to the di�erential and variational
calculus� of which the development in the ��th century is associated with such illustrious
names as Newton� Euler� Lagrange� and Bernoulli� These constitute the foundations of
the present methods referred to as classical� and of the further developments in the theory
of optimization� Still� there is often a long way from the theory� which is concerned
with establishing necessary �and su�cient� conditions for the existence of minima and
maxima� to the practice� the determination of these most desirable conditions� Practically
signi
cant solutions of optimization problems 
rst became possible with the arrival of
�large and� fast programmable computers in the mid���th century� Since then the �ood
of publications on the subject of optimization has been steadily rising in volume� it is a
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simple matter to collect several thousand published articles about optimization methods�
Even an interested party 
nds it di�cult to keep pace nowadays with the development

that is going on� It seems far from being over� for there still exists no all�embracing theory
of optimization� nor is there any universal method of solution� Thus it is appropriate� in
Chapter �� to give a general survey of optimization problems and methods� The special
r�ole of direct� static� non�discrete� and non�stochastic parameter optimization emerges
here� for many of these methods can be transferred to other 
elds� the converse is less often
possible� In Chapter �� some of these strategies are presented in more depth� principally
those that extract the information they require only from values of the objective function�
that is to say without recourse to analytic partial derivatives �derivative�free methods��
Methods of a probabilistic nature are omitted here�

Methods which use chance as an aid to decision making� are treated separately in
Chapter �� In numerical optimization� chance is simulated deterministically by means of
a pseudorandom number generator able to produce some kind of deterministic chaos only�

One of the random strategies proves to be extremely promising� It imitates� in a highly
simpli
ed manner� the mutation�selection game of nature� This concept� a two membered
evolution strategy� is formulated in a manner suitable for numerical optimization in Chap�
ter �� Section ���� Following the hypothesis put forward by Rechenberg� that biological
evolution is� or possesses� an especially advantageous optimization process and is there�
fore worthy of imitation� an extended multimembered scheme that imitates the population
principle of evolution is introduced in Chapter �� Section ���� It permits a more natural
as well as more e	ective speci
cation of the step lengths than the two membered scheme
and actually invites the addition of further evolutionary principles� such as� for example�
sexual propagation and recombination� An approximate theory of the rate of convergence
can also be set up for the �� � �� evolution strategy� in which only the best of � descendants
of a generation become parents of the following one�

A short excursion� new to this edition� introduces nearly concurrent developments
that the author was unaware of when compiling his dissertation in the early ����s� i�e��
genetic algorithms� simulated annealing� and tabu search�

Chapter � then makes a comparison of the evolution strategies with the direct search
methods of zero� 
rst� and second order� which were treated in detail in Chapter ��
Since the predictive power of theoretical proofs of convergence and statements of rates
of convergence is limited to simple problem structures� the comparison includes mainly
numerical tests employing various model objective functions� The results are evaluated
from two points of view�

� E�ciency� or speed of approach to the objective

� E�ectivity� or reliability under varying conditions

The evolution strategies are highly successful in the test of e	ectivity or robustness�
Contrary to the widely held opinion that biological evolution is a very wasteful method
of optimization� the convergence rate test shows that� in this respect too� the evolution
methods can hold their own and are sometimes even more e�cient than many purely
deterministic methods� The circle is closed in Chapter �� where the analogy between
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iterative optimization and evolution is raised once again for discussion� with a look at
some natural improvements and extensions of the concept of the evolution strategy�

The list of test problems that were used can be found in Appendix A� and FORTRAN
codes of the evolution strategies� with detailed guidance for users� are in Appendix B�
Finally� Appendix C explains how to use the C and FORTRAN programs on the �oppy
disk�
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Problems and Methods of

Optimization

��� General Statement of the Problems

According to whether one emphasizes the theoretical aspect �existence conditions of op�
timal solutions� or the practical �procedures for reaching optima�� optimization nowadays
is classi
ed as a branch of applied or numerical mathematics� operations research� or of
computer�assisted systems �engineering� design� In fact many optimization methods are
based on principles which were developed in linear and non�linear algebra� Whereas for
equations� or systems of equations� the problem is to determine a quantity or set of quan�
tities such that functions which depend on them have speci
ed values� in the case of an
optimization problem� an initially unknown extremal value is sought� Many of the current
methods of solution of systems of linear equations start with an approximation and suc�
cessively improve it by minimizing the deviation from the required value� For non�linear
equations and for incomplete or overdetermined systems this way of proceeding is actually
essential �Ortega and Rheinboldt� ������ Thus many seemingly quite di	erent and ap�
parently unrelated problems turn out� after a suitable reformulation� to be optimization
problems�

Into this class come� for example� the solution of di	erential equations �boundary
and initial value problems� and eigenvalue problems� as well as problems of observational
calculus� adaptation� and approximation �Stiefel� ����� Schwarz� Rutishauser� and Stiefel�
����� Collatz and Wetterling� ������ In the 
rst case� the basic problem again is to
solve equations� in the second� the problem is often reduced to minimize deviations in the
Gaussian sense �sum of squares of residues� or the Tchebyche	 sense �maximum of the
absolute residues�� Even game theory �Vogelsang� ����� and pattern or shape recognition
as a branch of information theory �Andrews� ����� Niemann� ����� have features in
common with the theory of optimization� In one case� from among a stored set of idealized
types� a pattern will be sought that has the maximum similarity to the one presented� in
another case� the search will be for optimal courses of action in con�ict situations� Here�
two or more interests are competing� Each player tries to maximize his chance of winning
with regard to the way in which his opponent supposedly plays� Most optimization
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problems� however� are characterized by a single interest� to reach an objective that is not
in�uenced by others�

The engineering aspect of optimization has manifested itself especially clearly with the
design of learning robots� which have to adapt their operation to the prevailing conditions
�see for example Feldbaum� ����� Zypkin� ������ The feedback between the environment
and the behavior of the robot is e	ected here by a program� a strategy� which can perhaps
even alter itself� Wiener ������ goes even further and considers self�reproducing machines�
thus arriving at a consideration of robots that are similar to living beings� Computers
are often regarded as the most highly developed robots� and it is therefore tempting to
make comparisons with the human brain and its neurons and synapses �von Neumann�
����� ����� Marfeld� ����� Steinbuch� ������ They are nowadays the most important aid
to optimization� and many problems are intractable without them�

��� Particular Problems and Methods of Solution

The lack of a universal method of optimization has led to the present availability of
numerous procedures that each have only limited application to special cases� No attempt
will be made here to list them all� A short survey should help to distinguish the parameter
optimization strategies� treated in detail later� from the other procedures� but while at
the same time exhibiting some features they have in common� The chosen scheme of
presentation is to discuss two opposing concepts together�

����� Experimental Versus Mathematical Optimization

If the functional relation between the variables and the objective function is unknown�
one is forced to experiment either on the real object or on a scale model� To do so one
must be as free as possible to vary the independent variables and have access to measuring
instruments with which the dependent variable� the quality� can be measured� Systematic
investigation of all possible states of the system will be too costly if there are many
variables� and random sampling of various combinations is too unreliable for achieving
the desired result� A procedure must be signi
cantly more e	ective if it systematically
exploits whatever information is retained about preceding attempts� Such a plan is also
called a strategy� The concept originated in game theory and was formulated by von
Neumann and Morgenstern �������

Many of the search strategies of mathematical optimization to be discussed later
were also applied under experimental conditions�not always successfully� An important
characteristic of the experiment is the unavoidable e	ect of �stochastic� disturbances on
the measured results� A good experimental optimization strategy has to take account of
this fact and approach the desired extremum with the least possible cost in attempts�
Two methods in particular are most frequently mentioned in this connection�

� The EVOP �evolutionary operation� method proposed by G� E� P� Box ������� a
development of the experimental gradient method of Box and Wilson ������

� The strategy of arti
cial evolution designed by Rechenberg ������
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The algorithm of Rechenberg�s evolution strategywill be treated in detail in Chapter ��
In the experimental 
eld it has often been applied successfully� for example� to the solution
of multiparameter shaping problems �Rechenberg� ����� Schwefel� ����� Klockgether and
Schwefel� ������ All variables are simultaneously changed by a small random amount�
The changes are �binomially or� normally distributed� The expected value of the random
vector is zero �for all components�� Failures leave the starting condition unchanged�
only successes are adopted� Stochastic disturbances or perturbations� brought about by
errors of measurement� do not a	ect the reliability but in�uence the speed of convergence
according to their magnitude� Rechenberg ������ gives rules for the optimal choice of a
common variance of the probability density distribution of the random changes for both
the unperturbed and the perturbed cases�

The EVOP method of G� E� P� Box changes only two or three parameters at a time�if
possible those which have the strongest in�uence� A square or cube is constructed with
an initial condition at its midpoint� its �� � � or �� � � corners represent the points in
a cycle of trials� These deterministically established states are tested sequentially� several
times if perturbations are acting� The state with the best result becomes the midpoint
of the next pattern of points� Under some conditions� one also changes the scaling of
the variables or exchanges one or more parameters for others� Details of this altogether
heuristic way of proceeding are described by Box and Draper ������ ������ The method
has mainly been applied to the dynamic optimization of chemical processes� Experiments
are performed on the real system� sometimes over a period of several years�

The counterpart to experimental optimization is mathematical optimization� The
functional relation between the criterion of merit or quality and the variables is known�
at least approximately� to put it another way� a more or less simpli
ed mathematical
model of the object� process or system is available� In place of experiments there appears
the manipulation of variables and the objective function� It is sometimes easy to set up
a mathematical model� for example if the laws governing the behavior of the physical
processes involved are known� If� however� these are largely unresearched� as is often the
case for ecological or economic processes� the work of model building can far exceed that
of the subsequent optimization�

Depending on what deliberate in�uence one can have on the process� one is either
restricted to the collection of available data or one can uncover the relationships between
independent and dependent variables by judiciously planning and interpreting tests� Such
methods �Cochran and Cox� ����� Kempthorne� ����� Davies� ����� Cox� ����� Fisher�
����� Vajda� ����� Yates� ����� John� ����� were 
rst applied only to agricultural prob�
lems� but later spread into industry� Since the analyst is intent on building the best
possible model with the fewest possible tests� such an analysis itself constitutes an op�
timization problem� just as does the synthesis that follows it� Wald ������ therefore
recommends proceeding sequentially� that is to construct a model as a hypothesis from
initial experiments or given a priori information� and then to improve it in a stepwise
fashion by a further series of tests� or� alternatively� to sometimes reject the model com�
pletely� The 
tting of model parameters to the measured data can be considered as an
optimization problem insofar as the expected error or maximum risk is to be minimized�
This is a special case of optimization� called calculus of observations � which involves sta�
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tistical tests like regression and variance analyses on data subject to errors� for which the
principle of maximum likelihood or minimum �� is used �see Heinhold and Gaede� ������

The cost of constructing a model of large systems with many variables� or of very
complicated objects� can become so enormous that it is preferable to get to the desired
optimal condition by direct variation of the parameters of the process� in other words to
optimize experimentally� The fact that one tries to analyze the behavior of a model or
system at all is founded on the hope of understanding the processes more fully and of
being able to solve the synthesis problem in a more general way than is possible in the
case of experimental optimization� which is tied to a particular situation�

If one has succeeded in setting up a mathematical model of the system under consid�
eration� then the optimization problem can be expressed mathematically as follows�

F �x� � F �x�� x�� � � � � xn�� extr

The round brackets symbolize the functional relationship between the n independent
variables

fxi � i � ����ng�
and the dependent variable F � the quality or objective function� In the following it
is always a scalar quantity� The variables can be scalars or functions of one or more
parameters� Whether a maximum or a minimum is sought for is of no consequence for
the method of optimization because of the relation

maxfF �x�g � �minf�F �x�g

Without loss of generality one can concentrate on one of the types of problem� usually
the minimum problem is considered� Restrictions do arise� insofar as in many practical
problems the variables cannot be chosen arbitrarily� They are called constraints� The
simplest of these are the non�negative conditions�

xi � � � for all i � ����n

They are formulated more generally like the objective function�

Gj�x� � Gj�x�� x�� � � � � xn�

���
��
�
�
�

���
�� � � for all j � ����m

The notation chosen here follows the convention of parameter optimization� One
distinguishes between equalities and inequalities� Each equality constraint reduces the
number of true variables of the problem by one� Inequalities� on the other hand� simply
reduce the size of the allowed space of solutions without altering its dimensionality� The
sense of the inequality is not critical� Like the interchanging of minimum and maximum
problems� one can transform one type into the other by reversing the signs of the terms�
It is su�cient to limit consideration to one formulation� For minimum problems this is

�The term ����n stands for ����������n�
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normally the type Gj�x� � �� Points on the edge of the �closed� allowed space are thereby
permitted� A di	erent situation arises if the constraint is given as a strict inequality of
the form Gj�x� � �� Then the allowed space can be open if Gj�x� is continuous� If for
Gj�x� � �� with other conditions the same� the minimum lies on the border Gj�x� � ��
then for Gj�x� � �� there is no true minimum� One refers here to an in�mum� the
greatest lower bound� at which actuallyGj�x� � �� In analogous fashion one distinguishes
between maxima and suprema �smallest upper bounds�� Optimization in the following
means always to 
nd a maximum or a minimum� perhaps under inequality constraints�

����� Static Versus Dynamic Optimization

The term static optimization means that the optimum is time invariant or stationary�
It is su�cient to determine its position and size once and for all� Once the location
of the extremum has been found� the search is over� In many cases one cannot control
all the variables that in�uence the objective function� Then it can happen that these
uncontrollable variables change with time and displace the optimum�non�stationary case��

The goal of dynamic optimization� is therefore to maintain an optimal condition in
the face of varying conditions of the environment� The search for the extremum becomes
a more or less continuous process� According to the speed of movement of the optimum�
it may be necessary� instead of making the slow adjustment of the independent variables
by hand�as for example in the EVOP method �see Chap� �� Sect� ������� to give the task
to a robot or automaton�

The automaton and the process together form a control loop� However� unlike con�
ventional control loops this one is not required to maintain a desired value of a quantity
but to discover the most favorable value of an unknown and time�dependent quantity�
Feldbaum ������� Frankovi�c et al� ������� and Zach ������ investigate in detail such au�
tomatic optimization systems� known as extreme value controllers or optimizers� In each
case they are built around a search process� For only one variable �adjustable setting� a
variety of schemes can be designed� It is signi
cantly more complicated for an optimal
value loop when several parameters have to be adjusted�

Many of the search methods are so very costly because there is no a priori information
about the process to be controlled� Hence nowadays one tries to build adaptive control
systems that use information gathered over a period of time to set up an internal model
of the system� or that� in a sense� learn� Oldenburger ������ and� in more detail� Zypkin
������ tackle the problems of learning and self�learning robots� Adaptation is said to take
place if the change in the control characteristics is made on the basis of measurements
of those input quantities to the process that cannot be altered�also known as disturbing
variables� If the output quantities themselves are used �here the objective function� to
adjust the control system� the process is called self�learning or self�adaptation� The latter
possibility is more reliable but� because of the time lag� slower� Cybernetic engineering is
concerned with learning processes in a more general form and always sees or even seeks
links with natural analogues�

An example of a robot that adapts itself to the environment is the homeostat of Ashby

�Some authors use the term dynamic optimization in a di�erent way than is done here�
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������� Nowadays� however� one does not build one�s own optimizer every time there is a
given problem to be solved� Rather one makes use of so�called process computers� which
for a new task only need another special program� They can handle large and complicated
problems and are coupled to the process by sensors and transducers in a closed loop �on�
line� �Levine and Vilis� ����� McGrew and Haimes� ������ The actual computer usually
works digitally� so that analogue�digital and digital�analogue converters are required for
input and output� Process computers are employed for keeping process quantities constant
and maintaining required pro
les as well as for optimization� In the latter case an internal
model �a computer program� usually serves to determine the optimal process parameters�
taking account of the latest measured data values in the calculation�

If the position of the optimum in a dynamic process is shifting very rapidly� the
manner in which the search process follows the extremum takes on a greater signi
cance
for the overall quality� In this case one has to go about setting up a dynamic model and
specifying all variables� including the controllable ones� as functions of time� The original
parameter optimization goes over to functional optimization�

����� Parameter Versus Functional Optimization

The case when not only the objective function but also the independent variables are
scalar quantities is called parameter optimization� Numerical values

fx�i � i � ����ng

of the variables or parameters are sought for which the value of the objective function

F � � F �x�� � extrfF �x�g

is an optimum� The number of parameters describing a state of the object or system is

nite� In the simplest case of only one variable �n � ��� the behavior of the objective
function is readily visualized on a diagram with two orthogonal axes� The value of the
parameter is plotted on the abscissa and that of the objective function on the ordinate�
The functional dependence appears as a curve� For n � � a three dimensional Cartesian
coordinate system is required� The state of the system is represented as a point in the
horizontal plane and the value of the objective function as the vertical height above it�
A mountain range is obtained� the surface of which expresses the relation of dependent
to independent variables� To further simplify the representation� the curves of intersec�
tion between the mountain range and parallel horizontal planes are projected onto the
base plane� which provides a contour diagram of the objective function� From this three
dimensional picture and its two dimensional projection� concepts like peak� plateau� val�
ley� ridge� and contour line are readily transferred to the n�dimensional case� which is
otherwise beyond our powers of description and visualization�

In functional optimization� instead of optimal points in three dimensional Euclidean
space� optimal trajectories in function spaces �such as Banach or Hilbert space� are to
be determined� Thus one refers also to in
nite dimensional optimization as opposed to
the 
nite dimensional parameter optimization� Since the variables to be determined are
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themselves functions of one or more parameters� the objective function is a function of a
function� or a functional�

A classical problem is to determine the smooth curve down which a point mass will
slide between two points in the shortest time� acted upon by the force of gravity and
without friction� Known as the brachistochrone problem� it can be solved by means of the
ordinary variational calculus �Courant and Hilbert� ����a�b� Denn� ����� Clegg� ������ If
the functions to be determined depend on several variables it is a multidimensional varia�
tional problem �Kl�otzler� ������ In many cases the time t appears as the only parameter�
The objective function is commonly an integral� in the integrand of which will appear not
only the independent variables

x�t� � fx��t�� x��t�� � � � � xn�t�g
but also their derivatives �xi�t� � �xi��t and sometimes also the parameter t itself�

F �x�t�� �
Z t�

t�

f�x�t�� �x�t�� t� dt� extr

Such problems are typical in control theory� where one has to 
nd optimal controlling
functions for control processes �e�g�� Chang� ����� Lee� ����� Leitmann� ����� Hestenes�
����� Balakrishnan and Neustadt� ����� Karreman� ����� Demyanov and Rubinov� ������

Whereas the variational calculus and its extensions provide the mathematical basis
of functional optimization �in the language of control engineering� optimization with dis�
tributed parameters�� parameter optimization �with localized parameters� is based on the
theory of maxima and minima from the elementary di	erential calculus� Consequently
both branches have followed independent paths of development and become almost sepa�
rate disciplines� The functional analysis theory of Dubovitskii and Milyutin �see Girsanov�
����� has bridged the gap between the problems by allowing them to be treated as spe�
cial cases of one fundamental problem� and it could thus lead to a general theory of
optimization� However di	erent their theoretical bases� in cases of practical signi
cance
the problems must be solved on a computer� and the iterative methods employed are then
broadly the same�

One of these iterative methods is the dynamic programming or stepwise optimization
of Bellman ������� It was originally conceived for the solution of economic problems� in
which time�dependent variables are changed in a stepwise way at 
xed points in time�
The method is a discrete form of functional optimization in which the trajectory sought
appears as a steplike function� At each step a decision is taken� the sequence of which is
called a policy� Assuming that the state at a given step depends only on the decision at
that step and on the preceding state�i�e�� there is no feedback�� then dynamic programming
can be applied� The Bellman optimum principle implies that each piece of the optimal
trajectory that includes the end point is also optimal� Thus one begins by optimizing the

nal decision at the transition from the last�but�one to the last step� Nowadays dynamic
programming is frequently applied to solving discrete problems of optimal control and
regulation �Gessner and Spremann� ����� Lerner and Rosenman� ������ Its advantage
compared to other� analytic methods is that its algorithm can be formulated as a program
suitable for digital computers� allowing fairly large problems to be tackled �Gessner and
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Wacker� ������ Bellman�s optimumprinciple can� however� also be expressed in di	erential
form and applied to an area of continuous functional optimization �Jacobson and Mayne�
������

The principle of stepwise optimization can be applied to problems of parameter opti�
mization� if the objective function is separable �Hadley� ������ that is� it must be express�
ible as a sum of partial objective functions in which just one or a very few variables appear
at a time� The number of steps �k� corresponds to the number of the partial functions� at
each step a decision is made only on the ��� variables in the partial objective� They are
also called control or decision variables� Subsidiary conditions �number m� in the form
of inequalities can be taken into account� The constraint functions� like the variables�
are allowed to take a 
nite number �b� of discrete values and are called state variables�
The recursion formula for the stepwise optimization will not be discussed here� Only the
number of required operations �N� in the calculation will be mentioned� which is of the
order

N � k bm��

For this reason the usefulness of dynamic programming is mainly restricted to the case
� � �� k � n� and m � �� Then at each of the n steps� just one control variable is
speci
ed with respect to one subsidiary condition� In the other limiting case where all
variables have to be determined at one step� the normal case of parameter optimization�
the process goes over to a grid method �complete enumeration� with a computational
requirement of order O�b�n�m��� Herein lies its capability for locating global optima� even
of complicatedmultimodal objective functions� However� it is only especially advantageous
if the structure of the objective function permits the enumeration to be limited to a small
part of the allowed region�

Digital computers are poorly suited to solving continuous problems because they can�
not operate directly with functions� Numerical integration procedures are possible� but
costly� Analogue computers are more suitable because they can directly imitate dynamic
processes� Compared to digital computers� however� they have a small numerical range
and low accuracy and are not so easily programmable� Thus sometimes digital and ana�
logue computers are coupled for certain tasks as so�called hybrid computers� With such
systems a set of di	erential equations can be tackled to the same extent as a problem
in functional optimization �Volz� ����� ������ The digital computer takes care of the
iteration control� while on the analogue computer the di	erentiation and integration op�
erations are carried out according to the parameters supplied by the digital computer�
Korn and Korn ������� and Bekey and Karplus ������� describe the operations involved
in trajectory optimization and the solution of di	erential equations by means of hybrid
computers� The fact that random methods are often used for such problems has to do
with the computational imprecision of the analogue part� with which deterministic pro�
cesses usually fail to cope� If requirements for accuracy are very high� however� purely
digital computation has to take over� with the consequent greater cost in computation
time�
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����� Direct �Numerical� Versus
Indirect �Analytic� Optimization

The classi
cation of mathematical methods of optimization into direct and indirect pro�
cedures is attributed to Edelbaum ������� Especially if one has a computer model of a
system� with which one can perform simulation experiments� the search for a certain set
of exogenous parameters to generate excellent results asks for robust direct optimization
methods� Direct or numerical methods are those that approach the solution in a step�
wise manner �iteratively�� at each step �hopefully� improving the value of the objective
function� If this cannot be guaranteed� a trial and error process results�

An indirect or analytic procedure attempts to reach the optimum in a single �calcula�
tion� step� without tests or trials� It is based on the analysis of the special properties of
the objective function at the position of the extremum� In the simplest case� parameter
optimization without constraints� one proceeds on the assumption that the tangent plane
at the optimum is horizontal� i�e�� the 
rst partial derivatives of the objective function
exist and vanish in x��

�F

�xi

�����
x�x�

� � � for all i � ����n �����

This system of equations can be expressed with the so�called Nabla operator �r� as a
single vector equation for the stationary point x��

rF �x�� � � �����

Equation ����� or ����� transforms the original optimization problem into a problem of
solving a set of� perhaps non�linear� simultaneous equations� If F �x� or one or more of its
derivatives are not continuous� there may be extrema that do not satisfy the otherwise
necessary conditions� On the other hand not every point in IRn�the n�dimensional space
of real variables� that satis
es conditions ����� need be a minimum� it could also be a
maximum or a saddle point� Equation ����� is referred to as a necessary condition for the
existence of a local minimum�

To give su�cient conditions requires further processes of di	erentiation� In fact�
di	erentiations must be carried out until the determinant of the matrix of the second
or higher partial derivatives at the point x� is non�zero� Things remain simple in the case
of only one variable� when it is required that the lowest order non�vanishing derivative is
positive and of even order� Then and only then is there a minimum� If the derivative is
negative� x� represents a maximum� A saddle point exists if the order is odd�

For n variables� at least the n

� �n �� second partial derivatives

��F �x�

�xi �xj
� for all i� j � ����n

must exist at the point x�� The determinant of the Hessian matrix r�F �x�� must be
positive� as well as the further n � � principle subdeterminants of this matrix� While
MacLaurin had already completely formulated the su�cient conditions for the existence
of minima and maxima of one parameter functions in ����� the corresponding theory
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for functions of several variables was only completed nearly ��� years later by Schee	er
������ and Stolz ������ �see also Hancock� ������

Su�cient conditions can only be applied to check a solution that was obtained from
the necessary conditions� The analytic path thus always leads the original optimization
problem back to the problem of solving a system of simultaneous equations �Equation
������� If the objective function is of second order� one is dealing with a linear system�
which can be solved with the aid of one of the usual methods of linear algebra� Even if non�
iterative procedures are used� such as the Gaussian elimination algorithm or the matrix
decomposition method of Cholesky� this cannot be done with a single�step calculation�
Rather the number of operations grows asO�n���With fast digital computers it is certainly
a routine matter to solve systems of equations with even thousands of variables� however�
the inevitable rounding errors mean that complete accuracy is never achieved �Broyden�
������

One can normally be satis
ed with a su�ciently good approximation� Here relaxation
methods� which are iterative� show themselves to be comparable or superior� It depends in
detail on the structure of the coe�cient matrix� Starting from an initial approximation�
the error as measured by the residues of the equations is minimized� Relaxation procedures
are therefore basically optimization methods but of a special kind� since the value of the
objective function at the optimum is known beforehand� This a priori information can be
exploited to make savings in the computations� as can the fact that each component of
the residue vector must individually go to zero �e�g�� Traub� ����� Wilkinson and Reinsch�
����� Hestenes� ����� Hestenes and Stein� ������

Objective functions having terms or members of higher than second order lead to
non�linear equations as the necessary conditions for the existence of extrema� In this
case� the stepwise approach to the null position is essential� e�g�� with the interpolation
method� which was conceived in its original form by Newton �Chap� �� Sect� �����������
The equations are linearized about the current approximation point� Linear relations
for the correcting terms are then obtained� In this way a complete system of n linear
equations has to be solved at each step of the iteration� Occasionally a more convenient
approach is to search for the minimum of the function

!F �x� �
nX

i��

	
�F

�xi


�

with the help of a direct optimization method� Besides the fact that !F �x� goes to zero� not
only at the sought for minimum of F �x� but also at its maxima and saddle points� it can
sometimes yield non�zero minima of no interest for the solution of the original problem�
Thus it is often preferable not to proceed via the conditions of Equation ����� but to
minimize F �x� directly� Only in special cases do indirect methods lead to faster� more
elegant solutions than direct methods� Such is� for example� the case if the necessary
existence condition for minima with one variable leads to an algebraic equation� and
sectioning algorithms like the computational scheme of Horner can be used� or if objective
functions are in the form of so�called posynomes� for which Du�n� Peterson� and Zener
������ devised geometric programming� an entirely indirect method�
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Subsidiary conditions� or constraints� complicate matters� In rare cases equality con�
straints can be expressed as equations in one variable� that can be eliminated from the
objective function� or constraints in the form of inequalities can be made super�uous
by a transformation of the variables� Otherwise there are the methods of bounded vari�
ation and Lagrange multipliers� in addition to penalty functions and the procedures of
mathematical programming�

The situation is very similar for functional optimization� except that here the indirect
methods are still dominant even today� The variational calculus provides as conditions for
optima di	erential instead of ordinary equations�actually ordinary di	erential equations
�Euler�Lagrange� or partial di	erential equations �Hamilton�Jacobi�� In only a few cases
can such a system be solved in a straightforward way for the unknown functions� One
must usually resort again to the help of a computer� Whether it is advantageous to
use a digital or an analogue computer depends on the problem� It is a matter of speed
versus accuracy� A hybrid system often turns out to be especially useful� If� however� the
solution cannot be found by a purely analytic route� why not choose from the start the
direct procedure also for functional optimization� In fact with the increasing complexity
of practical problems in numerical optimization� this 
eld is becoming more important� as
illustrated by the work of Daniel ������� who takes over methods without derivatives from
parameter optimization and applies them to the optimization of functionals� An important
point in this is the discretization or parameterization of the originally continuous problem�
which can be achieved in at least two ways�

� By approximation of the desired functions using a sum of suitable known functions or
polynomials� so that only the coe�cients of these remain to be determined �Sirisena�
�����

� By approximation of the desired functions using step functions or sides of polygons�
so that only heights and positions of the connecting points remain to be determined

Recasting a functional into a parameter optimization problem has the great advantage
that a digital computer can be used straightaway to 
nd the solution numerically� The
disadvantage that the result only represents a suboptimum is often not serious in prac�
tice� because the assumed values of parameters of the process are themselves not exactly
known �Dixon� ����a�� The experimentally determined numbers are prone to errors or
to statistical uncertainties� In any case� large and complicated functional optimization
problems cannot be completely solved by the indirect route�

The direct procedure can either start directly with the functional to be minimized� if
the integration over the substituted function can be carried out �Rayleigh�Ritz method��
or with the necessary conditions� the di	erential equations� which specify the optimum� In
the latter case the integral is replaced by a 
nite sum of terms �Beveridge and Schechter�
������ In this situation gradient methods are readily applied �Kelley� ����� Klessig and
Polak� ������ The detailed way to proceed depends very much on the subsidiary conditions
or constraints of the problem�
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����� Constrained Versus Unconstrained Optimization

Special techniques have been developed for handling problems of optimization with con�
straints� In parameter optimization these are the methods of penalty functions and math�
ematical programming� In the 
rst case a modi
ed objective function is set up� which

� For the minimum problem takes the value F �x� �  � in the forbidden region�
but which remains unchanged in the allowed �feasible� region �barrier method� e�g��
used within the evolution strategies� see Chap� ��

� Only near the boundary inside the allowed region� yields values di	erent from F �x�
and thus keeps the search at a distance from the edge �partial penalty function� e�g��
used within Rosenbrock�s strategy� see Chap� �� Sect� ��������

� Di	ers from F �x� over the whole space spanned by the variables �global penalty
function�

This last is the most common way of treating constraints in the form of inequalities� The
main ideas here are due to Carroll ������ created response surface technique� and to Fiacco
and McCormick ������ ����� SUMT� sequential unconstrained minimization technique��

For the problem

F �x� � min

Gj�x� � � � for all j � ����m

Hk�x� � � � for all k � �����

the penalty function is of the form �with r� vj� wk � � � and Gj � ��

!F �x� � F �x�  r
mX
j��

vj
Gj�x�

 
�

r

�X
k��

wk "Hk�x�#
�

The coe�cients vj and wk are weighting factors for the individual constraints and r is a
free parameter� The optimum of !F �x� will depend on the choice of r� so it is necessary
to alter r in a stepwise way� The original extreme value problem is thereby solved by a
sequence of optimizations in which r is gradually reduced to zero� One can hope in this
way at least to 
nd good approximations for the required minimum problem within a

nite sequence of optimizations�

The choice of suitable values for r is not� however� easy� Fiacco ������ and Fiacco
and McCormick ������ ����� give some indications� and also suggest further possibilities
for penalty functions� These procedures are usually applied in conjunction with gradient
methods� The hemstitching method and the riding the constraints method of Roberts and
Lyvers ������ work by changing the chosen direction whenever a constraint is violated�
without using a modi
ed objective function� They orient themselves with respect to
the gradient of the objective and the derivatives of the constraint functions �Jacobian
matrix�� In hemstitching� there is always a return into the feasible region� while in riding
the constraints the search runs along the active constraint boundaries� The variables are
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reset into the allowed region by the complex method of M� J� Box ������ �a direct search
strategy� whenever explicit bounds are crossed� Implicit constraints on the other hand
are treated as barriers �see Chap� �� Sect� ���������

The methods of mathematical programming� both linear and non�linear� treat the
constraints as the main aspect of the problem� They were specially evolved for operations
research �M�uller�Merbach� ����� and assume that all variables must always be positive�
Such non�negativity conditions allow special solution procedures to be developed� The
simplest models of economic processes are linear� There are often no better ones available�
For this purpose Dantzig ������ developed the simplex method of linear programming �see
also Krelle and K�unzi� ����� Hadley� ����� Weber� ������

The linear constraints� together with the condition on the signs of the variables� span
the feasible region in the form of a polygon �for n � �� or a polyhedron� sometimes called
simplex� Since the objective function is also linear� except in special cases� the desired
extremummust lie in a corner of the polyhedron� It is therefore su�cient just to examine
the corners� The simplex method of Dantzig does this in a particularly economic way� since
only those corners are considered in which the objective function has progressively better
values� It can even be thought of as a gradient method along the edges of the polyhedron�
It can be applied in a straightforward way to many hundreds� even thousands� of variables
and constraints� For very large problems� which may have a particular structure� special
methods have also been developed �K�unzi and Tan� ����� K�unzi� ������ Into this category
come the revised and the dual simplex methods� the multiphase and duplex methods� and
decomposition algorithms� An unpleasant property of linear programs is that sometimes
just small changes of the coe�cients in the objective function or the constraints can cause
a big alteration in the solution� To reveal such dependencies� methods of parametric linear
programming and sensitivity analysis have been developed �Dinkelbach� ������

Most strategies of non�linear programming resemble the simplex method or use it
as a subprogram �Abadie� ������ This is the case in particular for the techniques of
quadratic programming� which are conceived for quadratic objective functions and linear
constraints� The theory of non�linear programming is based on the optimality conditions
developed by Kuhn and Tucker ������� an extension of the theory of maxima and min�
ima to problems with constraints in the form of inequalities� These can be expressed
geometrically as follows� at the optimum �in a corner of the allowed region� the gradi�
ent of the objective function lies within the cone formed by the gradients of the active
constraints� To start with� this is only a necessary condition� It becomes su�cient under
certain assumptions concerning the structure of the objective and constraint functions�
For minimum problems� the objective function and the feasible region must be convex�
that is the constraints must be concave� Such a problem is also called a convex program�
Finally the Kuhn�Tucker theorem transforms a convex program into an equivalent saddle
point problem �Arrow and Hurwicz� ������ just as the Lagrange multiplier method does
for constraints in the form of equalities� A complete theory of equality constraints is due
to Apostol �������

Non�linear programming is therefore only applicable to convex optimization� in which�
to be precise� one must distinguish at least seven types of convexity �Ponstein� ������ In
addition� all the functions are usually required to be continuously di	erentiable� with an
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analytic speci
cation of their partial derivatives� There is an extensive literature on this
subject� of which the books by Arrow� Hurwicz� and Uzawa ������� Zoutendijk ������� Va�
jda ������� K�unzi� Krelle� and Oettli ������� K�unzi� Tzschach� and Zehnder ������ ������
K�unzi and Krelle ������� Zangwill ������� Suchowitzki and Awdejewa ������� Mangasar�
ian ������� Stoer and Witzgall ������� Whittle ������� Luenberger ������� and Varga
������ are but a small sample� Kappler ������ considers some of the procedures from the
point of view of gradient methods� K�unzi and Oettli ������ give a survey of the more
extended procedures together with an extensive bibliography� FORTRAN programs are
to be found in McMillan ������� Kuester and Mize ������� and Land and Powell �������

Of special importance in control theory are optimization problems in which the con�
straints are partly speci
ed as di	erential equations� They are also called non�holonomous
constraints� Pontrjagin et al� ������ have given necessary conditions for the existence of
optima in these problems� Their trick was to distinguish between the free control func�
tions to be determined and the local or state functions which are bound by constraints�
Although the theory has given a strong foothold to the analytic treatment of optimal
control processes� it must be regarded as a case of good luck if a practical problem can
be made to yield an exact solution in this way� One must usually resort in the end to
numerical approximation methods in order to obtain the desired optimum �e�g�� Balakr�
ishnan and Neustadt� ����� ����� Rosen� ����� Leitmann� ����� Kopp� ����� Mufti� �����
Tabak� ����� Canon� Cullum� and Polak� ����� Tolle� ����� Unbehauen� ����� Boltjanski�
����� Luenberger� ����� Polak� ������

��� Other Special Cases

According to the type of variables there are still other special areas of mathematical
optimization� In parameter optimization for example the variables can sometimes be
restricted to discrete or integer values� The extreme case is if a parameter may only
take two distinct values� zero and unity� Mixed variable types can also appear in the
same problem� hence the terms discrete� integer� binary �or zero�one�� and mixed�integer
programming� Most of the solution procedures that have been worked out deal with linear
integer problems �e�g�� those proposed by Gomory� Balas� and Beale�� An important
class of methods� the branch and bound methods� is described for example by Weinberg
������� They are classed together with dynamic programming as decision tree strategies�
For the general non�linear case� a last resort can be to try out all possibilities� This
kind of optimization is referred to as complete enumeration� Since the cost of such a
procedure is usually prohibitive� heuristic approaches are also tried� with which usable�
not necessarily optimal� solutions can be found �Weinberg and Zehnder� ������ More
clever ways of proceeding in special cases� for example by applying non�integer techniques
of linear and non�linear programming� can be found in Korbut and Finkelstein �������
Greenberg ������� Plane and McMillan ������� Burkard ������� Hu ������� and Gar
nkel
and Nemhauser ������ ������

By stochastic programming is meant the solution of problems with objective functions�
and sometimes also constraints� that are subject to statistical perturbations �Faber� ������
It is simplest if such problems can be reduced to deterministic ones� for example by working
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with expectation values� However� there are some problems in which the probability
distributions signi
cantly in�uence the optimal solution� Operational methods at 
rst
only existed for special cases such as� for example� warehouse problems �Beckmann� ������
Their numbers as well as the 
elds of application are growing steadily �Hammer� �����
Ermoliev and Wets� ����� Ermakov� ������ In general� one has to make a clear distinction
between deterministic solution methods for more or less noisy or stochastic situations
and stochastic methods for deterministic but di�cult situations like multimodal or fractal
topologies� Here we refer to the former� in Chapter � we will do so for the latter� especially
under the aspect of global optimization�

In a rather new branch within the mathematical programming 
eld� called non�smooth
or non�di�erentiable optimization� more or less classical gradient�type methods for 
nd�
ing solutions still persist �e�g�� Balinski and Wolfe� ����� Lemarechal and Mi$in� �����
Nurminski� ����� Kiwiel� ������

For successively approaching the zero or extremumof a function if the measured values
are subject to uncertainties� a familiar strategy is that of stochastic approximation �Wasan�
������ The original concept is due to Robbins and Monro ������� Kiefer and Wolfowitz
������ have adapted it for problems in which the maximum of a unimodal regression
function is sought� Blum �����a� has proved that the method is certain to converge� It
distinguishes between test or trial steps and work steps� With one variable� starting at the
point x�k�� the value of the objective function is obtained at the two positions x�k� � c�k��
The slope is then calculated as

y�k� �
F �x�k�  c�k��� F �x�k� � c�k��

�c�k�

A work step follows from the recursion formula �for minimum searches�

x�k��� � x�k� � �a�k�y�k�

The choice of the positive sequences c�k� and a�k� is important for convergence of the
process� These should satisfy the relations

lim
k��

c�k� � �

�X
k��

a�k� � �
�X
k��

a�k�c�k� 	 �
�X
k��

	
a�k�

c�k�


�

	 �

One chooses for example the sequences

a�k� �
a���

k
� a��� � �

c�k� �
c���

�
p
k
� c��� � � � k � �
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This means that the work step length goes to zero very much faster than the test step
length� in order to compensate for the growing in�uence of the perturbations�

Blum �����b� and Dvoretzky ������ describe how to apply this process to multidi�
mensional problems� The increment in the objective function� hence an approximation to
the gradient vector� is obtained from n  � observations� Sacks ������ uses �n trial steps�
The stochastic approximation can thus be regarded� in a sense� as a particular gradient
method�

Yet other basic strategies have been proposed� these adopt only the choice of step
lengths from the stochastic approximation� while the directions are governed by other
criteria� Thomas and Wilde ������ for example� combine the stochastic approximation
with the relaxation method of Southwell ������ ������ Kushner ������ and Schmitt ������
even take random directions into consideration� All the proofs of convergence of the
stochastic approximation assume unimodal objective functions� A further disadvantage
is that stability against perturbations is bought at a very high cost� especially if the
number of variables is large� How many steps are required to achieve a given accuracy
can only be stated if the probability density distribution of the stochastic perturbations
is known� Many authors have tried to devise methods in which the basic procedure can
be accelerated� e�g�� Kesten ������� who only reduces the step lengths after a change
in direction of the search� or Odell ������� who makes the lengths of the work steps
dependent on measured values of the objective function� Other attempts are directed
towards reducing the e	ect of the perturbations �Venter� ����� Fabian� ������ for example
by making only the direction and not the size of the gradients determine the step lengths�
Bertram ������ describes various examples of applications� More of such work is that of
Krasulina ������ and Engelhardt �������

In this introduction many classes of possible or practically occurring optimization
problems and methods have been sketched brie�y� but the coverage is far from complete�
No mention has been made� for example� of broken rational programming� nor of graphical
methods of solution� In operations research especially �Henn and K�unzi� ����� there are
many special techniques for solving transport� allocation� routing� queuing� and warehouse
problems� such as network planning and other graph theoretical methods� This excursion
into the vast realm of optimization problems was undertaken because some of the algo�
rithms to be studied in more depth in what follows� especially the random methods of
Chapter �� owe their origin and nomenclature to other 
elds� It should also be seen to
what extent methods of direct parameter optimization permeate the other branches of
the subject� and how they are related to each other� An overall scheme of how the various
branches are interrelated can be found in Saaty �������

If there are two or more objectives at the same time and occasion� and especially
if these are not con�ict�free� single solution points in the decision variable space can
no longer give the full answer to an optimization question� not even in the otherwise
simplest situation� How to look for the whole subset of e�cient� non�dominated� or Pareto�
optimal solutions can be found under keywords like vector optimization� polyoptimization
ormultiple criteria decision making �MCDM� �e�g�� Bell� Keeney� and Rai	a� ����� Hwang
and Masud� ����� Peschel� ����� Grauer� Lewandowski� and Wierzbicki� ����� Steuer�
������ Game theory comes into play when several decision makers have access to di	erent
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parts of the decision variable set only �e�g�� Luce and Rai	a� ����� Maynard Smith� �����
Axelrod� ����� Sigmund� ������ No consideration is given here to these special 
elds�
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Chapter �

Hill climbing Strategies

In this chapter some of the direct� mathematical parameter optimization methods will
be treated in more detail for static� non�discrete� non�stochastic� mostly unconstrained
functions� They come under the general heading of hill climbing strategies because their
manner of searching for a maximum corresponds closely to the intuitive way a sightless
climber might feel his way from a valley up to the highest peak of a mountain� For
minimum problems the sense of the displacements is simply reversed� otherwise uphill or
ascent and downhill or descent methods �Bach� ����� are identical� Whereas methods of
mathematical programming are dominant in operations research and the special methods
of functional optimization in control theory� the hill climbing strategies are most frequently
applied in engineering design� Analytic methods often prove unsuitable in this 
eld

� Because the assumptions are not satis
ed under which necessary conditions for
extrema can be stated �e�g�� continuity of the objective function and its derivatives�

� Because there are di�culties in carrying out the necessary di	erentiations

� Because a solution of the equations describing the conditions does not always lead
to the desired optimum �it can be a local minimum� maximum� or saddle point�

� Because the equations describing the conditions� in general a system of simultaneous
non�linear equations� are not immediately soluble

To what extent hill climbing strategies take care of these particular characteristics
depends on the individual method� Very thorough presentations covering some topics can
be found in Wilde ������� Rosenbrock and Storey ������� Wilde and Beightler �������
Kowalik and Osborne ������� Box� Davies� and Swann ������� Pierre ������� Pun �������
Converse ������� Cooper and Steinberg ������� Ho	mann and Hofmann ������� Beveridge
and Schechter ������� Aoki ������� Zahradnik ������� Fox ������� C%ea ������� Daniel
������� Himmelblau �����b�� Dixon �����a�� Jacoby� Kowalik and Pizzo ������� Stark and
Nicholls ������� Brent ������� Gottfried and Weisman ������� Vanderplaats ������� and
Papageorgiou ������� More variations or theoretical and numerical studies of older meth�
ods can be found as individual publications in a wide variety of journals� or in the volumes
of collected articles such as Graves and Wolfe ������� Blakemore and Davis ������� Lavi

��
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and Vogl ������� Klerer and Korn ������� Abadie ������ ������ Fletcher �����a�� Rosen�
Mangasarian� and Ritter ������� Geo	rion ������� Murray �����a�� Lootsma �����a��
Szeg�o ������� and Sebastian and Tammer �������

Formulated as a minimum problem without constraints� the task can be stated as
follows�

min
x
fF �x� j x 	 IRng �����

The column vector x� �at the extreme position� is required

x� �

�
����
x��
x��
���
x�n

�
����� � �x��� x��� � � � � x�n�T

and the associated extreme value F � � F �x�� of the objective function F �x�� in this case
the minimum� The expression x 	 IRn means that the variables are allowed to take all
real values� x can thus be represented by any point in an n�dimensional Euclidean space
IRn� Di	erent types of minima are distinguished� strong and weak� local and global�

For a local minimum the following relationship holds�

F �x�� � F �x� �����

for

� � kx� x�k �
vuut nX

i��

�xi � x�i �� � 


and

x 	 IRn

This means that in the neighborhood of x� de
ned by the size of 
 there is no vector
x for which F �x� is smaller than F �x��� If the equality sign in Equation ����� only
applies when x � x�� the minimum is called strong� otherwise it is weak� An objective
function that only displays one minimum �or maximum� is referred to as unimodal� In
many cases� however� F �x� has several local minima �and maxima�� which may be of
di	erent heights� The smallest� absolute or global minimum �minimum minimorum� of a
multimodal objective function satis
es the stronger condition

F �x�� � F �x� � for all x 	 IRn �����

This is always the preferred object of the search�
If there are also constraints� in the form of inequalities

Gj�x� � � � for all j � ����m �����

or equalities

Hk�x� � � � for all k � ����� �����
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then IRn in Equations ����� to ����� must either be replaced by the hopefully non�empty
subset M 	 IRn to represent the feasible region in IRn de
ned by Equation ������ or by
IRn��� the subspace of lower dimensionality spanned by the variables that now depend
on each other according to Equation ������ If solutions at in
nity are excluded� then
the theorem of Weierstrass holds �see for example Rothe� ������ In a closed compact
region a � x � b every function which is continuous there has at least one �i�e�� an
absolute� minimum and maximum�� This can lie inside or on the boundary� In the case
of discontinuous functions� every point of discontinuity is also a potential candidate for
the position of an extremum�

��� One Dimensional Strategies

The search for a minimum is especially easy if the objective function only depends on one
variable�

F(x)

x

c d e f g hba

Figure ���	 Special points of a function of one variable

a� local maximum at the boundary
b� local minimum at a point of discontinuity of Fx�x�
c� saddle point� or point of in�ection
d�e� weak local maximum
f� local minimum
g� maximum �may be global� at a point of discontinuity of F �x�
h� global minimum at the boundary
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This problem would be of little practical interest� however� were it not for the fact that
many of the multidimensional strategies make use of one dimensional minimizations in
selected directions� referred to as line searches� Figure ��� shows some possible ways
minima and other special points can arise in the one dimensional case�

����� Simultaneous Methods

One possible way of discovering the minimum of a function with one parameter is to
determine the value of the objective function at a number of points and then to declare
the point with the smallest value the minimum� Since in principle all trials can be carried
out at the same time� this procedure is referred to as simultaneous optimization� How
closely the true minimum is approached depends on the choice of the number and location
of the trial points� The more trials are made� the more accurate the solution can be� One
will be concerned� however� to obtain a result at the lowest cost in time and computation
�or material�� The two requirements of high accuracy and lowest cost are contradictory�
thus an optimum compromise must be sought�

The e	ectiveness of a search method is judged by the size of the largest remaining
interval of uncertainty �in the least favorable case� relative to the position of the minimum
for a given number of trials �the so�called minimax concept� see Wilde� ����� Beamer and
Wilde� ������ Assuming that the points in the series of trials are so densely distributed
that several at a time are in the neighborhood of a local minimum� then the length of
the interval of uncertainty is the same as the distance between the two points in the
neighborhood of the smallest value of F �x�� The number of necessary trials can thus
get very large unless one has at least some idea of whereabouts the desired minimum
is situated� In practice one must limit investigation of the objective function to a 
nite
interval "a� b#� It is obvious� and it can be proved theoretically� that the optimal choice of
all simultaneous search methods is the one in which the trial points are evenly distributed
over the interval "a� b# �Boas� ����� ����a�d��

If N equidistant points are used� the interval of uncertainty is of length

�N �
�

N  �
�b� a�

and the e	ectiveness takes the value

� �
�

N  �

Put another way� To be sure of achieving an accuracy of 
 � �� the equidistant search
�also called lattice� grid� or tabulation method � requires N trials� where

��b� a�



� � 	 N � ��b� a�



� N integer �����

Apart from the requirements that the chosen interval "a� b# should contain the absolute
minimum being sought and that N should be big enough in relation to the wavyness�
of the objective function� no further conditions need to be ful
lled in order for the grid
method to succeed�
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Even more e	ective search schemes can be devised if the objective function is unimodal
in the interval "a� b#� Wilde and Beightler ������ describe a procedure� using evenly
distributed pairs of points� which is also referred to as a simultaneous dichotomous search�
The distance � between two points of a pair must be chosen to be su�ciently large that
their objective function values are di	erent� As � � � the dichotomous search with an
even number of trials �even block search� is the best� The number of trials required is

��b� a�



� � 	 N � ��b� a�



� � � N integer �����

This is one less than for equidistant searches with the same accuracy requirement� Such
a scheme is referred to as optimal in the sense of the ��minimax concept� Investigations
of arrangements of trials also for uneven numbers �odd block search�� with non�vanishing
�� can be found in Wilde ������ and Wilde and Beightler �������

The one dimensional search procedures dealt with so far� which strive to reduce the
interval of uncertainty� are called by Wilde ������ direct elimination procedures� As a sec�
ond category one can consider the various interpolation methods� These can be much
more e	ective� but only when the objective function F �x� satis
es certain smoothness�
conditions� or can be su�ciently well approximated in the interval under considera�
tion by a polynomial P �x�� In this case� instead of the minimum of F �x�� a zero of
Px�x� � dP �x��dx is determined� The number of points at which the objective function
must be investigated depends on the order of the chosen polynomial and on the type of
information at the points that determine it� Besides the values of the objective function
itself� consideration is given to its 
rst� second� and� less frequently� higher derivatives� In
general� no exact statements can be made regarding the quality of the approximation to
the desired minimum for a given number of trials� Details of the various methods of lo�
cating real zeros of rational functions of one variable� such as regula falsi� Lagrangian and
Newtonian interpolation� can be found in books on practical or numerical mathematics
under the heading of non�linear equations� e�g�� Booth ������� Faddejew and Faddejewa
������� Saaty and Bram ������� Traub ������� Zurm�uhl ������� Walsh ������� Ralston
and Wilf ������ ������ Householder ������� Ortega and Rheinboldt ������� and Brent
������� Although from a fundamental point of view interpolation methods represent indi�
rect optimization procedures� they are of interest here as line search strategies� especially
when they are applied iteratively and obtain information about derivatives from function
values�

����� Sequential Methods

If the trials for determining a minimum can be made sequentially� the intermediate results
retained at a given time can be used to locate the next trial of the sequence more favorably
than would be possible without this information� With the digital computers usually
available nowadays� which work in a serial way� one is actually obliged to execute all steps
one after the other�

Sequential methods� in which the solution is approached in a stepwise� or iterative�
manner� are advantageous here� The evaluation of the intermediate results and prediction
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of favorable conditions for the next trial presupposes a more or less precise internal model
of the objective function� the better the model corresponds to reality� the better will be
the results of the interpolation and extrapolation processes� The simplest assumption
is that the objective function is unimodal� which means that local minima also always
represent global minima� On this basis a number of sequential interval�dividing proce�
dures have been constructed �Sect� ��������� Iterative interpolation methods demand more
smoothness� of the objective function �Sect� ��������� In the former case it is necessary�
in the latter useful� to determine at the outset a suitable interval� "a���� b���#� in which the
desired extremum lies �Sect� ���������

������� Boxing in the Minimum

If there are no clues as to whereabouts the desired minimum might be situated� one can
start with two points x��� and x��� � x���  s and determine the objective function there�
If F �x���� 	 F �x���� one proceeds in the chosen direction keeping the same step length�

x�k��� � x�k�  s

until
F �x�k���� � F �x�k��

If� however� F �x���� � F �x����� one chooses the opposite direction�

x��� � x��� � s

and
x�k��� � x�k� � s � for k � �

similarly� until a step past the minimum is taken� one has thus determined the minimum
of the unimodal function to within an uncertainty interval of length � s �Beveridge and
Schechter� ������

In numerical optimization problems the values of the variables often run through
several powers of ��� or alternatively they must be precisely determined at many points�
In this case the boxing�in method with a very small 
xed step length is too costly� Box�
Davies� and Swann ������ therefore suggest starting with an initial step length s��� and
doubling it at each successful step� Their recursion formula is as follows�

x�k��� � x���  �k s���

It is applied as long as F �x�k���� � F �x�k�� holds� As soon as F �x�k���� � F �x�k��
is registered� however� b��� � x�k��� is set as the upper bound to the interval and the
starting point x��� is returned to� The lower bound a��� is found by a corresponding
process with negative step lengths going in the opposite direction� In this way a starting
interval "a���� b���# is obtained for the one dimensional search procedure to be described
below� It can happen� because of the convention for equality of two function values� that
the search for a bound to the interval does not end if the objective function reaches a
constant horizontal level� It is therefore useful to specify a maximum step length that
may not be exceeded�
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The boxing�in method has also been proposed occasionally as a one dimensional op�
timization strategy �Rosenbrock� ����� Berman� ����� in its own right� In order not to
waste too many trials far from the target when the accuracy requirement is very high� it
is useful to start with relatively large steps� Each time a loop ends with a failure the step
length is reduced by a factor less than ���� e�g�� ����� If the above rules for increasing
and reducing the step lengths are combined� a very �exible procedure is obtained� Dixon
�����a� calls it the success�failure routine� If a starting interval "a���� b���# is already at
hand� however� there are signi
cantly better strategies for successively reducing the size
of the interval�

������� Interval Division Methods

If an equidistant division method is applied repeatedly� the interval of uncertainty is
reduced at each step by the same factor � and thus for k steps by k� This exponential
progression is considerably stronger than the linear dependence of the value of  on the
number of trials per step� Thus as few simultaneous trials as possible would be used� A
comparison of two schemes� with two and three simultaneous trials� shows that except in
the 
rst loop� only two new objective function values must be obtained at a time in both
cases� since of three trial points in one step� one coincides with a point of the previous
step� The total number of trials required with sequential application of the equidistant
three point scheme is

�  
� log

�
b�a
�

�
log �

	 N � �  
� log

�
b�a
�

�
log �

� N odd �����

Even better results are provided by the sequential dichotomous search with one pair per
step� For the limiting case �� � one obtains

� log
�
b�a
�

�
log �

	 N � �  
� log

�
b�a
�

�
log �

� N even �����

Detailed investigations of the in�uence of � on various equidistant and dichotomous
search schemes can be found in Avriel and Wilde �����b�� and Beamer and Wilde �������
Of greater interest are the two purely sequential elimination methods described in the
following chapters� which only require a single objective function value per step� They
require that the objective function be unimodal� otherwise they only guarantee that a
local minimum or maximum will be found� Shubert ������ describes an interval dividing
procedure that is able to locate all local extrema� including the global optimum� To use
it� however� an upper bound to the slope of the function must be known� The method is
rather costly� especially with regard to the storage space required�

��������� Fibonacci Division� This interval division strategy was introduced by
Kiefer ������� It operates with a series due to Leonardo of Pisa� which bears his pseudonym
Fibonacci�

f� � f� � �
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fk � fk��  fk�� � for k � �
An initial interval "a���� b���# is required� containing the extremum together with a number
N � which represents the total number of intended interval divisions� If the general interval
is called "a�k�� b�k�#� the lengths

s�k� � t�k� �b�k� � a�k�� � �b�k��� � a�k����

are subtracted from its ends� with the reduction factor

t�k� �
fN�k��
fN�k

������

giving
c�k� � a�k�  s�k�

d�k� � b�k� � s�k�

The values of the objective function at c�k� and d�k� are compared and whichever sub�
interval contains the better �in a minimum search� lower� value is taken as de
ning the
interval for the next step�
If

F �d�k�� 	 F �c�k��

then
a�k��� � a�k�

and
b�k��� � c�k�

If
F �d�k�� � F �c�k��

then
a�k��� � d�k�

and
b�k��� � b�k�

A consequence of the Fibonacci series is that� except for the 
rst interval division� at
all of the following steps one of the two new points c�k��� and d�k��� is always already
known�
If

F �d�k�� 	 F �c�k��

then
c�k��� � d�k�

and if
F �d�k�� � F �c�k��

then
d�k��� � c�k�
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Step  k+1
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Step  k+2

Figure ���	 Interval division in the Fibonacci search

so that each time only one new value of the objective function needs to be obtained�
Figure ��� illustrates two steps of the procedure� The process is continued until k �

N � �� At the next division� because f� � � f�� d�k� and c�k� coincide� A further
interval reduction can only be achieved by slightly displacing one of the test points� The
displacement � must be at least big enough for the two objective function values to still
be distinguishable� Then the remaining interval after N trials is of length

�N �
�

fN
�b���� a����  �

As � � � the e	ectiveness tends to f��N � Johnson ������ and Kiefer ������ show
that this value is optimal in the sense of the ��minimax concept� according to which the
Fibonacci search is the best of all sequential interval division procedures� However� by
taking account of the � displacement� not only at the last but at all the steps� Oliver and
Wilde ������ give a recursion formula that for the same number of trials yields a slightly
smaller residual interval� Avriel and Wilde �����a� provide a proof of optimality� If one
has a priori information about the structure of the objective function it can be exploited
to advantage �Gal� ����� in order to reduce further the number of trials� Overholt �����a�
����� suggests that in general there is no a priori information available to 
x � suitably�
and it is therefore better to omit the 
nal division using a displacement rule and to choose
N one bigger from the start� In order to obtain the minimum with accuracy 
 � � one
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should choose N such that

fN �
b��� � a���



� fN��

Then the e	ectiveness of the procedure becomes

� �
�

fN��

and since �Lucas� �����

fN �
�p
�

�
	�  

p
�

�


N��

�
	
��p�
�


N��
�
� 
 �p

�

	
�  

p
�

�


N��

the number of trials is approximately

N 
 log b����a���
�

 log
p
�

log ��
p
	

�

� log
b��� � a���



������

Overholt ������ shows by means of numerical tests that the procedure must often be
terminated prematurely as F �d�k���� becomes equal to F �c�k����� for example because of
computing with a 
nite number of signi
cant 
gures� Further divisions of the interval of
uncertainty are then pointless�

For the boxing�in method of determining the initial interval one would 
x an initial
step length of about �� 
 and a maximum step length of about � ���
 
� so that for a ���bit
computer the number range of integers is not exceeded by the largest required Fibonacci
number� Finally� two further applications of the Fibonacci procedure may be mentioned�
By reversing the scheme� Wilde and Beightler ������ obtain a method of boxing in the
minimum� Kiefer ������ shows how to proceed if values of the objective function can
only be obtained at discrete� not necessarily equidistant� points� More about such lattice
search problems can be found in Wilde ������� and Beveridge and Schechter �������

��������� The Golden Section� It can sometimes be inconvenient to have to specify
in advance the number of interval divisions� In this case Kiefer ������ and Johnson ������
propose� instead of the reduction factor t�k�� which varies with the iteration number in
the Fibonacci search� a constant factor

t �
�

�  
p
�

 ����� � �positive root of� t�  t � �� ������

For large N � k� t�k� reduces to t� In addition� t is identical to the ratio of lengths a
to b� which is obtained by dividing a total length of a  b into two pieces such that the
smaller� a� has the same ratio to the larger� b� as the larger to the total� This harmonic
division �after Euclid� is also known as the golden section� which gave the procedure its
name �Wilde� ������ After N function calls the uncertainty interval is of length

�N � tN�� �b���� a����
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For the limiting case N � �� since
lim
N��

�tN�� fN� � ����

the number of trials compared to the � Fibonacci procedure is about ��& higher� Com�
pared to the Fibonacci search without � displacement� since

lim
N��

�
�

�
tN�� fN��

�

 ����

the number of trials is about �& lower� It should further be noted that� when using the
Fibonacci method on digital computers� the Fibonacci numbers must 
rst be generated�
or a su�cient number of them must be provided and stored� The number of trials needed
for a sequential golden section is

N �

�
���
log b����a���

�

log t

�
���� � � log

b��� � a���



������

Other properties of the iteration sequence� including the criterion for termination at
equal function values� are the same as those of the method of interval division according
to Fibonacci numbers� Further details can be found� for example� in Avriel and Wilde
������� Complete programs for the interval division procedures have been published by
Pike and Pixner ������� and Overholt �����b�c� �see also Boothroyd� ����� Pike� Hill� and
James� ����� Overholt� ����a��

������� Interpolation Methods

In many cases one is dealing with a continuous function� the minimum of which is to
be determined� If� in addition to the value of the objective function� its slope can be
speci
ed everywhere� many methods can be derived that may converge faster than the
optimal elimination methods� One of the oldest schemes is based on the procedure named
after Bolzano for determining the zeros of a function� Assuming that one has two points
at which the slopes of the objective function have opposite signs� one bisects the interval
between them and determines the slope at the midpoint� This replaces the interval end
point� which has a slope of the same sign� The procedure can then be repeated iteratively�
At each trial the interval is halved� If the slope has to be calculated from the di	erence of
two objective function values� the bisection or midpoint strategy becomes the sequential
dichotomous search� Avriel and Wilde �����b� propose� as a variant of the Bolzano search�
evaluating the slope at two points in the interval so as to increase the reduction factor�
They show that their diblock strategy is slightly superior to the dichotomous search�

If derivatives of the objective function are available� or at least if it can be assumed that
these exist� i�e�� the function F �x� is continuous and di	erentiable� far better strategies for
the minimum search can be devised� They determine analytically the minimum of a trial
function that coincides with the objective function� and possibly also its derivatives� at
selected argument values� One distinguishes linear� quadratic� and cubic models according
to the order of the trial polynomial� Polynomials of higher order are virtually never used�
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They require too much information about the function F �x�� Furthermore� it turns out
that in contrast to all the methods referred to so far such strategies do not always converge�
for reasons other than rounding error�

��������� Regula Falsi Iteration� Given two points a�k� and b�k�� with their function
values F �a�k�� and F �b�k��� the simplest approximation formula for a zero c�k� of F �x� is

c�k� � a�k� � F �a�k��
b�k� � a�k�

F �b�k��� F �a�k��

This technique� known as regula falsi or regula falsorum� predicts the position of the zero
correctly if F �x� depends linearly on x� For one dimensional minimization it can be
applied to 
nd a zero of Fx�x� � dF �x��dx�

c�k� � a�k� � Fx�a
�k��

b�k� � a�k�

Fx�b�k��� Fx�a�k��
������

The underlying model here is a second order polynomial with linear slope� If Fx�a�k��
and Fx�b�k�� have opposite sign� c�k� lies between a�k� and b�k�� If Fx�c�k�� �� �� the
procedure can be continued iteratively by using the reduced interval "a�k���� b�k���# �
"a�k�� c�k�# if Fx�c�k�� and Fx�b�k�� have the same sign� or using "a�k���� b�k���# � "c�k�� b�k�# if
Fx�c�k�� and Fx�a�k�� have the same sign� If Fx�a�k�� and Fx�b�k�� have the same sign� c�k�

must lie outside "a�k�� b�k�#� If Fx�c�k�� has the same sign again� c�k� replaces the argument
value at which jFxj is greatest� This extrapolation is also called the secant method� If
Fx�c�k�� has the opposite sign� one can continue using regula falsi to interpolate iteratively�
As a termination criterion one can apply Fx�c�k�� � � or jFx�c�k��j � 
� 
 � �� A
minimum can only be found reliably in this way if the starting point of the search lies in
its neighborhood� Otherwise the iteration sequence can also converge to a maximum� at
which� of course� the slope also goes to zero if Fx�x� is continuous�

Whereas in the Bolzano interval bisection method only the sign of the function whose
zero is sought needs to be known at the argument values� the regula falsi method also
makes use of the magnitude of the function� This extra information should enable it to
converge more rapidly� As Ostrowski ������ and Jarratt ������ ����� show� for example�
this is only the case if the function corresponds closely enough to the assumed model�
The simpler bisection method is better� even optimal �as a zero method in the minimax
sense�� if the function has opposite signs at the two starting points� is not linear and not
convex� In this case the linear interpolation sometimes converges very slowly� According to
Stanton ������� a cubic interpolation as a line search in the eccentric quadratic case often
yields even worse results� Dixon �����a� names two variants of the regula falsi recursion
formula� but it is not known whether they lead to better convergence� Fox ������ proposes
a combination of the Bolzano method with the linear interpolation� Dekker ������ �see
also Forsythe� ����� accredits this procedure with better than linear convergence� Even
greater reliability and speed is attributed to the algorithm of Brent ������� which follows
Dekker�s method by a quadratic interpolation process as soon as the latter promises to
be successful�
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It is inconvenient when dealing with minimization problems that the derivatives of
the function are required� If the slopes are obtained from function values by a di	erence
method� di�culties can arise from the 
nite accuracy of such a process� For this reason
Brent ������ combines regula falsi iteration with division according to the golden section�
Further variations can be found in Schmidt and Trinkaus ������� Dowell and Jarratt
������� King ������� and Anderson and Bj�orck �������

��������� Newton�Raphson Iteration� Newton�s interpolation formula for improv�
ing an approximate solution x�k� to the equation F �x� � � �see for example Madsen�
�����

x�k��� � x�k� � F �x�k��

Fx�x�k��

uses only one argument value� but requires the value of the derivative of the function
as well as the function itself� If F �x� is linear in x� the zero is correctly predicted here�
otherwise an improved approximation is obtained at best� and the process must be re�
peated� Like regula falsi� Newton�s recursion formula can also be applied to determining
Fx�x� � �� with of course the reservations already stated� The so�called Newton�Raphson
rule is then

x�k��� � x�k� � Fx�x�k��

Fxx�x�k��
������

If F �x� is not quadratic� the necessary number of iterations must be made until a termina�
tion criterion is satis
ed� Dixon �����a� for example uses the condition jx�k����x�k�j 	 
�
To set against the advantages that only one argument value is required� and� for quadratic
objective functions� one iteration is su�cient to 
nd a point where Fx�x� � �� there are
several disadvantages�

� If the derivatives Fx and Fxx are obtained approximately by numerical di	erentia�
tion� the e�ciency of the procedure is worsened not only by rounding errors but also
by inaccuracies in the approximation� This is especially true in the neighborhood
of the minimum being sought� since Fx becomes vanishingly small there�

� Minima� maxima� and saddle points are not distinguished� The starting point x���
must already be located as close as possible to the minimum being sought�

� If the objective function is of higher than second order� the Newton�Raphson it�
eration can diverge� The condition for convergence towards a minimum is that
Fxx�x� � � for all x�

��������� Lagrangian Interpolation� Whereas regula falsi and Newton�Raphson it�
eration attempt to approximate the minimum using information about the derivatives of
the objective function at the argument values and can therefore be classi
ed as indirect
optimization methods� in Lagrangian interpolation only values of the objective function
itself are required� In its general form the procedure consists of �tting a pth order polyno�
mial through p  � points �Zurm�uhl� ������ One usually uses three argument values and a
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parabola as the model function �quadratic interpolation�� Assuming that the three points
are a�k� 	 b�k� 	 c�k�� with the objective function values F �a�k��� F �b�k��� and F �c�k���
the trial parabola P �x� has a vanishing 
rst derivative at the point

d�k� �
�

�

"�b�k��� � �c�k���#F �a�k��  "�c�k��� � �a�k���#F �b�k��  "�a�k��� � �b�k���#F �c�k��
"b�k� � c�k�#F �a�k��  "c�k� � a�k�#F �b�k��  "a�k� � b�k�#F �c�k��

������
This point is a minimum only if the denominator is positive� Otherwise d�k� represents
a maximum or a saddle point� In the case of a minimum� d�k� is introduced as a new
argument value and one of the old ones is deleted�

a�k��� � a�k�

b�k��� � d�k�

c�k��� � b�k�

���
��

�
if a�k� 	 d�k� 	 b�k�

and F �d�k�� 	 F �b�k��

a�k��� � d�k�

b�k��� � b�k�

c�k��� � c�k�

���
��

�
if a�k� 	 d�k� 	 b�k�
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c�k��� � d�k�

���
��

�
if b�k� 	 d�k� 	 c�k�
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Figure ��� shows one of the possible cases�
It is useful to determine the ends of the interval a��� and c��� at the start of the one

dimensional search by a procedure such as one of those described in Section �������� The
third argument value is best positioned at the center of the interval� It can be seen from
the recursion formula �Equation ������� that only one value of the objective function needs
to be obtained at each iteration� at the current position of d�k�� The three points clearly
do not in general remain equidistant� When the interpolation formula �Equation �������
predicts a minimum that coincides to the desired accuracy 
 with one of the argument
values� the search can be terminated� As the result� one will select the smallest objective
function value from among the argument values at hand and the computed minimum�
There is little prospect of success if the minimum is predicted to lie outside the interval
"a�k�� c�k�#� at any rate when a bounding procedure of the type described in Section �������
has been applied initially� In this case too the procedure is best terminated� The same
holds if a negative denominator in Equation ������ indicates a maximum� or if a point
of in�ection is expected because the denominator vanishes� If the measured objective
function values are subject to error� for example in experimental optimization� special
precautions must be taken� Hotelling ������ treats this problem in detail�

How often the interpolation must be repeated until the minimumis su�ciently well ap�
proximated cannot be predicted in general� it depends on the level of agreement between
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Figure ���	 Lagrangian quadratic interpolation

the objective function and the trial function� In the most favorable case the objective
function is also quadratic� Then one iteration is su�cient� This is why it can be advan�
tageous to use an interpolation method rather than an interval division method such as
the optimal Fibonacci search� Dijkhuis ������ describes a variant of the basic procedure
in which four argument values are taken� The two inner ones and each of the outer ones
in turn are used for two separate quadratic interpolations� The weighted mean of the two
results yields a new iteration point� This procedure is claimed to increase the reliability
of the minimum search for non�quadratic objective functions�

��������� Hermitian Interpolation� If one chooses� instead of a parabola� a third
order polynomial as a test function� more information is needed to make it agree with the
objective function� Beveridge and Schechter ������ describe such a cubic interpolation
procedure� In place of four argument values and associated objective function values� two
points a�k� and b�k� are enough� if� in addition to the values of the objective function� values
of its slope� i�e�� the 
rst order di	erentials� are available� This Hermitian interpolation is
mainly used in conjunction with gradient or quasi�Newton methods� because in any case
they require the partial derivatives of the objective function� or they approximate them
using 
nite di	erence methods�

The interpolation formula is�

c�k� � a�k�  �b�k� � a�k��
w � Fx�a�k��� z

�w  Fx�b�k��� Fx�a�k��
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where

z �
� "F �a�k��� F �b�k��#

�a�k� � b�k��
� Fx�a

�k��� Fx�b
�k�� ������

and

w �  
q
z� � Fx�a�k��Fx�b�k��

Recursive exchange of the argument values takes place according to the sign of Fx�c
�k��

in a similar way to the Bolzano method� It should also be veri
ed here that a�k� and b�k�

always bound the minimum� Fletcher and Reeves ������ use Hermitian interpolation in
their conjugate gradient method as a subroutine to approximate a relative minimum in
speci
ed directions� They terminate the iteration as soon as ja�k� � b�k�j 	 
�

As in all interpolation procedures� the speed and reliability of convergence depend on
the degree of agreement between the model function and the objective function� Pearson
������� for example� reports that the Fibonacci search is superior to Hermitian interpo�
lation if the objective function is logarithmic or a polynomial of high order� Guilfoyle�
Johnson� and Wheatley ������ propose a combination of cubic interpolation and either
the Fibonacci search or the golden section�

��� Multidimensional Strategies

There have been frequent attempts to extend the basic ideas of one dimensional optimiza�
tion procedures to several dimensions� The equidistant grid strategy� also known in the
experimental 
eld as the method of factorial design� places an evenly meshed grid over
the space under consideration and evaluates the objective function at all the nodes�

If n is the dimension of the space under consideration and Ni �i � �� �� � � � � n� is the
number of discrete values that the variable xi can take� then the number of combinations
to be tested is given by the product

N �
nY

i��

Ni ������

If Ni � N� for all i � ����n� one obtains N � Nn
� � This exponential increase in the

number of trials and the computational requirements is what provoked Bellman�s now
famous curse of dimensions �see Wilde and Beightler� ������ On a traditional computer�
which works sequentially� the trials must all be carried out one after another� The compu�
tation time therefore increases as O�cn�� in which the constant c depends on the required
accuracy and the size of the interval to be investigated�

Proceeding sequentially brought considerable advantages in the one dimensional case
if it could only be assumed that the objective function was unimodal� Krolak and Cooper
������ �see also Krolak� ����� and Sugie ������ have given an extension to several di�
mensions of the Fibonacci search scheme� For n � �� two points are chosen on one of
the two coordinate axes within the given interval in the same way as for the usual one
dimensional Fibonacci search� The values of this variable are 
rst held constant while
two complete Fibonacci searches are made to 
nd the relative optima with respect to
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the second variable� Both end results are then used to reject one of the values of the

rst variable that were held constant� and to reduce the size of the interval with respect
to this parameter� By analogy� a three dimensional minimization consists of a recursive
sequence of two dimensional Fibonacci searches� If the number of function calls to reduce
the uncertainty interval "ai� bi# su�ciently with respect to the variable xi is Ni� then the
total number N also obeys Equation ������� The advantage compared to the grid method
is simply that Ni depends logarithmically on the ratio of initial interval size to accuracy
�see Equation �������� Aside from the fact that each variable must be suitably 
xed in
advance� and that the unimodality requirement of the objective function only guaran�
tees that local minima are approached� there is furthermore no guarantee that a desired
accuracy will be reached within a 
nite number of objective function calls �Kaupe� ������

Other elimination procedures have been extended in a similar way to the multivariable
case� such as� for example� the dichotomous search �Wilde� ����� and a sequential boxing�
in method �Berman� ������ In each case the e	ort rises exponentially with the number
of variables� Another elimination concept for the multidimensional case� the method of
contour tangents� is due to Wilde ������ �see also Beamer and Wilde� ������ It requires�
however� the determination of gradient vectors� Newman ������ indicates how to proceed
in the two dimensional case� and also for discrete values of the variables �lattice search��
He requires that F �x� be convex and unimodal� Then the cost should only increase
linearly with the number of variables� For n � �� however� no applications of the contour
tangent method are as yet known�

Transferring interpolation methods to the n�dimensional case means transforming the
original minimum problem into a series of problems� in the form of a set of equations to
be solved� As non�linear equations can only be solved iteratively� this procedure is limited
to the special case of linear interpolation with quadratic objective functions� Practical
algorithms based on the regula falsi iteration can be found in Schmidt and Schwetlick
������ and Schwetlick ������� The procedure is not widely used as a minimization method
�Schmidt and Vetters� ������ The slopes of the objective function that it requires are
implicitly calculated from function values� The secant method described by Wolfe �����b�
for solving a system of non�linear equations also works without derivatives of the functions�
From n  � current argument values� it extracts the required information about the
structure of the n equations�

Just as the transition from simultaneous to sequential one dimensional search meth�
ods reduces the e	ort required at the expense of global convergence� so each further
acceleration in the multidimensional case is bought by a reduction in reliability� High
convergence rates are achieved by gathering more information and interpreting it in the
form of a model of the objective function� If assumptions and reality agree� then this
procedure is successful� if they do not agree� then extrapolations lead to worse predictions
and possibly even to abandoning an optimization strategy� Figure ��� shows the contour
diagram of a smooth two parameter objective function�

All the strategies to be described assume a degree of smoothness in the objective
function� They do not converge with certainty to the global minimum but at best to one
of the local minima� or sometimes only to a saddle point�
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Various methods are distinguished according to the kind of information they need�
namely�

� Direct search methods� which only need objective function values F �x�

� Gradient methods� which also use the 
rst partial derivatives rF �x� �
rst order
strategies�

� Newton methods� which in addition make use of the second partial derivatives
r�F �x� �second order strategies�

The emphasis here will be placed on derivative�free strategies� that is on direct search
methods� and on such higher order procedures as glean their required information about
derivatives from a sequence of function values� The recursion scheme of most multidi�
mensional strategies is based on the formula�

x�k��� � x�k�  s�k� v�k� ������

They di	er from each other with regard to the choice of step length s�k� and search direction
v�k�� the former being a scalar and the latter a vector of unit length�

����� Direct Search Strategies

Direct search strategies do without constructing a model of the objective function� In�
stead� the directions� and to some extent also step lengths� are 
xed heuristically� or by
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a scheme of some sort� not always in an optimal way under the assumption of a speci
ed
internal model� Thus the risk is run of not being able to improve the objective function
value at each step� Failures must accordingly be planned for� if something can also be
learned� from them� This trial character of search strategies has earned them the name
of trial�and�error methods� The most important of them that are still in current use will
be presented in the following chapters� Their attraction lies not in theoretical proofs of
convergence and rates of convergence� but in their simplicity and the fact that they have
proved themselves in practice� In the case of convex or quadratic unimodal objective
functions� however� they are generally inferior to the 
rst and second order strategies to
be described later�

������� Coordinate Strategy

The oldest of multidimensional search procedures trades under a variety of names �e�g��
successive variation of the variables� relaxation� parallel axis search� univariate or uni�
variant search� one�variable�at�a�time method� axial iteration technique� cyclic coordinate
ascent method� alternating variable search� sectioning method� Gauss�Seidel strategy� and
manifests itself in a large number of variations�

The basic idea of the coordinate strategy� as it will be called here� comes from linear
algebra and was 
rst put into practice by Gauss and Seidel in the single step relaxation
method of solving systems of linear equations �see Ortega and Rocko	� ����� Ortega and
Rheinboldt� ����� VanNorton� ����� Schwarz� Rutishauser� and Stiefel� ������ As an
optimization strategy it is attributed to Southwell ������ ����� or Friedmann and Savage
������ �see also D�Esopo� ����� Zangwill� ����� Zadeh� ����� Schechter� ������

The parameters in the iteration formula ������ are varied in turn individually� i�e�� the
search directions are 
xed by the rule�

v�k� � e� � with � �

�
n � if k � p n � p integer
k �mod n� � otherwise

where e� is the unit vector whose components have the value zero for all i �� �� and unity
for i � �� In its simplest form the coordinate strategy uses a constant step length s�k��
Since� however� the direction to the minimum is unknown� both positive and negative
values of s�k� must be tried� In a 
rst and easy improvement on the basic procedure� a
successful step is followed by further steps in the same direction� until a worsening of the
objective function is noted� It is clear that the choice of step length strongly in�uences
the number of trials required on the one hand and the accuracy that can be achieved in
the approximation on the other�

One can avoid the problem of the choice of step length most e	ectively by using a line
search method each time to locate the relative optimum in the chosen direction� Besides
the interval division methods� the Fibonacci search and the golden section� Lagrangian
interpolation can also be used� since all these procedures work without knowledge of the
partial derivatives of the objective function� A further strategy for boxing in the minimum
must be added� in order to establish a suitable starting interval for each one dimensional
minimization�



�� Hill climbing Strategies

The algorithm can be described as follows�

Step �� �Initialization�
Establish a starting point x����� and choose an accuracy bound 
 � � for the
one dimensional search�
Set k � � and i � ��

Step �� �Boxing in the minimum�
Starting from x�k�i��� with an initial step length s � smin �e�g�� smin � �� 
��
box in the minimum in the direction �ei�
Double the step length at each successful trial� as long as s 	 smax

�e�g�� smax � � � ��
 
��
De
ne the interval limits a�k�i and b

�k�
i �

Step �� �Line search�

By varying xi within the interval "a
�k�
i � b

�k�
i # search for the relative minimum x�

with the required accuracy 
 �line search with an interval division procedure
or an iterative interpolation method��
F �x�� � min

s
fF �x�k�i���  s ei�g

Step �� �Check for improvement�
If F �x�� � F �x�k�i����� then set x�k�i� � x��
otherwise set x�k�i� � x�k�i����

Step �� �Inner loop over all coordinates�
If i 	 n� increase i i � and go to step ��

Step �� �Termination criterion� outer iteration loop�
Set x�k����� � x�k�n��
If all jx�k�����i � x

�k���
i j � � 
 for all i � ����n� then end the search�

otherwise increase k  k  �� set i � �� and go to step ��

Figure ��� shows a typical sequence of iteration points for n � � variables�
In theory the coordinate strategy always converges if F �x� has continuous partial

derivatives and the line searches are carried out exactly �Kowalik and Osborne� �����
Schechter� ����� Ortega and Rheinboldt� ������ Rapid convergence is only achieved�
however� if the contour surfaces F �x� � const� are approximately concentric surfaces of
a hypersphere� or� in the case of elliptic contours� if the principle axes almost coincide
with the coordinate axes�

If the signi
cant system parameters in�uence each other �non�separable objective func�
tion�� then the distances covered by each line search are small without the minimumbeing
within striking distance� This is especially true when the number of variables is large�
At discontinuities in the objective function it may happen that improvements in the ob�
jective function can only be made in directions that are not along a coordinate axis� In
this case the coordinate strategy fails� There is a similar outcome at steep valleys� of a
continuously di	erentiable function� i�e�� if the step lengths that would enable successful
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convergence are so small that the number of signi
cant 
gures to which data are handled
by the computer is insu�cient for the variables to be signi
cantly altered�

Numerical tests with the coordinate strategy show that an exact determination of the
relative minima is unnecessary� at least at distances far from the objective� It can even
happen that one inaccurate line search can make the next one particularly e	ective� This
phenomenon is exploited in the procedures known as under� or overrelaxation �Engeli�
Ginsburg� Rutishauser� and Stiefel� ����� Varga� ����� Schechter� ����� ����� Cryer�
������ Although the relative optimum is determined as before� either an increment is
added on in the same direction or an iteration point is de
ned on the route between the
start and 
nish of the one dimensional search� The choice of the under� or overrelaxation
factor requires assumptions about the structure of the problem� The necessary information
is available for the problem of solving systems of linear equations with a positive de
nite
matrix of coe�cients� but not for general optimization problems�

Further possible variations of the coordinate strategy are obtained if the sequence of
searches parallel to the axes is not made to follow the cyclic scheme� Southwell ������� for
example� always selects either the direction in which the slope of the objective function

Fxi�x� �
�F �x�

�xi

is maximum� or the direction in which the largest step can be taken� To evaluate the choice
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of direction� Synge ������ uses the ratio Fxi�Fxixi of 
rst to second partial derivatives at
the point x�k�� Whether or not the additional e	ort for this scheme is worthwhile depends
on the particular topology of the contour surface� Adding directions other than parallel
to the axes is also often found to accelerate the convergence �Pinsker and Tseitlin� �����
Elkin� ������

Its great simplicity has always made the coordinate strategy attractive� despite its
sometimes slow convergence� Rules for handling constraints�not counting here penalty
function methods�have been devised� for example� by Singer ������� Murata ������� and
Mugele ������ ����� ������ Singer�s maze method departs from the coordinate directions
as soon as a constraint is violated and progresses into the feasible region or along the
boundary� For this� however� the gradient of the active constraints must be known�
Mugele�s poor man	s optimizer� a discrete coordinate strategy without line searches� not
only handles active constraints� but can also cope with narrow valleys that do not run
parallel to the coordinate axes� In this case diagonal steps are permitted� Similar to this
strategy is the direct search method of Hooke and Jeeves� which because it has become
very widely used will be treated in detail in the following chapter�

������� Strategy of Hooke and Jeeves� Pattern Search

The direct pattern search of Hooke and Jeeves ������ was originally devised as an auto�
matic experimental strategy �see Hooke� ����� Hooke and VanNice� ������ It is nowadays
much more widely used as a numerical parameter optimization procedure�

The method by which the direct pattern search works is characterized by two types
of move� At each iteration there is an exploratory move� which represents a simpli
ed
Gauss�Seidel variation with one discrete step per coordinate direction� No line searches
are made� On the assumption that the line joining the 
rst and last points of the ex�
ploratory move represents an especially favorable direction� an extrapolation is made along
it �pattern move� before the variables are varied again individually� The extrapolations
do not necessarily lead to an improvement in the objective function value� The success of
the iteration is only checked after the following exploratory move� The length of the pat�
tern step is thereby increased each time� while the optimal search direction only changes
gradually� This pays o	 to most advantage where there are narrow valleys� An ALGOL
implementation of the strategy is due to Kaupe ������� It was improved by Bell and Pike
������� as well as by Smith ������ �see also DeVogelaere� ����� Tomlin and Smith� ������
In the 
rst case� the sequence of plus and minus exploratory steps in the coordinate di�
rections is modi
ed to suit the conditions at any instant� The second improvement aims
at permitting a retrospective scaling of the variables as the step lengths can be chosen
individually to be di	erent from each other�

The algorithm runs as follows�

Step �� �Initialization�
Choose a starting point x����� � x����n�� an accuracy bound 
 � �� and initial
step lengths s���i �� � for all i � ����n �e�g�� s���� � � if no more plausible
values are at hand��
Set k � � and i � ��
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Step �� �Exploratory move�

Construct x� � x�k�i���  s
�k�
i ei �discrete step in positive direction��

If F �x�� 	 F �x�k�i����� go to step � �successful 
rst trial��

otherwise replace x�  x� � � s
�k�
i ei �discrete step in negative direction��

If F �x�� 	 F �x�k�i����� go to step � �success��

otherwise replace x�  x�  s
�k�
i ei �back to original situation��

Step �� �Retention and switch to next coordinate�
Set x�k�i� � x��
If i 	 n� increase i i � and go to step ��

Step �� �Test for total failure in all directions�
If F �x�k�n�� � F �x�k����� set x�k����� � x�k��� and go to step ��

Step �� �Pattern move�
Set x�k����� � �x�k�n� � x�k���n� �extrapolation��

and s
�k���
i � s

�k�
i sign�x�k�n�i � x

�k���n�
i � for all i � ����n�

�This may change the sequence of positive and negative directions
in the next exploratory move��
Increase k  k  � and set i � ��
�Observe� There is no success control of the pattern move so far��

Step �� �Exploration after extrapolation�

Construct x� � x�k�i���  s
�k�
i ei�

If F �x�� 	 F �x�k�i����� go to step ��
otherwise replace x�  x� � � s�k�i ei�
If F �x�� 	 F �x�k�i����� go to step ��
otherwise replace x�  x�  s

�k�
i ei�

Step �� �Inner loop over coordinates�
Set x�k�i� � x��
If i 	 n� increase i  i  � and go to step ��

Step �� �Test for failure of pattern move�
If F �x�k�n�� � F �x�k���n�� �back to position before pattern move��

set x�k����� � x�k���n�� s�k���i � s
�k�
i for all i � ����n� and go to step ���

Step �� �After successful pattern move� retention and 
rst termination test�

If jx�k�n�i � x
�k���n�
i j � �

�
js�k�i j for all i � ����n�

set x�k����� � x�k���n� and go to step ��
otherwise go to step � �for another pattern move��

Step �� �Step size reduction and termination test�

If js�k�i j � 
 for all i � ����n� end the search with result x�k����

otherwise set s�k���i � �
� s

�k�
i for all i � ����n�
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Step ��� �Iteration loop�
Increase k  k  �� set i � �� and go to step ��

Figure ���� together with the following table� presents a possible sequence of iteration
points� From the starting point ���� a successful step ��� and ��� is taken in each coordinate
direction� Since the end point of this exploratory move is better than the starting point�
it serves as a basis for the 
rst extrapolation� This leads to ���� It is not checked here
whether or not any improvement over ��� has occurred� At the next exploratory move�
from ��� to ���� the objective function value can only be improved in one coordinate
direction� It is now checked whether the condition ��� is better than that of point ����
This is the case� The next extrapolation step� to ���� has a changed direction because
of the partial failure of the exploration� but maintains its increased length� Now it will
be assumed that� starting from ��� with the hitherto constant exploratory step length�
no success will be scored in any coordinate direction compared to ���� The comparison
with ��� shows that a reduction in the value of the objective function has nevertheless
occurred� Thus the next extrapolation to ���� remains the same as the previous one with
respect to direction and step length� The next exploratory move leads to a point �����
which although better than ���� is worse than ���� Now there is a return to ���� Only
after the exploration again has no success here� are the step lengths halved in order to
make further progress possible� The fact that at some points in this case the objective
function was tested several times is not typical for n � ��
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Figure ���	 Strategy of Hooke and Jeeves
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Numbering Iteration Direction Variable Comparison Step Remarks
index index values point lengths
k i x� x� s� s�

��� � � � � � � � starting point
��� � � � � ��� success
��� � � � �� ��� failure
��� � � � 	 ��� success
�
� � � 
 � � � �� extrapolation
��� � � � � �
���� success success
��� � � � � ��� failure
�	� � � � 	 ��� failure
��� � � �� � ���� � �� extrapolation

success
��� � � �� � ��� failure
���� � � � � ��� failure
���� � � �� � ��� failure
���� � � �� � ��� failure
���� � � �
 � � � �� extrapolation
��
� � � �� � ���� failure
���� � � �� � ������� success failure
���� � � �� �� ���� failure
��	� � � �� � ���� failure
��� 
 � �� � � � �� return
���� 
 � �� � ��� failure
���� 
 � � � ��� failure
���� 
 � �� � ��� failure
���� 
 � �� � ��� failure
��� � � �� � � � �� step lengths

halved
���� � � �� � ��� failure
���� � � � � ��� success
��
� � � � � ������� success success
���� � � � � � �� �� extrapolation

A proof of convergence of the direct search of Hooke and Jeeves has been derived by
C%ea ������� it is valid under the condition that the objective function F �x� is strictly
convex and continuously di	erentiable� The computational operations are very simple
and even in unforeseen circumstances cannot lead to invalid arithmetical manipulations
such as� for example� division by zero� A further advantage of the strategy is its small
storage requirement� It is of order O�n�� The selected pattern accelerates the search
in valleys� provided they are not sharply bent� The extrapolation steps follow� in an
approximate way� the gradient trajectory� However� the limitation of the trial steps to
coordinate directions can also lead to a premature termination of the search here� as in
the coordinate strategy�

Further variations on the method� which have not achieved such popularity� are due
to� among others� Wood ������ ����� ����� see also Weisman and Wood� ����� Weisman�
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Wood� and Rivlin� ������ Emery and O�Hagan ������ spider method�� Fend and Chandler
������ moment rosetta search�� Bandler and MacDonald ������ razor search� see also
Bandler� ����a�b�� Pierre ������ bunny�hop search�� Erlicki and Appelbaum ������� and
Houston and Hu	man ������� A more detailed enumeration of older methods can be
found in Lavi and Vogl ������� Some of these modi
cations allow constraints in the form
of inequalities to be taken into account directly� Similar to them is a program designed
by M� Schneider �see Drenick� ������ Aside from the fact that in order to use it one must
specify which of the variables enter the individual constraints� it does not appear to work
very e	ectively� Excessively long computation times and inaccurate results� especially
with many variables� made it seem reasonable to omit M� Schneider�s procedure from the
strategy comparison �see Chap� ��� The problem of how to take into account constraints in
a direct search has also been investigated by Klingman and Himmelblau ������ and Glass
and Cooper ������� The resulting methods� to a greater or lesser extent� transform the
original problem� They have nowadays been superseded by the general penalty function
methods� Automatic optimizators� for on�line optimization of chemical processes� which
once were well known under the names Opcon � Bernard and Sonderquist� ����� and
Optimat �Weiss� Archer� and Burt� ������ also apply modi
ed versions of the direct search
method� Another application is described by Sawaragi at al� �������

������� Strategy of Rosenbrock� Rotating Coordinates

Rosenbrock�s idea ������ was to remove the limitation on the number of search directions
in the coordinate strategy so that the search steps can move parallel to the axes of a
coordinate system that can rotate in the space IRn� One of the axes is set to point in
the direction that appears most favorable� For this purpose the experience of successes
and failures gathered in the course of the iterations is used in the manner of Hooke and
Jeeves� direct search� The remaining directions are 
xed normal to the 
rst and mutually
orthogonal�

To start with� the search directions comprise the unit vectors

v
���
i � ei � for all i � ����n

Starting from the point x������ a trial is made in each direction with the discrete initial
step lengths s

�����
i for all i � ����n� When a success is scored �including equality of the

objective function values�� the changed variable vector is retained and the step length is
multiplied by a positive factor  � �� for a failure� the vector of variables is left unchanged
and the step length is multiplied by a negative factor �� 	 � 	 �� Rosenbrock proposes
the choice  � � and � � ����� This process is repeated until at least one success
followed �not necessarily immediately� by a failure is registered in each direction� As a rule
several cycles must be run through� because if there is a failure in any particular direction
the opposite direction is not tested in the same cycle� Following this 
rst part of the search�
the coordinate axes are rotated� Rosenbrock uses for this the orthogonalization procedure
of Gram and Schmidt �see� for example� Birkho	 and MacLane� ����� Rutishauser� �����
Nake� ������ The recursion formulae are as follows�

v
�k���
i �

wi

kwik � for all i � ����n
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where

wi �

���
��

ai �

ai �
i��P
j��
�aTi v

�k���
j � v

�k���
j �

for i � �
for i � ����n

������

and

ai �
nX
j�i

d
�k�
j v

�k�
j � for all i � ����n

A scalar d�k�i represents the distance covered in direction v
�k�
i in the kth iteration�

Thus v�k���� points in the overall successful direction of the step k� It is expected that a
particularly large search step can be taken in this direction at the next iteration� The
requirement of waiting for at least one success in each direction has the e	ect that no
direction is lost� and the v

�k�
i always span the full n�dimensional Euclidean space� The

termination rule or convergence criterion is determined by the lengths of the vectors
a
�k�
� and a

�k�
� � Before each orthonormalization there is a test whether ka�k�� k 	 
 and

ka�k�� k � ��� ka�k�� k� When this condition is satis
ed in six consecutive iterations� the
search is ended� The second condition is designed to ensure that a premature termination
of the search does not occur just because the distances covered have become small� More
signi
cantly� the requirement is also that the main success direction changes su�ciently
rapidly� something that Rosenbrock regards as a sure sign of the proximity of a minimum�
As the strategy comparison will show �see Chap� ��� this requirement is often too strong�
It even hinders the ending of the procedure in many cases�

In his original publication Rosenbrock has already given detailed rules as to how
inequality constraints can be treated� His procedure for doing this can be viewed as
a partial penalty function method� since the objective function is only altered in the
neighborhood of the boundaries� Immediately after each variation of the variables� the
objective function value is tested� If the comparison is unfavorable� a failure is registered
as in the unconstrained case� For equality or an improvement� however� if the iteration
point lies near a boundary of the region� the success criterion changes� For example� for
constraints of the form Gj�x� � � for all j � ����m� the extended objective function
!F �x� takes the form �this is one of several suggestions of Rosenbrock��

!F �x� � F �x�  
mX
j��

�j�x� �fj � F �x��

in which

�j�x� �

���
��
� �
� � � � ��  � �� �
� �

if Gj�x� � �
if � 	 Gj�x� 	 �
if Gj�x� � �

������

and

� � �� �
�
Gj�x�

The auxiliary item fj is the value of the objective function belonging to the last success
of the search that did not fall in the region of the jth boundary� As a reasonable value for
the boundary zone one can take � � ����� �Rosenbrock sets � � ���� "bj�x�k��� aj�x�k��#
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for constraints of the form aj�x� � Gj�x� � bj�x�� this kind of double sided bounding is
not always given however�� The basis of the procedure is fully described in Rosenbrock
and Storey �������

Using the notations
xi object variables
si step sizes
vi direction components
di distances travelled
�i success'failure indications

the extended algorithm of the strategy runs as follows�

Step �� �Initialization�
Choose a starting point x����� such that Gj�x������ � � � � for all j � ����m�
Choose an accuracy parameter 
 � �
�Rosenbrock takes 
 � ����� � � ������
Set v���i � ei for all i � ����n�
Set k � � �outer loop counter��

� � � �inner loop counter��
If there are constraints �m � ���
set fj � F �x������ for all j � ����m�

Step �� �Initialization of step sizes� distances travelled� and indicators�

Set s
�k���
i � ����

d
�k�
i � �� and

�
�k�
i � �� for all i � ����n�

Set � � � and i � ��

Step �� �Trial step�

Construct x� � x�k�n�� i� ��  s
�k���
i v

�k�
i �

If F �x�� � F �x�k�n�� i� ���� go to step ��
otherwise

if m

�
� �� go to step �

�� �� set !F � F �x�� and j � ��

Step �� �Test of feasibility�

IfGj�x��

������
�����

� �� go to step �
� �� set fj � F �x�� and go to step ��
otherwise� replace !F  !F  �j�x�� �fj � !F � as Equation �������

If !F � F �x�k�n�� i� ���� go to step ��

Step �� �Constraints loop�
If j 	 m� increase j  j  � and go to step ��
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Step �� �Store the success and update the internal memory�

Set x�k�n�� i� � x�� s�k��� ��
i � � s

�k���
i � and replace d

�k�
i  d

�k�
i  s

�k���
i �

If �
�k�
i � � �� set ��k�i � ��

Go to step ��

Step �� �Internal memory update in case of failure�
Set x�k�n�� i� � x�k�n�� i� ���

s
�k�����
i � � �

�
s
�k���
i �

If �
�k�
i � �� set �

�k�
i � ��

Step �� �Main loop�

If ��k�j � � for all j � ����n� go to step ��
otherwise

if i

�
	 n� increase i i  �
� n� increase � �  � and set i � ��

Go to step ��

Step �� �Preparation for the orthogonalization and check for termination�

Set x�k����� � x�k�n�� i� � x�k���  
nP

j� �
d
�k�
j v

�k�
j �

Construct the vectors a
�k�
i �

nP
j� i

d
�k�
j v

�k�
j for all i � ����n

�a� is the total progress during the loop just 
nished��

If ka�k�� k 	 
 and �if n � ��ka�k�� k � ��� ka�k�� k� increase � �  ��
otherwise set � � ��
If � � �� end the search�

Step �� �Orthogonalization�
If n � ��
construct new direction vectors v�k���

i for i � ����n
according to the recursion formula �Equation ������� of the
Gram�Schmidt orthogonalization�
Increase k  k  � and go to step ��
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Numbering Iteration Test index' Variable Step Remarks
index iteration values lengths
k nl  i x� x� s� s�

��� � � � � � � starting point
��� � � � � � � success
��� � � � �� � � failure
��� � � � � � � failure
��� � � � � � �� success
��� � � �� � �� � failure
��� � � � � � �� failure
��� � � � � � � transformation

and orthogo�
nalization

��� � � ��� ��� � � success
��� � � ��� ��� � � success
��� � � ��� ��� � � success
���� � � ��� ���� � � failure
���� � � ���� ���� �� � failure
��� � � ��� ��� � � transformation

and orthogo�
nalization

In Figure ���� including the following table� a few iterations of the Rosenbrock strategy
for n � � are represented geometrically� At the starting point x����� the search directions
are the same as the unit vectors� After three runs through �� trials�� the trial steps in each
direction have led to a success followed by a failure� At the best condition thus attained�
��� at x����� � x������ new direction vectors v

���
� and v

���
� are generated� Five further trials

lead to the best point� ��� at x����� � x������ of the second iteration� at which a new choice
of directions is again made� The complete sequence of steps can be followed� if desired�
with the help of the accompanying table�

Numerical experiments show that within a few iterations the rotating coordinates
become oriented such that one of the axes points along the gradient direction� The
strategy thus allows sharp valleys in the topology of the objective function to be followed�
Like the method of Hooke and Jeeves� Rosenbrock�s procedure needs no information about
partial derivatives and uses no line search method for exact location of relative minima�
This makes it very robust� It has� however� one disadvantage compared to the direct
pattern search� The orthogonalization procedure of Gram and Schmidt is very costly�
It requires storage space of order O�n�� for the matrices A � faijg and V � fvijg�
and the number of computational operations even increases with O�n��� At least in
cases where the objective function call costs relatively little� the computation time for
the orthogonalization with many variables becomes highly signi
cant� Besides this� the
number of parameters is in any case limited by the high storage space requirement�

If there are constraints� care must be taken to ensure that the starting point is inside
the allowed region and su�ciently far from the boundaries� Examples of the application of
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Rosenbrock�s strategy can be found in Storey ������� and Storey and Rosenbrock �������
Among them is also a discretized functional optimization problem� For unconstrained
problems there exists the code of Machura and Mulawa ������� The Gram�Schmidt
orthogonalization has been programmed� for example� by Clayton �������

Lange�Nielsen and Lance ������ have proposed� on the basis of numerical experi�
ments� two improvements in the Rosenbrock strategy� The 
rst involves not setting con�
stant step lengths at the beginning of a cycle or after each orthogonalization� but rather
modifying them and simultaneously scaling them according to the successes and failures
during the preceding cycle� The second improvement concerns the termination criterion�
Rosenbrock�s original version is replaced by the simpler condition that� according to the
achievable computational accuracy� several consecutive trials yield the same value of the
objective function�

������� Strategy of Davies� Swann� and Campey 	DSC


A combination of the Rosenbrock idea of rotating coordinates with one dimensional search
methods is due to Swann ������� It has become known under the name Davies�Swann�
Campey �abbreviated DSC� strategy� The description of the procedure given by Box�
Davies� and Swann ������ di	ers somewhat from that in Swann� and so several versions
of the strategy have arisen in the subsequent literature� Preference is given here to the
original concept of Swann� which exhibits some features in common with the method of
conjugate directions of Smith ������ �see also Sect� ������� Starting from x������ a line

search is made in each of the unit directions v���i � ei for all i � ����n� This process is
followed by a one dimensional minimization in the direction of the overall success so far
achieved

v
���
n�� �

x���n� � x�����

kx���n� � x�����k
with the result x���n� ���

The orthogonalization follows this� e�g�� by the Gram�Schmidt method� If one of the
line searches was unsuccessful the new set of directions would no longer span the complete
parameter space� Therefore only those old direction vectors along which a prescribed
minimum distance has been moved are included in the orthogonalization process� The
other directions remain unchanged� The DSC method� however� places a further hurdle
before the coordinate rotation� If the distance covered in one iteration is smaller than
the step length used in the line search� the latter is reduced by a factor ��� and the next
iteration is carried out with the old set of directions�

After an orthogonalization� one of the new directions �the 
rst� coincides with that of
the �n ���th line search of the previous step� This can therefore also be interpreted as the

rst minimization in the new coordinate system� Only n more one dimensional searches
need be made to 
nish the iteration� As a termination criterion the DSC strategy uses
the length of the total vector between the starting point and end point of an iteration�
The search is ended when it is less than a prescribed accuracy bound�
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The algorithm runs as follows�

Step �� �Initialization�
Specify a starting point x����� and an initial step length s���

�the same for all directions��
De
ne an accuracy requirement 
 � ��
Choose as a 
rst set of directions v

���
i � ei for all i � ����n�

Set k � � and i � ��

Step �� �Line search�
Starting from x�k�i���� seek the relative minimum x�k�i�

in the direction v
�k�
i such that

F �x�k�i�� � F �x�k�i���  d
�k�
i v

�k�
i � � min

d
fF �x�k�i��� d v

�k�
i �g�

Step �� �Main loop�

If i

���
��

	 n� increase i i  �� and go to step �
� n� go to step �
� n  �� go to step ��

Step �� �Eventually one more line search�
Construct z � x�k�n� � x�k����
If kzk � �� set v�k�n�� � z � kzk � i � n  � � and go to step ��

otherwise set x�k�n��� � x�k�n�� d
�k�
n�� � � � and go to step ��

Step �� �Check appropriateness of step length�
If kx�k�n��� � x�k���k � s�k�� go to step ��

Step �� �Termination criterion�
Set s�k��� � ��� s�k��
If s�k��� � 
 end the search�
otherwise set x�k����� � x�k�n����
increase k  k  �� set i � �� and go to step ��

Step �� �Check appropriateness of orthogonalization�

Reorder the directions v
�k�
i and associated distances d

�k�
i such that

jd�k�i j
�

� 
 for all i � ����p�
� 
 for all i � p � ���n�

If p 	 �� thus always for n � �� go to step ��

Step �� �Orthogonalization�

Construct new direction vectors v�k���i for i � ����p by means of the
orthogonalization process of Gram and Schmidt �Equation ��������

Set s�k��� � s�k�� d
�k���
� � d

�k�
n���

and x�k����� � x�k�n�� x�k����� � x�k�n����
Increase k  k  �� set i � �� and go to step ��
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No geometric representation has been attempted here� since the 
ne deviations from
the Rosenbrock method would hardly be apparent on a simple diagram�

The line search procedure of the DSC method has been described in detail by Box�
Davies� and Swann ������� It boxes in the minimum in the chosen direction using three
equidistant points and then applies a single Lagrangian quadratic interpolation� The
authors state that� in their experience� this is more economical with regard to the number
of objective function calls than an exact line search with a sequence of interpolations�
The algorithm of the line search is�

Step �� �Initialization�
Specify a starting point x�� a step length s� and a direction v
�all given from the main program��

Step �� �Step forward�
Construct x � x�  s v�
If F �x� � F �x��� go to step ��

Step �� �Step backward�
Replace x  x � � s v and s  �s�
If F �x� � F �x��� go to step ��
otherwise �both 
rst trials without success� go to step ��

Step �� �Further steps�
Replace s  � s and set x� � x�
Construct x � x�  s v�
If F �x� � F �x��� repeat step ��

Step �� �Prepare interpolation�
Replace s  ��� s�
Construct x � x�  s v�
Of the four points just generated� x� � s� x�� x�  s� and x�  � s� reject
the one which is furthest from the point that has the smallest value of the
objective function�

Step �� �Interpolation�
De
ne the three available equidistant points x� 	 x� 	 x� and the associated
function values F�� F�� and F� �this can be done in the course of the trial steps
to box in the minimum�� Fit a trial parabola through the three points and
solve the necessary condition for its minimum� Because the argument values
are equidistant� Equation ������ for the Lagrangian quadratic interpolation
simpli
es to

x � x�  
s �F� � F��

� �F� � �F�  F��

If the denominator vanishes or if it turns out that F �x� � F�� then the line
search ends with the result x�� � x�� !F� � F��
otherwise with the result x�� � x and !F� � F �x��
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A numerical strategy comparison by M� J� Box ������ shows the method to be a very
e	ective optimization procedure� in general superior both to the Hooke and Jeeves and
the Rosenbrock methods� However� the tests only refer to smooth objective functions with
few variables� If the number of parameters is large� the costly orthogonalization process
makes its inconvenient presence felt also in the DSC strategy�

Several suggestions have been made to date as to how to simplify the Gram�Schmidt
procedure and to reduce its susceptibility to numerical rounding error �Rice� ����� Powell�
����a� Palmer� ����� Golub and Saunders� ����� Householder method��

Palmer replaces the conditions of Equation ������ by�

v
�k���
i �

���������������
��������������

v
�k�
i � if

nP
j��

d�j � �� otherwise

nP
j��

dj v
�k�
j �

s
nP

j��
d�j � for i � �

	
di��

nP
j�i

dj v
�k�
j � v

�k�
i��

nP
j�i

d�j



�

s
nP
j�i

d�j
nP

j�i��
d�j � for i � ����n

He shows that even if no success was obtained in one of the directions v
�k�
i � that is di � ��

the new vectors v
�k���
i for all i � ����n still span the complete parameter space� because

v
�k���
i�� is set equal to �v�k�i � Thus the algorithm does not need to be restricted to directions
for which di � 
� as happens in the algorithm with Gram�Schmidt orthogonalization�

The signi
cant advantage of the revised procedure lies in the fact that the number
of computational operations remains only of the order O�n��� The storage requirement
is also somewhat less since one n� n matrix as an intermediate storage area is omitted�
For problems with linear constraints �equalities and inequalities� Box� Davies� and Swann
������ recommend a modi
cation of the orthogonalization procedure that works in a
similar way to the method of projected gradients of Rosen ������ ����� �see also Davies�
������ Non�linear constraints �inequalities� can be handled with the created response
surface technique devised by Carroll ������� which is one of the penalty function methods�

Further publications on the DSC strategy� also with comparison tests� are those of
Swann ������� Davies and Swann ������� Davies ������� and Swann ������� Hoshino
������ observes that in a narrow valley the search causes zigzag movements� His remedy

for this is to add a further search� again in direction v
�k�
� � after each set of n line searches�

With the help of two examples� for n � � and n � �� he shows the accelerating e	ect of
this measure�

������� Simplex Strategy of Nelder and Mead

There are a group of methods called simplex strategies that work quite di	erently to
the direct search methods described so far� In spite of their common name they have
nothing to do with the simplex method of linear programming of Dantzig ������� The
idea �Spendley� Hext� and Himsworth� ����� originates in an attempt to reduce� as much
as possible� the number of simultaneous trials in the experimental identi
cation procedure
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of factorial design �see for example Davies� ������ The minimum number according to
Brooks and Mickey ������ is n  �� Thus instead of a single starting point� n  � vertices
are used� They are arranged so as to be equidistant from each other� for n � � in an
equilateral triangle� for n � � a tetrahedron� and in general a polyhedron� also referred to
as a simplex� The objective function is evaluated at all the vertices� The iteration rule is�
Replace the vertex with the largest objective function value by a new one situated at its
re
ection in the midpoint of the other n vertices� This rule aims to locate the new point
at an especially promising place� If one lands near a minimum� the newest vertex can
also be the worst� In this case the second worst vertex should be re�ected� If the edge
length of the polyhedron is not changed� the search eventually stagnates� The polyhedra
rotate about the vertex with the best objective function value� A closer approximation to
the optimum can only be achieved by halving the edge lengths of the simplex� Spendley�
Hext� and Himsworth suggest doing this whenever a vertex is common to more than
����n  ����n� consecutive polyhedra� Himsworth ������ holds that this strategy is
especially advantageous when the number of variables is large and the determination of
the objective function prone to error�

To this basic procedure� various modi
cations have been proposed by� among others�
Nelder and Mead ������� Box ������� Ward� Nag� and Dixon ������� and Dambrauskas
������ ������ Richardson and Kuester ������ have provided a complete program� The
most common version is that of Nelder and Mead� in which the main di	erence from the
basic procedure is that the size and shape of the simplex is modi
ed during the run to
suit the conditions at each stage�

The algorithm� with an extension by O�Neill ������� runs as follows�

Step �� �Initialization�

Choose a starting point x������ initial step lengths s
���
i for all i � ����n

�if no better scaling is known� s
���
i � ��� and an accuracy parameter 
 � �

�e�g�� 
 � ������ Set c � � and k � ��

Step �� �Establish the initial simplex�
x�k��� � x�k���  c s���� e� for all � � ����n�

Step �� �Determine worst and best points for the normal re�ection�
Determine the indices w �worst point� and b �best point� such that
F �x�k�w�� � max

�
fF �x�k���� � � � ����ng

F �x�k�b�� � min
�
fF �x�k���� � � � ����ng

Construct (x � �
n

nP
����� ��w

x�k��� and x� � � (x � x�k�w� �normal re�ection��

If F �x�� 	 F �x�k�b��� go to step ��

Step �� �Compare trial with other vertices�
Determine the number � for which F �x�� � F �x�k���� holds for all � � ����n�

If �

���
��

� �� set x�k���w� � x� and go to step �
� �� go to step �
� �� go to step ��
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Step �� �Expansion�
Construct x�� � �x� � (x�
If F �x��� 	 F �x�k�b��� set x�k���w� � x���
otherwise set x�k���w� � x��
Go to step ��

Step �� �Partial outside contraction�
Construct x�� � ��� �(x  x���
If F �x��� � F �x��� set x�k���w� � x�� and go to step ��
otherwise go to step ��

Step �� �Partial inside contraction�
Construct x�� � ��� �(x  x�k�w���
If F �x��� � F �x�k�w��� set x�k���w� � x�� and go to step ��

Step �� �Total contraction�
Construct
x�k����� � ��� �x�k�b�  x�k���� for all � � ����n�
Go to step ��

Step �� �Normal iteration loop�
Assign x�k����� � x�k��� for all � � ����n except � � w�

Step �� �Termination criterion�
Increase k  k  ��

If �
n

	
nP

���
F ��x�k���� � �

n��

�
nP

���
F �x�k����

��

	 
�� go to step ���

otherwise go to step ��

Step ��� �Restart test� note that index w points to the new vertex�
Test whether any vector
x � x�k�w�� ����� s���i ei for all i � ����n exists� such that F �x� 	 F �x�k�w���
If so� set x�k��� � x� c � ������ and go to step � �restart��
otherwise end the search with result x�k�w��

The criterion for ending the minimum search is based on testing whether the variance
of the objective function values at the vertices of the simplex is less than a prescribed
limit� A few hypothetical iterations of the procedure for two variables are shown in
Figure ��� including the following table� The sequence of re�ections� expansions� and
contractions is taken from the accompanying table� in which the simplex vertices are
numbered sequentially and sorted at each stage in order of their objective function values�
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(1) (2)

(3) (4)

(5)

(6)

(7)

(9)

(10)
(8)

(11)

(12)

(13)

(14)

(15)

(16)
(17)

Starting point

Vertex point

First and last simplex

Figure ���	 Simplex strategy of Nelder and Mead
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Iteration Simplex vertices
index worst best Remarks

� � � � start simplex
� � � re�ection
� � � expansion �successful�

� � � �
� � � re�ection

� � � �
� � � re�ection
� � � expansion �unsuccessful�

� � � �
� � � re�ection

� � � �
�� � � re�ection

� �� � partial outside contraction
� � �� �

�� � �� re�ection
�� �� � expansion �unsuccessful�

� �� � ��
�� � �� re�ection
�� � �� partial inside contraction

�� �� �� total contraction
� �� �� ��

The main di	erence between this program and the original strategy of Nelder and Mead
is that after a normal ending of the minimization there is an attempt to construct a new
starting simplex� To this end� small trial steps are taken in each coordinate direction�
If just one of these tests is successful� the search is started again but with a simplex
of considerably reduced edge lengths� This restart procedure recommends itself because�
especially for a large number of variables� the simplex tends to no longer span the complete
parameter space� i�e�� to collapse� without reaching the minimum�

For few variables the simplex method is known to be robust and reliable� but also to be
relatively costly� There are n � parameter vectors to be stored and the re�ection requires
a number of computational operations of order O�n��� According to Nelder and Mead� the
number of function calls increases approximately as O�n������ however� this empirical value
is based only on test results with up to �� variables� Parkinson and Hutchinson �����a�b�
describe a variant of the strategy in which the real storage requirement can be reduced
by about half �see also Spendley� ������ Masters and Drucker ������ recommend altering
the expansion or contraction factor after consecutive successes or failures respectively�

������� Complex Strategy of Box

M� J� Box ������ calls his modi
cation of the polyhedron strategy the complex method�
an abbreviation for constrained simplex� since he conceived it also for problems with
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inequality constraints� The starting point of the search does not need to lie in the feasible
region� For this case Box suggests locating an allowed point by minimizing the function

!F �x� � �
mX
j��

Gj�x� �j�x�

with

�j�x� �

�
� � if Gj�x� � �
� � otherwise

������

until
!F �x� � �

The two most important di	erences from the Nelder�Mead strategy are the use of more
vertices and the expansion of the polyhedron at each normal re�ection� Both measures
are intended to prevent the complex from eventually spanning only a subspace of reduced
dimensionality� especially at active constraints� If an allowed starting point is given or
has been found� it de
nes one of the n  � � N � �n vertices of the polyhedron� The
remaining vertex points are 
xed by a random process in which each vector inside the
closed region de
ned by the explicit constraints has an equal probability of selection� If an
implicit constraint is violated� the new point is displaced stepwise towards the midpoint
of the allowed vertices that have already been de
ned until it satis
es all the constraints�
Implicit constraints Gj�x� � � are dealt with similarly during the course of the minimum
search� If an explicit boundary is crossed� xi � ai� the o	ending variable is simply set
back in the allowed region to a value near the boundary�

The details of the algorithm are as follows�

Step �� �Initialization�
Choose a starting point x��� and a number of vertices N � n  � �e�g��
N � �n�� Number the constraints such that the 
rst j � m� each depend
only on one variable� x�j �Gj�x�j�� explicit form��
Test whether x��� satis
es all the constraints�
If not� then construct a substitute objective function according to Equation
�������
Set up the initial complex as follows�
x����� � x���

and x����� � x���  
nP

i��
zi ei for � � ����N �

where the zi are uniformly distributed random numbers from the range�
"ai� bi#� if constraints are given in the form ai � xi � bi�

otherwise
h
x
���
i � ��� s� x

���
i  ��� s #�where� e�g�� s � ��

If Gj�x������ 	 � for any j � m�� � � ��

replace x
�����
�j  �x

�����
�j � x

�����
�j �

If Gj�x������ 	 � for any j � m� � � ��

replace x�����  ��� "x�����  �
���

���P
���

x�����#�
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�If necessary repeat this process until Gj�x������ � � for all j � ����m��
Set k � ��

Step �� �Re�ection�
Determine the index w �worst vertex� such that
F �x�k�w�� � max

�
fF �x�k����� � � ����Ng�

Construct (x � �
N��

NP
���
� ��w

x�k���

and x� � (x  �(x � x�k�w�� �over�re�ection factor  � �����

Step �� �Check for constraints�
If m � �� go to step �� otherwise set j � ��
If m� � � � go to step ��

Step �� �Set vertex back into bounds for explicit constraints�
Obtain g � Gj�x�� � Gj�x��j��
If g � �� go to step ��
otherwise replace x��j  x��j  g  
 �backwards length 
 � �����
If Gj�x�� 	 �� replace x��j  x��j � � �g  
��

Step �� �Explicit constraints loop�
Increase j  j  ��

If

���
��

j � m�� go to step �
m� 	 j � m� go to step �
j � m� go to step ��

Step �� �Check implicit constraints�
If Gj�x�� � �� go to step ��
otherwise go to step �� unless the same constraint caused a failure 
ve times
in a row without its function value Gj�x�� being changed� In this case go to
step ��

Step �� �Implicit constraints loop�
If j 	 m� increase j  j  � and go to step ��

Step �� �Check for improvement�
If F �x�� 	 F �x�k���� for at least one � � ����N except � � w�

set x�k����� �

�
x�k���� for all � � ����N except � � w�
x�� for � � w�

increase k  k  � and go to step ��
otherwise go to step �� unless a failure occurred 
ve times in a row with no
change in the objective function value F �x��� In this case go to step ��

Step �� �Contraction�
Replace x�  ��� �(x  x���
Go to step ��
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Step �� �Termination�
Determine the index b �best vertex� such that
F �x�k�b�� � min

�
fF �x�k����� � � ����Ng�

End the search with the result x�k�b� and F �x�k�b���

Box himself reports that in numerical tests his complex strategy gives similar results
to the simplex method of Nelder and Mead� but both are inferior to the method of
Rosenbrock with regard to the number of objective function calls� He actually uses his
own modi
cation of the Rosenbrock method� Investigation of the e	ect of the number of
vertices of the complex and the expansion factor �in this case �n and ��� respectively�
lead him to the conclusion that neither value has a signi
cant e	ect on the e�ciency of
the strategy� For n � � he considers that a number of vertices N � �n is unnecessarily
high� especially when there are no constraints�

The convergence criterion appears very reliable� While Nelder and Mead require that
the standard deviation of all objective function values at the polyhedron vertices� referred
to its midpoint� must be less than a prescribed size� the complex search is only ended
when several consecutive values of the objective function are the same to computational
accuracy�

Because of the larger number of polyhedron vertices the complex method needs even
more storage space than the simplex strategy� The order of magnitude� O�n��� remains
the same� No investigations are known of the computational e	ort in the case of many
variables� Modi
cations of the strategy are due to Guin ������� Mitchell and Kaplan
������� and Dambrauskas ������ ������ Guin de
nes a contraction rule with which an
allowed point can be generated even if the allowed region is not convex� This is not always
the case in the original method because the midpoint to which the worst vertex is re�ected
is not tested for feasibility�

Mitchell 
nds that the initial con
guration of the complex in�uences the results ob�
tained� It is therefore better to place the vertices in a deterministic way rather than to
make a random choice� Dambrauskas combines the complex method with the step length
rule of the stochastic approximation� He requires that the step lengths or edge lengths of
the polyhedron go to zero in the limit of an in
nite number of iterations� while their sum
tends to in
nity� This measure may well increase the reliability of convergence� however�
it also increases the cost� Beveridge and Schechter ������ describe how the iteration rules
must be changed if the variables can take only discrete values� A practical application�
in which a process has to be optimized dynamically� is described by Tazaki� Shindo� and
Umeda ������� this is the original problem for which Spendley� Hext� and Himsworth
������ conceived their simplex EVOP �evolutionary operation� procedure�

Compared to other numerical optimization procedures the polyhedra strategies have
the disadvantage that in the closing phase� near the optimum� they converge rather slowly
and sometimes even stagnate� The direction of progress selected by the re�ection then
no longer coincides at all with the gradient direction� To remove this di�culty it has
been suggested that information about the topology of the objective function� as given by
function values at the vertices of the polyhedron� be exploited to carry out a quadratic
interpolation� Such surface �tting is familiar from the related methods of test planning and
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evaluation �lattice search� factorial design�� in which the task is to set up mathematical
models of physical or other processes� This territory is entered for example by G� E� P� Box
������� Box and Wilson ������� Box and Hunter ������� Box and Behnken ������� Box
and Draper ������ ������ Box et al� ������� and Beveridge and Schechter ������� It will
not be covered in any more detail here�

����� Gradient Strategies

The Gauss�Seidel strategy very straightforwardly uses only directions parallel to the co�
ordinate axes to successively improve the objective function value� All other direct search
methods strive to advance more rapidly by taking steps in other directions� To do so
they exploit the knowledge about the topology of the objective function gleaned from
the successes and failures of previous iterations� Directions are viewed as most promising
in which the objective function decreases rapidly �for minimization� or increases rapidly
�for maximization�� Southwell ������� for example� improves the relaxation by choosing
the coordinate directions� not cyclically� but in order of the size of the local gradient in
them� If the restriction of parallel axes is removed� the local best direction is given by
the �negative� gradient vector

rF �x� � �Fx��x�� Fx��x�� � � � � Fxn�x��
T

with

Fxi�x� �
�F

�xi
�x� � for all i � ����n

at the point x���� All hill climbing procedures that orient their choice of search directions
v��� according to the 
rst partial derivatives of the objective function are called gradient
strategies� They can be thought of as analogues of the total step procedure of Jacobi for
solving systems of linear equations �see Schwarz� Rutishauser� and Stiefel� ������

So great is the number of methods of this type which have been suggested or applied
up to the present� that merely to list them all would be di�cult� The reason lies in
the fact that the gradient represents a local property of a function� To follow the path
of the gradient exactly would mean determining in general a curved trajectory in the n�
dimensional space� This problem is only approximately soluble numerically and is more
di�cult than the original optimization problem� With the help of analogue computers
continuous gradient methods have actually been implemented �Bekey and McGhee� �����
Levine� ������ They consider the trajectory x�t� as a function of time and obtain it as
the solution of a system of 
rst order di	erential equations�

All the numerical variants of the gradient method di	er in the lengths of the discrete
steps and thereby also with regard to how exactly they follow the gradient trajectory�
The iteration rule is generally

x�k��� � x�k� � s�k�
rF �x�k��
krF �x�k��k

It assumes that the partial derivatives everywhere exist and are unique� If F �x� is con�
tinuously di	erentiable then the partial derivatives exist and F �x� is continuous�
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A distinction is sometimes drawn between short step methods� which evaluate the gra�
dients again after a small step in the direction rF �x�k�� �for maximization� or �rF �x�k��
�for minimization�� and their equivalent long step methods� Since for 
nite step lengths
s�k� it is not certain whether the new variable vector is really better than the old� after the
step the value of the objective function must be tested again� Working with small steps
increases the number of objective function calls and gradient evaluations� Besides F �x�� n
partial derivatives must be evaluated� Even if the slopes can be obtained analytically and
can be speci
ed as functions� there is no reason to suppose that the number of compu�
tational operations per function call is much less than for the objective function itself�
Except in special cases� the total cost increases roughly as the weighting factor �n  ��
and the number of objective function calls� This also holds if the partial derivatives are
approximated by di	erential quotients obtained by means of trial steps

Fxi�x� �
�F �x�

�xi
�

F �x � ei�� F �x�

�
 O���� � for all i � ����n

Additional di�culties arise here since for values of � that are too small the subtraction
is subject to rounding error� while for trial steps that are too large the neglect of terms
O���� leads to incorrect values� The choice of suitable deviations � requires special care
in all cases �Hildebrand� ����� Curtis and Reid� ������

Cauchy ������� Kantorovich ������ ������ Levenberg ������� and Curry ������ are the
originators of the gradient strategy� which started life as a method of solving equations
and systems of equations� It is 
rst referred to as an aid to solving variational problems
by Hadamard ������ and Courant ������� Whereas Cauchy works with 
xed step lengths
s�k�� Curry tries to determine the distance covered in the �not normalized� direction
v�k� � �rF �x�k�� so as to reach a relative minimum �see also Brown� ������ In principle�
any one of the one dimensional search methods of Section ��� can be called upon to 
nd
the optimal value for s�k��

F �x�k�  s�k� v�k�� � min
s
fF �x�k�  s v�k��g

This variant of the basic strategy could thus be called a longest step procedure� It is
better known however under the name optimum gradient method� or method of steepest
descent �for maximization� ascent�� Theoretical investigations of convergence and rate
of convergence of the method can be found� e�g�� in Akaike ������� Goldstein �������
Ostrowski ������� Forsythe ������� Elkin ������� Zangwill ������� and Wolfe ������ �����
������ Zangwill proves convergence based on the assumptions that the line searches are
exact and the objective function is continuously twice di	erentiable� Exactness of the one
dimensional minimization is not� however� a necessary assumption �Wolfe� ������ It is
signi
cant that one can only establish theoretically that a stationary point will be reached
�rF �x� � �� or approached �krF �x�k 	 
 � 
 � ��� The stationary point is a minimum�
only if F �x� is convex and three times di	erentiable �Akaike� ������ Zellnik� Sondak� and
Davis ������� however� show that saddle points are in practice an obstacle� only if the
search is started at one� or on a straight gradient trajectory passing through one� In other
cases numerical rounding errors ensure that the path to a saddle point is unstable�
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The gradient strategy� however� cannot distinguish global from local minima� The
optimum at which it aims depends only on the choice of the starting point for the search�
The only chance of 
nding absolute extrema is to start su�ciently often from various
initial values of the variables and to iterate each time until the convergence criterion is
satis
ed �Jacoby� Kowalik� and Pizzo� ������ The termination rules usually recommended
for gradient methods are that the absolute value of the vector

krF �x�k��k 	 
�� 
� � �
or the di	erence

F �x�k����� F �x�k�� 	 
�� 
� � �
vanishes or falls below a given limit�

The rate of convergence of the strategy of steepest descent depends on the structure
of the objective function� but is no better than 
rst order apart from exceptional cases
like contours that are concentric� spherically symmetric hypersurfaces �Forsythe� ������
In the general quadratic case

F �x� �
�

�
xT Ax xT b c ������

with elliptic contours� i�e�� positive de
nite matrix A� the convergence rate depends on the
ratio of smallest to greatest eigenvalue of A� or geometrically expressed� on the oblateness
of the ellipsoid� It can be extremely small �Curry� ����� Akaike� ����� Goldstein� �����
and is in principle no better than the coordinate strategy with line searches �Elkin� ������
In narrow valleys both procedures execute zigzag movements with very small changes in
the variable values in relation to the distance from the objective� The individual steps can
even become too small to e	ect any change in the objective function value if this is de
ned
with a 
nite number of decimal places� Then the search ends before reaching the desired
optimum� To obviate this di�culty� Booth ������ ����� has suggested only going ��& of
the way to the relative minimum in each line search �see also Stein� ����� Kantorovich�
����� Faddejew and Faddejewa� ������ In fact� one often obtains much better results with
this kind of underrelaxation� Even more advantageous is a modi
cation due to Forsythe
and Motzkin ������� It is based on the observation that the search movements in the
minimization of quadratic objective functions oscillate between two asymptotic directions
�Stiefel� ����� Forsythe� ������ Forsythe and Motzkin therefore from time to time include
a line search in the direction

v�k� � x�k� � x�k��� � for k � �
in order to accelerate the convergence� For n � � the gradient method is thereby greatly
improved� with many variables the e�ciency advantage is lost again� Similar proposals
for increasing the rate of convergence have been made by Baer ������� Humphrey and
Cottrell ������ ������ Witte and Holst ������� Schinzinger ������� and McCormick �������
The Partan �acronym for parallel tangents� methods of Buehler� Shah� and Kempthorne
������ ����� have attracted particular attention� One of these� continued gradient Partan�
alternates between gradient directions

v�k� � �rF �x�k�� � for k � � as well as k � �� odd
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and those derived from previous iteration points

v�k� � x�k� � x�k��� � for k � �� even �with x���� � x����

For quadratic functions the minimum is reached after at most �n � � line searches
�Shah� Buehler� and Kempthorne� ������ This desirable property of converging after a

nite number of iterations� that is also called quadratic convergence� is only shared by
strategies that apply conjugate gradients� of which the Partan methods can be regarded
as forerunners �Pierre� ����� Sorenson� ������

In the 
fties� simple gradient strategies were very popular� especially the method of
steepest descent� Today they are usually only to be found as components of program
packages together with other hill climbing methods� e�g�� in GROPE of Flood and Leon
������� in AID of Casey and Rustay ������� in AESOP of Hague and Glatt ������� and in
GOSPEL of Huelsman ������� McGhee ������ presents a detailed �ow diagram� Wass�
cher �����a�b� has published two ALGOL codings �see also Haubrich� ����� Wallack� �����
Varah� ����� Wasscher� ������ The partial derivatives are obtained numerically� A com�
prehensive bibliography by Leon �����b� names most of the older versions of strategies
and gives many examples of their application� Numerical comparison tests have been car�
ried out by Fletcher ������� Box ������� Leon �����a�� Colville ������ ������ and Kowalik
and Osborne ������� They show the superiority of 
rst �and second� order methods over
direct search strategies for objective functions with smooth topology� Gradient methods
for solving systems of di	erential equations are described for example by Talkin �������
For such problems� as well as for functional optimization problems� analogue and hy�
brid computers have often been applied �Rybashov� ����a�b� ����� Sydow� ����� Fogarty
and Howe� ����� ������ A literature survey on this subject has been compiled by Gilbert
������� For the treatment of variational problems see Kelley ������� Altman ������� Miele
������� Bryson and Ho ������� C%ea ������� Daniel ������� and Tolle �������

In the experimental 
eld� there are considerable di�culties in determining the partial
derivatives� Errors in the values of the objective function can cause the predicted direction
of steepest descent to lie almost perpendicular to the true gradient vector �Kowalik and
Osborne� ������ Box and Wilson ������ attempt to compensate for the perturbations
by repeating the trial steps or increasing their number above the necessary minimum of
�n  ��� With �n trials� for example� a complete factorial design can be constructed
�e�g�� Davies� ������ The slope in one direction is obtained by averaging the function
value di	erences over �n�� pairs of points �Lapidus et al�� ������ Another possibility is to
determine the coe�cients of a linear polynomial such that the sum of the squares of the
errors between measured and model function values at N � n  � points is a minimum�
The linear function then represents the tangent plane of the objective function at the point
under consideration� The cost of obtaining the gradients when there are many variables
is too great for practical application� and only justi
ed if the aim is rather to set up a
mathematical model of the system than simply to perform the optimization�

In the EVOP �acronym for evolutionary operation� scheme� G� E� P� Box ������ has
presented a practical simpli
cation of this gradient method� It actually counts as a direct
search strategy because it does not obtain the direction of the gradient but only one of a

nite number of especially good directions� Spendley� Hext� and Himsworth ������ have
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devised a variant of the procedure �see also Sections ������� and ��������� Lowe ������
has gathered together the various schemes of trial steps for the EVOP strategy� The
philosophy of the EVOP strategy is treated in detail by Box and Draper ������� Some
examples of applications are given by Kenworthy ������� The e�ciency of methods of
determining the gradient in the case of stochastic perturbations is dealt with by Mlynski
�����a�b� ����a�b�� Sergiyevskiy and Ter�Saakov ������� and others�

������� Strategy of Powell� Conjugate Directions

The most important idea for overcoming the convergence di�culties of the gradient strat�
egy is due to Hestenes and Stiefel ������� and again comes from the 
eld of linear algebra
�see also Ginsburg� ����� Beckman� ������ It trades under the names conjugate directions
or conjugate gradients� The directions fvi � i � ����ng are said to be conjugate with
respect to a positive de
nite n � n matrix A if �Hestenes� �����

vTi Avj � � � for all i� j � ����n � i �� j

A further property of conjugate directions is their linear independence� i�e��

nX
i��

i vi � �

only holds if all the constants fi � i � ����ng are zero� IfA is replaced by the unit matrix�
A � I� then the vi are mutually orthogonal� With A � r�F �x� �Hessian matrix� the
minimum of a quadratic function is obtained exactly in n line searches in the directions
vi� This is a factor two better than the gradient Partan method� For general non�linear
problems the convergence rate cannot be speci
ed� As it is frequently assumed� however�
that many problems behave roughly quadratically near the optimum� it seems worthwhile
to use conjugate directions� The quadratic convergence of the search with conjugate
directions comes about because second order properties of the objective function are
taken into account� In this respect it is not� in fact� a 
rst order gradient method� but
a second order procedure� If all the n 
rst and n

� �n  �� second partial derivatives are
available� the conjugate directions can be generated in one process corresponding to the
Gram�Schmidt orthogonalization �Kowalik and Osborne� ������ It calls for expensive
matrix operations� Conjugate directions can� however� be constructed without knowledge
of the second derivatives� for example� from the changes in the gradient vector in the
course of the iterations �Fletcher and Reeves� ������ Because of this implicit exploitation
of second order properties� conjugate directions has been classi
ed as a gradient method�

The conjugate gradients method of Fletcher and Reeves consists of a sequence of line
searches with Hermitian interpolation �see Sect� ����������� As a 
rst search direction v���

at the starting point x���� the simple gradient direction

v��� � �rF �x����
is used� The recursion formula for the subsequent iterations is

v�k� � �k� v�k��� �rF �x�k�� � for all k � ����n ������
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with the correction factor

�k� �
rF �x�k��T rF �x�k��

rF �x�k����T rF �x�k����
For a quadratic objective function with a positive de
nite Hessian matrix� conjugate
directions are generated in this way and the minimum is found with n line searches� Since
at any time only the last direction needs to be stored� the storage requirement increases
linearly with the number of variables� This often signi
es a great advantage over other
strategies� In the general� non�linear� non�quadratic case more than n iterations must be
carried out� for which the method of Fletcher and Reeves must be modi
ed� Continued
application of the recursion formula �Equation ������� can lead to linear dependence of
the search directions� For this reason it seems necessary to forget from time to time the
accumulated information and to start afresh with the simple gradient direction �Crowder
and Wolfe� ������ Various suggestions have been made for the frequency of this restart
rule �Fletcher� ����a�� Absolute reliability of convergence in the general case is still not
guaranteed by this approach� If the Hessian matrix of second partial derivatives has
points of singularity� then the conjugate gradient strategy can fail� The exactness of
the line searches also has an important e	ect on the convergence rate �Kawamura and
Volz� ������ Polak ������ de
nes conditions under which the method of Fletcher and
Reeves achieves greater than linear convergence� Fletcher �����c� himself has written a
FORTRAN program�

Other conjugate gradient methods have been proposed by Powell ������� Polak and
Ribi)ere ������ �see also Klessig and Polak� ������ Hestenes ������� and Zoutendijk �������
Schley ������ has published a complete FORTRAN program� Conjugate directions are
also produced by the projected gradient methods �Myers� ����� Pearson� ����� Sorenson�
����� Cornick and Michel� ����� and the memory gradient methods �Miele and Cantrell�
����� ����� see also Cantrell� ����� Cragg and Levy� ����� Miele� ����� Miele� Huang�
and Heidemann� ����� Miele� Levy� and Cragg� ����� Miele� Tietze� and Levy� �����
Miele et al�� ������ Relevant theoretical investigations have been made by� among others�
Greenstadt �����a�� Daniel �����a� ����� ������ Huang ������� Beale ������� and Cohen
�������

Conjugate gradient methods are encountered especially frequently in the 
elds of
functional optimization and optimal control problems �Daniel� ����b� ����� Pagurek and
Woodside� ����� Nenonen and Pagurek� ����� Roberts and Davis� ����� Polyak� �����
Lasdon� ����� Kelley and Speyer� ����� Kelley and Myers� ����� Speyer et al�� �����
Kammerer and Nashed� ����� Szeg�o and Treccani� ����� Polak� ����� McCormick and
Ritter� ������ Variable metric strategies are also sometimes classi
ed as conjugate gra�
dient procedures� but more usually as quasi�Newton methods� For quadratic objective
functions they generate the same sequence of points as the Fletcher�Reeves strategy and
its modi
cations �Myers� ����� Huang� ������ In the non�quadratic case� however� the
search directions are di	erent� With the variable metric� but not with conjugate direc�
tions� Newton directions are approximated�

For many practical problems it is very di�cult if not impossible to specify the partial
derivatives as functions� The sensitivity of most conjugate gradient methods to imprecise
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speci
cation of the gradient directions makes it seem inadvisable to apply 
nite di	erence
methods to approximate the slopes of the objective function� This is taken into account
by some procedures that attempt to construct conjugate directions without knowledge
of the derivatives� The oldest of these was devised by Smith ������� On the basis of
numerical tests by Fletcher ������� however� the version of Powell ������ has proved to
be better� It will be brie�y presented here� It is arguable whether it should be counted
as a gradient strategy� Its intermediate position between direct search methods that only
use function values� and Newton methods that make use of second order properties of the
objective function �if only implicitly�� nevertheless makes it come close to this category�

The strategy of conjugate directions is based on the observation that a line through the
minimum of a quadratic objective function cuts all contours at the same angle� Powell�s
idea is then to construct such special directions by a sequence of line searches� The
unit vectors are taken as initial directions for the 
rst n line searches� After these� a
minimization is carried out in the direction of the overall result� Then the 
rst of the old
direction vectors is eliminated� the indices of the remainder are reduced by one and the
direction that was generated and used last is put in the place freed by the nth vector� As
shown by Powell� after n cycles� each of n  � line searches� a set of conjugate directions
is obtained provided the objective function is quadratic and the line searches are carried
out exactly�

Zangwill ������ indicates how this scheme might fail� If no success is obtained in
one of the search directions� i�e�� the distance covered becomes zero� then the direction
vectors are linearly dependent and no longer span the complete parameter space� The
same phenomenon can be provoked by computational inaccuracy� To prevent this� Pow�
ell has modi
ed the basic algorithm� First of all� he designs the scheme of exchanging
directions to be more �exible� actually by maximizing the determinant of the normalized
direction vectors� It can be shown that� assuming a quadratic objective function� it is
most favorable to eliminate the direction in which the largest distance was covered �see
Dixon� ����a�� Powell would also sometimes leave the set of directions unchanged� This
depends on how the value of the determinant would change under exchange of the search
directions� The objective function is here tested at the position given by doubling the
distance covered in the cycle just completed� Powell makes the termination of the search
depend on all variables having changed by less than ��� 
 within an iteration� where 

represents the required accuracy� Besides this 
rst convergence criterion� he o	ers a sec�
ond� stricter one� according to which the state reached at the end of the normal procedure
is slightly displaced and the minimization repeated until the termination conditions are
again ful
lled� This is followed by a line search in the direction of the di	erence vector
between the last two endpoints� The optimization is only 
nally ended when the result
agrees with those previously obtained to within the allowed deviation of ��� 
 for each
component�

The algorithm of Powell runs as follows�

Step �� �Initialization�
Specify a starting point x���

and accuracy requirements 
i � � for all i � ����n�
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Step �� �Specify 
rst set of directions�

Set v
���
i � ei for all i � ����n

and set k � ��

Step �� �Start outer loop�
Set x�k��� � x�k� and i � ��

Step �� �Line search�
Determine x�k�i� such that
F �x�k�i�� � min

s
fF �x�k�i��� s v

�k�
i �g�

Step �� �Inner loop�
If i 	 n� increase i  i  � and go to step ��

Step �� �First termination criterion�
Increase k  k  ��
Set x�k� � x�k���n� and v

�k�
i � v

�k���
i for all i � ����n�

If jx�k�i � x
�k���
i j 	 ��� 
i for all i � ����n� go to step ��

Step �� �First test for direction exchange�
Determine !F � F ��x�k� � x�k�����
If !F � F �x�k����� go to step ��

Step �� �Second test for direction exchange�
Determine the index �� � � � � n� such that
�� � max

i
f�i� i � ����ng� where �i � F �x�k���i���� � F �x�k���i���

If "F �x�k���� � �F �x�k��  !F # "F �x�k���� � F �x�k�� � ��#� �
� �

�
�� "F �x�k���� � !F #�� go to step ��

Step �� �New direction set and additional line search�

Eliminate v
�k�
� from the list of directions so that v�k�n becomes free�

Set v�k�n � x�k� � x�k��� � x�k���n� � x�k������
Determine a new x�k� such that
F �x�k�� � min

s
fF �x�k���n�  s v�k�n �g�

Go to step ��

Step �� �Second termination criterion�

Set y��� � x�k� and replace x���  y���  
nP

i��
�� 
 ei�

Repeat steps � to � until the convergence criterion �step �� is ful
lled again
and call the result y����
Determine y��� such that
F �y���� � min

s
fF �y��� s �y��� � y�����g�

If jy���i � y
���
i j 	 ��� 
i for all i � ����n

and jy���i � y
���
i j 	 ��� 
i for all i � ����n�

then end the search with the result y��� and F �y�����
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otherwise set x��� � y���� v
���
� � y���� y����

v
���
i � v

�k�
i for i � ����n� k � �� and go to step ��

Figure ��� illustrates a few iterations for a hypothetical two parameter function� Each
of the 
rst loops consists of n  � � � line searches and leads to the adoption of a new
search direction� If the objective function had been of second order� the minimum would
certainly have been found by the last line search of the second loop� In the third and
fourth loops it has been assumed that the trial steps have led to a decision not to exchange
directions� thus the old direction vectors� numbered v� and v� are retained� Further loops�
e�g�� according to step �� are omitted�

The quality of the line searches has a strong in�uence on the construction of the
conjugate directions� Powell uses a sequence of Lagrangian quadratic interpolations� It is
terminated as soon as the required accuracy is reached� For the 
rst minimization within
an iteration three points and Equation ������ are used� The argument values taken in
direction vi are� x �the starting point�� x  si vi� and either x  � si vi or x � si vi�
according to whether F �x  si vi� 	 F �x� or not� The step length si is given initially by
the associated accuracy 
i multiplied by a maximum factor and is later adjusted in the
course of the iterations�

In the direction constructed from the successful results of n one dimensional searches�
the argument values are called x�k���� x�k�n�� and �x�k�n� � x�k���� With three points �a 	
b 	 c� and associated objective function values �Fa� Fb� Fc�� not only the minimum but
also the second derivative of the quadratic trial function P �x� can be speci
ed� In the
notation of Section ���������� the formula for the curvature �i in the direction vi is

v
1

(0,0)

(0,1)

(0,2) (0,3)=(1,0)

(1,1) (1,2)

(1,3)=(2,0)(2,1)

(2,2)=(3,0)

(3,1)

(3,2)
(3,3)=(4,0)

v
2 v

3

v
4

v
5

Starting point

End points of line searches

Tests for direction exchange

End points of iterations

Figure ���	 Strategy of Powell� conjugate directions
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�i �
��

�s�
�P �x s vi�� � �� �b� c�Fa  �c� a�Fb  �a� b�Fc

�b� c� �c� a� �a� b�

Powell uses this quantity �i for all subsequent interpolations in the direction vi as a scale
for the second partial derivative of the objective function� He scales the directions vi�
which in his case are not normalized� by ��

p
�i� This allows the possibility of subsequently

carrying out a simpli
ed interpolation with only two argument values� x and x  si vi�
It is a worthwhile procedure� since each direction is used several times� The predicted
minimum� assuming that the second partial derivatives have value unity� is then

x� � x 
�
�

�
si � �

si
"F �x si vi�� F �x�#

�
vi

For the trial step lengths si� Powell uses the empirical recursion formula

s
�k�
i � ���

q
F �x�k��� F �x�k����

Because of the scaling� all the step lengths actually become the same� A more detailed
justi
cation can be found in Ho	mann and Hofmann �������

Contrary to most other optimization procedures� Powell�s strategy is available as a
precise algorithm in a tested code �Powell� ����f�� As Fletcher ������ reports� this method
of conjugate directions is superior for the case of a few variables both to the DSC method
and to a strategy of Smith� especially in the neighborhood of minima� For many variables�
however� the strict criterion for adopting a new direction more frequently causes the old
set of directions to be retained and the procedure then converges slowly� A problem which
had a singular Hessian matrix at the minimum made the DSC strategy look better� In
a later article� Fletcher �����a� de
nes a limit of n � �� to ��� above which the Powell
strategy should no longer be applied� This is con
rmed by the test results presented
in Chapter �� Zangwill ������ combines the basic idea of Powell with relaxation steps
in order to avoid linear dependence of the search directions� Some results of Rhead
������ lead to the conclusion that Powell�s improved concept is superior to Zangwill�s�
Brent ������ also presents a variant of the strategy without derivatives� derived from
Powell�s basic idea� which is designed to prevent the occurrence of linear dependence of
the search directions without endangering the quadratic convergence� After every n  �
iterations the set of directions is replaced by an orthogonal set of vectors� So as not to
lose all the information� however� the unit vectors are not chosen� For quadratic objective
functions the new directions remain conjugate to each other� This procedure requires
O�n�� computational operations to determine orthogonal eigenvectors� As� however� they
are only performed every O�n�� line searches� the extra cost is O�n� per function call and
is thus of the same order as the cost of evaluating the objective function itself� Results of
tests by Brent con
rm the usefulness of the strategy�

����� Newton Strategies

Newton strategies exploit the fact that� if a function can be di	erentiated any number of
times� its value at the point x�k��� can be represented by a series of terms constructed at
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another point x�k��

F �x�k���� � F �x�k��  hT rF �x�k��  �
�
hT r�F �x�k��h � � � ������

where
h � x�k��� � x�k�

In this Taylor series� as it is called� all the terms of higher than second order are
zero if F �x� is quadratic� Di	erentiating Equation ������ with respect to h and setting
the derivative equal to zero� one obtains a condition for the stationary points of a second
order function�

rF �x�k���� � rF �x�k��  r�F �x�k�� �x�k��� � x�k�� � �

or
x�k��� � x�k� � "r�F �x�k��#��rF �x�k�� ������

If F �x� is quadratic and r�F �x���� is positive�de
nite� Equation ������ yields the
solution x��� in a single step from any starting point x��� without needing a line search� If
Equation ������ is taken as the iteration rule in the general case it represents the extension
of the Newton�Raphson method to functions of several variables �Householder� ������ It
is also sometimes called a second order gradient method with the choice of direction and
step length �Crockett and Cherno	� �����

v�k� � �"r�F �x�k��#��rF �x�k��
s�k� � � ������

The real length of the iteration step is hidden in the non�normalized Newton direction
v�k�� Since no explicit value of the objective function is required� but only its derivatives�
the Newton�Raphson strategy is classi
ed as an indirect or analytic optimization method�
Its ability to predict the minimum of a quadratic function in a single calculation at 
rst
sight looks very attractive� This single step� however� requires a considerable e	ort� Apart
from the necessity of evaluating n 
rst and n

� �n �� second partial derivatives� the Hessian
matrix r�F �x�k�� must be inverted� This corresponds to the problem of solving a system
of linear equations

r�F �x�k�� � x�k� � �rF �x�k�� ������

for the unknown quantities�x�k�� All the standard methods of linear algebra� e�g�� Gaus�
sian elimination �Brown and Dennis� ����� Brown� ����� and the matrix decomposition
method of Cholesky �Wilkinson� ������ need O�n�� computational operations for this
�see Schwarz� Rutishauser� and Stiefel� ������ For the same cost� the strategies of conju�
gate directions and conjugate gradients can execute O�n� steps� Thus� in principle� the
Newton�Raphson iteration o	ers no advantage in the quadratic case�

If the objective function is not quadratic� then

� v��� does not in general point towards a minimum� The iteration rule �Equation
������� must be applied repeatedly�
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� s�k� � � may lead to a point with a worse value of the objective function� The
search diverges� e�g�� when r�F �x�k�� is not positive�de
nite�

� It can happen that r�F �x�k�� is singular or almost singular� The Hessian matrix
cannot be inverted�

Furthermore� it depends on the starting point x��� whether a minimum� a maximum�
or a saddle point is approached� or the whole iteration diverges� The strategy itself does
not distinguish the stationary points with regard to type�

If the method does converge� then the convergence is better than of linear order
�Goldstein� ������ Under certain� very strict conditions on the structure of the objective
function and its derivatives even second order convergence can be achieved �e�g�� Polak�
������ that is� the number of exact signi
cant 
gures in the approximation to the minimum
solution doubles from iteration to iteration� This phenomenon is exhibited in the solution
of some test problems� particularly in the neighborhood of the desired extremum�

All the variations of the basic procedure to be described are aimed at increasing the
reliability of the Newton iteration� without sacri
cing the high convergence rate� A dis�
tinction is made here between quasi�Newton strategies� which do not evaluate the Hessian
matrix explicitly� and modi�ed Newton methods� for which 
rst and second derivatives
must be provided at each point� The only strategy presently known which makes use of
higher than second order properties of the objective function is due to Biggs ������ ������

The simplest modi
cation of the Newton�Raphson scheme consists of determining the
step length s�k� by a line search in the Newton direction v�k� �Equation ������� until the
relative optimum is reached �e�g�� Dixon� ����a��

F �x�k�  s�k� v�k�� � min
s
fF �x�k�  s v�k��g ������

To save computational operations� the second partial derivatives can be redetermined
less frequently and used for several iterations� Care must always be taken� however� that
v�k� always points downhill�� i�e�� the angle between v�k� and �rF �x�k�� is less than
���� The Hessian matrix must also be positive�de
nite� If the eigenvalues of the matrix
are calculated when it is inverted� their signs show whether this condition is ful
lled�
If a negative eigenvalue appears� Pearson ������ suggests proceeding in the direction of
the associated eigenvector until a point is reached with positive�de
nite r�F �x�� Green�
stadt �����a� simply replaces negative eigenvalues by their absolute value and vanishing
eigenvalues by unity� Other proposals have been made to keep the Hessian matrix positive�
de
nite by addition of a correction matrix �Goldfeld� Quandt� and Trotter� ����� �����
Shanno� ����a� or to include simple gradient steps in the iteration scheme �Dixon and
Biggs� ������ Further modi
cations� which operate on the matrix inversion procedure
itself� have been suggested by Goldstein and Price ������� Fiacco and McCormick �������
and Matthews and Davies ������� A good survey has been given by Murray �����b��

Very few algorithms exist that determine the 
rst and second partial derivatives nu�
merically from trial step operations �Whitley� ����� see also Wasscher� ����c� Wegge�
������ The inevitable approximation errors too easily cancel out the advantages of the
Newton directions�
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������� DFP� Davidon�Fletcher�Powell Method
	Quasi�Newton Strategy� Variable Metric Strategy


Much greater interest has been shown for a group of second order gradient methods that
attempt to approximate the Hessian matrix and its inverse during the iterations only from

rst order data� This now extensive class of quasi�Newton strategies has grown out of
the work of Davidon ������� Fletcher and Powell ������ improved and translated it into
a practical procedure� The Davidon�Fletcher�Powell or DFP method and some variants
of it are also known as variable metric strategies� They are sometimes also regarded
as conjugate gradient methods� because in the quadratic case they generate conjugate
directions� For higher order objective functions this is no longer so� Whereas the variable
metric concept is to approximate Newton directions� this is not the case for conjugate
gradient methods� The basic recursion formula for the DFP method is

x�k��� � x�k�  s�k� v�k�

with
v�k� � �H�k�T rF �x�k��

H��� � I

and
H�k��� � H�k�  A�k�

The correction A�k� to the approximation for the inverse Hessian matrix� H�k�� is
derived from information collected during the last iteration� thus from the change in the
variable vector

y�k� � x�k��� � x�k� � s�k� v�k�

and the change in the gradient vector

z�k� � rF �x�k�����rF �x�k��

it is given by

A�k� �
y�k� y�k�T

y�k�T z�k�
� H�k� z�k� �H�k� z�k��T

z�k�T H�k� z�k�
������

The step length s�k� is obtained by a line search along v�k� �Equation �������� Since
the 
rst partial derivatives are needed in any case they can be made use of in the one
dimensional minimization� Fletcher and Powell do so in the context of a cubic Hermi�
tian interpolation �see Sect� ����������� A corresponding ALGOL program has been
published by Wells ������ �for corrections see Fletcher� ����� Hamilton and Boothroyd�
����� House� ������ The 
rst derivatives must be speci
ed as functions� which is usually
inconvenient and often impossible� The convergence properties of the DFP method have
been thoroughly investigated� e�g�� by Broyden �����b�c�� Adachi ������� Polak �������
and Powell ������ ����a�b�c�� Numerous suggestions have thereby been made for im�
provements� Convergence is achieved if F �x� is convex� Under stricter conditions it can
be proved that the convergence rate is greater than linear and the sequence of iterations
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converges quadratically� i�e�� after a 
nite number �maximum n� of steps the minimum of
a quadratic function is located� Myers ������ and Huang ������ show that� if the same
starting point is chosen and the objective function is of second order� the DFP algorithm
generates the same iteration points as the conjugate gradient method of Fletcher and
Reeves�

All these observations are based on the assumption that the computational operations�
including the line searches� are carried out exactly� Then H�k� always remains positive�
de
nite if H��� was positive�de
nite and the minimum search is stable� i�e�� the objective
function is improved at each iteration� Numerical tests �e�g�� Pearson� ����� Tabak�
����� Huang and Levy� ����� Murtagh and Sargent� ����� Himmelblau� ����a�b�� and
theoretical considerations �Bard� ����� Dixon� ����b� show that rounding errors and
especially inaccuracies in the one dimensional minimization frequently cause stability
problems� the matrix H�k� can easily lose its positive�de
niteness without this being due
to a singularity in the inverse Hessian matrix� The simplest remedy for a singular matrix
H�k�� or one of reduced rank� is to forget from time to time all the experience stored within
H�k� and to begin again with the unit matrix and simple gradient directions �Bard� �����
McCormick and Pearson� ������ To do so certainly increases the number of necessary
iterations� but in optimization as in other activities it is wise to put safety before speed�
Stewart ������ makes use of this procedure� His algorithm is of very great practical
interest since he obtains the required information about the 
rst partial derivatives from
function values alone by means of a cleverly constructed di	erence scheme�

������� Strategy of Stewart�
Derivative�free Variable Metric Method

Stewart ������ focuses his attention on choosing the length of the trial step d
�k�
i for the

approximation

g
�k�
i 
 Fxi

�
x�k�

�
�

�F �x�

�xi

�����
x�k�

to the 
rst partial derivatives in such a way as to minimize the in�uence of rounding
errors on the actual iteration process� Two di	erence schemes are available�

g
�k�
i �

�

d
�k�
i

h
F �x�k�  d

�k�
i ei�� F �x�k��

i
�forward di	erence�

and

g
�k�
i �

�

� d�k�i

h
F �x�k�  d

�k�
i ei�� F �x�k� � d

�k�
i ei�

i
�central di	erence� ������

Application of the one sided �forward� di	erence �Equation ������� is preferred� since
it only involves one extra function evaluation� To simplify the computation� Stewart
introduces the vector h�k�� which contains the diagonal elements of the matrix �H�k����

representing information about the curvature of the objective function in the coordinate
directions�

The algorithm for determining the g
�k�
i � i � ����n� runs as follows�
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Step ��

Set � � max

�

b � 
c

jg�k���i j jx�k�i j
F �x�k��

�

�
b represents an estimate of the error in the calculation of F �x�� Stewart sets

b � ����� and 
c � � � �������

Step ��

If
�
g
�k���
i

�� � �
���h�k���i F �x�k��

��� �

de
ne ��i � �

vuuut�

���F �x�k��������h�k���i

��� and �i � ��i

�
��� ��i

���h�k���i

���
� ��i

���h�k���i

��� � ���g�k���i

���
�
A �

otherwise de
ne

��i � �
�

vuut�

���F �x�k�� g�k���i

���
�h

�k���
i ��

and �i � ��i

�
��� �

���g�k���i

���
� ��i

���h�k���i

��� � ���g�k���i

���
�
A �

Step ��

Set d
��k�
i � �i sign�h

�k���
i � sign�g�k���i �

and d
�k�
i �

�
d
��k�
i � if d

��k�
i �� �

d
�k���
i � if d

��k�
i � ��

If

�����h
�k���
i d

�k�
i

� g
�k���
i

����� � ����� use Equation ������� otherwise
replace d�k�i  ����h�k���i

���
�
�
���g�k���i

��� r�g�k���i ��  � � ��� �
���F �x�k��h�k���i

��� �

and use Equation ������� �Stewart chooses � � ���

Stewart�s main algorithm takes the following form�

Step �� �Initialization�
Choose an initial value x���� accuracy requirements 
ai � �� i � ����n� and

initial step lengths d
���
i for the gradient determination� e�g��

d
���
i �

��
� ����

���x���i

��� � if x���i �� �

����� if x
���
i � ��

Calculate the vector g��� from Equation ������ using the step lengths d���i �

Set H��� � I� h
���
i � � for all i � ����n� and k � ��

Step �� �Prepare for line search�
Determine v�k� � �H�k� g�k��
If k � �� go to step ��
If g�k�T v�k� 	 �� go to step ��
If h

�k�
i � � for all i � ����n� go to step ��
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Step �� �Forget second order information�
Replace H�k�  H��� � I�
h
�k�
i  h

���
i � � for all i � ����n�

and v�k�  �g�k��
Step �� �Line search and eventual break�o	�

Determine x�k��� such that
F �x�k���� � min

s
fF �x�k�  s v�k��g�

If F �x�k���� � F �x�k��� end the search with result x�k� and F �x�k���

Step �� �Prepare for inverse Hessian update�
Determine g�k��� by the above di	erence scheme�
Construct y�k� � x�k��� � x�k� and z�k� � g�k��� � g�k��
If k � n and

���v�k�i

��� 	 
ai and
���y�k�i

��� 	 
ai for all i � ����n�

end the search with result x�k���� F �x�k�����

Step �� �Update inverse Hessian�
Construct H�k��� � H�k�  A�k� using Equation ������ and

h
�k���
i � h

�k�
i  

z
�k�
i

v�k�T z�k�

	
z
�k�
i "�� s�k� g�k�T v�k�

v�k�T z�k�
#  � s�k� g�k�i




for all i � ����n�

Step �� �Main loop ' termination criterion�
If the denominators are non�zero� increase k  k  �� and go to step ��
otherwise terminate with result x�k���� F �x�k�����

In place of the cubic Hermitian interpolation� Stewart includes a quadratic Lagrangian
interpolation as used by Powell in his conjugate directions strategy� Gradient calculations
at the argument values are thereby avoided� One point� x�k�� is given each time by the
initial vector of the line search� The second� x�k�  s v�k�� is situated in the direction v�k�

at a distance

s � min

�
� ��� �F �x

�k��� Fm�

g�k�T v�k�

�

Fm is an estimate of the value of the objective function at the minimum being sought� It
must be speci
ed beforehand� s � � is an upper bound corresponding to the length of a
Newton�Raphson step� The third argument value is to be calculated from knowledge of
the points x�k� and x�k�  s v�k�� their associated objective function values� and g�k�T v�k��
the derivative of the objective function at point x�k� in direction v�k�� The sequence of
Lagrangian interpolations is broken o	 if� at any time� the predicted minimum worsens
the situation or lies at such a distance outside the interval that it is more than twice as
far from the next point as the latter is from the midpoint�

Lill ������ ����� �see also Kov%acs and Lill� ����� has published a complete ALGOL
program for the derivative�free DFP strategy of Stewart� it di	ers slightly from the original
only in the line search� Fletcher �����b� reports tests that demonstrate the superiority of
Stewart�s algorithm to Powell�s as the number of variables increases�
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Brown and Dennis ������ and Gill and Murray ������ have suggested other schemes
for obtaining the partial derivatives numerically from values of the objective function�
Stewart himself reports tests that show the usefulness of his rules insofar as the results are
completely comparable to others obtained with the help of analytically speci
ed deriva�
tives� This may be simply because rounding errors are in any case more signi
cant here�
due to the matrix operations� than for example in conjugate gradient methods� Kelley
and Myers ������� therefore� recommend carrying out the matrix operations with double
precision�

������� Further Extensions

The ability of the quasi�Newton strategy of Davidon� Fletcher� and Powell �DFP� to
construct Newton directions without needing explicit second partial derivatives makes
it very attractive from a computational point of view� All e	orts in the further rapid
and intensive development of the concept have been directed to modifying the correction
Equation ������ so as to reduce the tendency to instability because of rounding errors
and inexact line searches while retaining as far as possible the quadratic convergence�
There has been a spate of corresponding proposals and both theoretical and experimental
investigations on the subject up to about ����� for example�

Adachi �����a�b�
Bass ������
Broyden ������ ����a�b�c� �����
Broyden� Dennis� and Mor%e ������
Broyden and Johnson ������
Davidon ������ �����
Dennis ������
Dixon �����a�b�c� �����
Fiacco and McCormick ������
Fletcher �����a�b� ����b� ����b�d�
Gill and Murray ������
Goldfarb ������ �����
Goldstein and Price ������
Greenstadt ������
Hestenes ������
Himmelblau �����a�b�
Hoshino ������
Huang ������ �����
Huang and Chambliss ������ �����
Huang and Levy ������
Jones ������
Lootsma �����a�b�
Mamen and Mayne ������
Matthews and Davies ������
McCormick and Pearson ������
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McCormick and Ritter ������ �����
Murray �����a�b�
Murtagh ������
Murtagh and Sargent ������
Oi� Sayama� and Takamatsu ������
Oren ������
Ortega and Rheinboldt ������
Pierson and Rajtora ������
Powell ������ ����a�b�c�g� ����� ����a�b�c�d�
Rauch ������
Ribi)ere ������
Sargent and Sebastian ������ �����
Shanno and Kettler �����a�b�
Spedicato ������
Tabak ������
Tokumaru� Adachi� and Goto ������
Werner ������
Wolfe ������ ����� �����

Many of the di	erently sophisticated strategies� e�g�� the classes or families of similar
methods de
ned by Broyden �����b�c� and Huang ������� are theoretically equivalent�
They generate the same conjugate directions v�k� and� with an exact line search� the same
sequence x�k� of iteration points if F �x� is quadratic� Dixon �����c� even proves this
identity for more general objective functions under the condition that no term of the
sequence H�k� is singular�

The important 
nding that under certain assumptions convergence can also be achieved
without line searches is attributed to Wolfe ������� A recursion formula satisfying these
conditions is as follows�

H�k��� � H�k�  B�k�

where

B�k� �
�y�k� �H�k� z�k�� �y�k� �H�k� z�k��T

�y�k� �H�k� z�k�� z�k�T
������

The formula was proposed independently by Broyden ������� Davidon ������ ������ Pear�
son ������� and Murtagh and Sargent ������ �see Powell� ����a�� The correction matrix
B�k� has rank one� while A�k� in Equation ������ is of rank two� Rank one methods� also
called variance methods by Davidon� cannot guarantee thatH�k� remains positive�de
nite�
It can also happen� even in the quadratic case� that H�k� becomes singular or B�k� in�
creases without bound� Hence in order to make methods of this type useful in practice
a number of additional precautions must be taken �Powell� ����a� Murray� ����c�� The
following compromise proposal

H�k��� � H�k�  A�k�  �k�B�k� ������

where the scalar parameter �k� � � can be freely chosen� is intended to exploit the advan�
tages of both concepts while avoiding their disadvantages �e�g�� Fletcher� ����b�� Broyden
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�����b�c�� Shanno �����a�b�� and Shanno and Kettler ������ give criteria for choosing suit�
able �k�� However� the mixed correction� also known as BFS or Broyden�Fletcher�Shanno
formula� cannot guarantee quadratic convergence either unless line searches are carried
out� It can be proved that there will merely be a monotonic decrease in the eigenvalues of
the matrix H�k�� From numerical tests� however� it turns out that the increased number
of iterations is usually more than compensated for by the saving in function calls made
by dropping the one dimensional optimizations �Fletcher� ����a�� Fielding ������ has de�
signed an ALGOL program following Broyden�s work with line searches �Broyden� ������
With regard to the number of function calls it is usually inferior to the DFP method but
it sometimes also converges where the variable metric method fails� Dixon ������ de
nes
a correction to the chosen directions�

v�k� � �H�k�rF �x�k��  w�k�

where

w��� � �

and

w�k��� � w�k�  
�x�k��� � x�k��T rF �x�k����

�x�k��� � x�k��T z�k�
�x�k��� � x�k��

by which� together with a matrix correction as given by Equation ������� quadratic con�
vergence can be achieved without line searches� He shows that at most n  � function
calls and gradient calculations are required each time if� after arriving at v�k� � �� an
iteration

x�k��� � x�k� �H�k�rF �x�k��
is included� Nearly all the procedures de
ned assume that at least the 
rst partial deriva�
tives are speci
ed as functions of the variables and are therefore exact to the signi
cant

gure accuracy of the computer used� The more costly matrix computations should
wherever possible be executed with double precision in order to keep down the e	ect of
rounding errors�

Just two more suggestions for derivative�free quasi�Newton methods will be mentioned
here� those of Greenstadt ������ and of Cullum ������� While Cullum�s algorithm� like
Stewart�s� approximates the gradient vector by function value di	erences� Greenstadt at�
tempts to get away from this� Analogously to Davidon�s idea of approximating the Hessian
matrix during the course of the iterations from knowledge of the gradients� Greenstadt
proposes approximating the gradients by using information from objective function values
over several subiterations� Only at the starting point must a di	erence scheme for the 
rst
partial derivatives be applied� Another interesting variable metric technique described by
Elliott and Sworder �����a�b� ����� combines the concept of the stochastic approxima�
tion for the sequence of step lengths with the direction algorithms of the quasi�Newton
strategy�

Quasi�Newton strategies of degree one are especially suitable if the objective func�
tion is a sum of squares �Bard� ������ Problems of minimizing a sum of squares arise
for example from the problem of solving systems of simultaneous� non�linear equations�
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or determining the parameters of a mathematical model from experimental data �non�
linear regression and curve �tting�� Such objective functions are easier to handle because
Newton directions can be constructed straight away without second partial derivatives�
as long as the Jacobian matrix of 
rst derivatives of each term of the objective function
is given� The oldest iteration procedure constructed on this basis is variously known as
the Gauss�Newton �Gauss� ����� method� generalized least squares method� or Taylor
series method� It has all the advantages and disadvantages of the Newton�Raphson strat�
egy� Improvements on the basic procedure are given by Levenberg ������ and Marquardt
������� Wolfe�s secant method �Wolfe� ����b� see also Jeeves� ����� is the forerunner of
many variants which do not require the Jacobian matrix to be speci
ed at the start but
construct it in the course of the iterations� Further details will not be described here� the
reader is referred to the specialist literature� again up to �����

Barnes� J�G�P� ������
Bauer� F�L� ������
Beale ������
Brown and Dennis ������
Broyden ������ ����� �����
Davies and Whitting ������
Dennis ������ �����
Fletcher ������ �����
Golub ������
Jarratt ������
Jones ������
Kowalik and Osborne ������
Morrison ������
Ortega and Rheinboldt ������
Osborne ������
Peckham ������
Powell ������ ����� ����b� ����d�e� ����a�
Powell and MacDonald ������
Rabinowitz ������
Ross ������
Smith and Shanno ������
Sp�ath ������ �see also Silverman� �����
Stewart ������
Vitale and Taylor ������
Zeleznik ������

Brent ������ gives further references� Peckham�s strategy is perhaps of particular
interest� It represents a modi
cation of the simplex method of Nelder and Mead ������
and Spendley ������ and in tests it proves to be superior to Powell�s strategy ������
with regard to the number of function calls� It should be mentioned here at least that
non�linear regression� where parameters of a model that enter the model in a non�linear
way �e�g�� as exponents� have to be estimated� in general requires a global optimization
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method because the squared sum of residuals de
nes a multimodal function�
Reference has been made to a number of publications in this and the preceding chapter

in which strategies are described that can hardly be called genuine hill climbing meth�
ods� they would fall more naturally under the headings of mathematical programming or
functional optimization� It was not� however� the intention to give an introduction to the
basic principles of these two very wide subjects� The interested reader will easily 
nd out
that although a nearly exponentially increasing number of new books and journals have
become available during the last three decades� she or he will look in vain for new direct
search strategies in that realm� Such methods form the core of this book�
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