Appendix B

Program Codes

This appendix contains the two FORTRAN programs EVOL and GRUP (with option
REKO) used for the test series described in Chapter 6 plus the extension KORR as of
1976, which covers all features of GRUP/REKO as well as correlated mutations (Schwefel,
1974; see also Chap. 7) introduced shortly after the first German version of this work was

finished in 1974 (and reproduced as monograph by Birkhauser, Basle, Switzerland, in
1977). GRUP and REKO thus should no longer be used or imitated.

B.1 (141) Evolution Strategy EVOL

1. Purpose

The EVOL subroutine is a FORTRAN coding of the two membered evolution strategy.
It is an iterative direct search strategy for a parameter optimization problem. A search
is made for the minimum in a non-linear function of an arbitrary but finite number of
continuously variable parameters. Derivatives of the objective function are not required.
Constraints in the form of inequalities can be incorporated (right hand side > 0). The
user must supply initial values for the variables and for the appropriate step sizes. If the
initial state is not feasible, a search is made for a feasible point by minimizing the sum of
the negative values for the constraints that have been violated.

2. Subroutine parameter list

EvOL (W,M,LF,LR,LS,TM,EA,EB,EC,ED,SN,FB,XB,SM,X,F,G,T,Z,R)

All parameters apart from LF, FB, X, and 7Z must be assigned values or names either
before or when the subroutine is called. The variables XB and SM do not retain the
values initially assigned to them.

N (integer) Number of parameters (>0).
M (integer) Number of constraints (>0).

367

368

LF

LR

LS

™

EA

EB

EC

ED

SN

(integer)
LF=-2

LF=-1

LF=0

LF=1
LF=2

(integer)

(integer)

(real)

(real)

(real)

(real)

(real)

(real)

Appendix B

Return code with the following meaning:

Starting point not feasible and search for a feasible state unsuccessful.
Feasible region probably empty.

Starting point not feasible and search for a feasible state terminated
because time limit was reached.

Starting point not feasible, search for a feasible state successful. The
final values of XB can be used as starting point for a subsequent search
for a minimum if EVOL is called again.

Search for minimum terminated because time limit was reached.
Search for minimum terminated in an orderly fashion. No further im-
provement in the value of the objective function could be achieved in the
context of the given accuracy parameters. Probably the final state XB
(extreme point) having FB (extreme value) lies near a local minimum,
perhaps the global minimum.

Auxiliary quantity used in step size management. Normal value 1.0.
The step sizes are adjusted so that on average one success (improve-
ment in the value of the objective function) is obtained in 5 - LR trials
(objective function calls). This is computed on the last 10 - N - LR
trials.

Auxiliary quantity used in convergence testing. Minimum value 2.0.
The search is terminated if the value of the objective function has im-
proved by less than EC (absolute) or ED (relative) in the course of 10
- N - LR - LS trials. Note: the step sizes are reduced by at most a

factor SN10 - LS during this period. The factor is 0.215 if SN = 0.85
is selected.

Parameter used in controlling the computation time, e.g., the maximum
CPU time in seconds, depending on the function designated T (see
below). The search is terminated if T > TM. This check is performed
after each N - LR mutations (objective function calls).

Lower bound to step sizes, absolute. EA > 0.0 must be chosen large
enough to be treated as different from 0.0 within the accuracy of the
computer used.

Lower bound to step sizes relative to values of variables. EB > 0.0 must
be chosen large enough for 1.0 + EB to be treated as different from 1.0
within the accuracy of the computer used.

Parameter in convergence test, absolute. See under LS. (EC > 0.0, see
EA).

Parameter in convergence test, relative. See under LS. (1.0 + ED > 1.0,
see EB). Convergence is assumed if the data pass one or both tests. If
it is desired to suppress a test, it is possible either to set EC = 0.0 or to
choose a value for ED such that 1.0 + ED = 1.0 but ED > 0.0 within
the accuracy of the machine.

Auxiliary variable for step size adjustment. Normal value 0.85. The
step size can be kept constant during the trials by setting SN = 1.0.
The success rate indicated by LR is used to adjust the step size by a
factor SN or 1.0/SN after every N - LR trials.

(1 + 1) Evolution Strategy EVOL 369

FB (real) Best value of objective function obtained during the search.
XB (one dimensional ~ On call: holds initial values of variables.
real array of On exit: holds best values of variables corresponding to FB.
length N)
SM (one dimensional ~ On call: holds initial values of step sizes (more precisely, stand-
real array of ard deviations of components of the mutation vector).
length N) On exit: holds current step sizes of the last (not necessar-

ily successful) mutation. Optimum initialization: somewhere
near the local radius of curvature of the objective function
hypersurface divided by the number of variables. More prac-
tical suggestion: SM(I) = DX(I)/SQRT(N), where DX(I) is
a crude estimate of either the distance between start and ex-
pected optimum or the maximum uncertainty range for the
variable X(I). If the SM(I) are initially set too large, a certain
time elapses before they are appropriately adjusted. This is
advantageous as regards the probability of locating the global
optimum in the presence of several local optima.

X (one dimensional Space for holding a variable vector.
real array of
length N)
F (real function) Name of the objective function, which is to be provided by the
user.
G (real function) Name of the function used in calculating the values of the
constraint functions; to be provided by the user.
T (real function) Name of the function used in controlling the computation time.
7 (real function) Name of the function used in transforming a uniform random
number distribution to a normal distribution. If the nomen-
clature 7 is retained, the function 7 appended to the EVOL
subroutine can be used for this purpose.
R (real function) Name of the function that generates a uniform random number
distribution.
3. Method

See 1. Rechenberg, Evolution Strategy: Optimization of Technical Systems in Accordance
with the Principles of Biological Evolution (in German), vol. 15 of Problemata series, Ver-
lag Frommann-Holzboog, Stuttgart, 1973; also H.-P. Schwefel, Numerical Optimization of
Computer Models, Wiley, Chichester, 1981 (translated by M. W. Finnis from Numerische
Optimierung von Computer-Modellen mittels der Evolutionsstrategie, vol. 26 of Interdis-
ciplinary Systems Research, Birkhauser, Basle, Switzerland, 1977).

The method is based on a very much simplified simulation of biological evolution using
the principles of mutation (random changes in variables, normal distribution for change
vector) and selection (elimination of deteriorations and retention of improvements). The
widths of the normal distribution (or step sizes) are controlled by reference to the ratio
of the number of improvements to the number of mutations.

370 Appendix B

4. Convergence criterion

Based on the change in the value of the objective function (see under LS, EC, and ED).
5. Peripheral I/O: none.

6. Notes

If there are several (local) minima, only one is located. Which one actually is found de-
pends on the initial values of variables and step sizes as well as on the random number
sequence. In such cases it is recommended to repeat the search several times with differ-
ent sets of initial values and/or random numbers. The approximation to the minimum
is usually poor if the search terminates at the boundary of the feasible region defined by
the constraints. Better results can then be obtained by setting LR > 1, LS > 2, and/or
SN > 0.85 (maximum value 1.0). In addition, the bounds EA and EB should not be
made too small. The same applies if the objective function has discontinuous first partial
derivatives (e.g., in the case of Tchebycheff approximation).

7. Subroutines or functions used

The function names should be declared as external in the segment that calls EVOL.
7.1 Objective function

This is to be written by the user in the form:

FUNCTION F(N,X)
DIMENSION X(N)
F=...

RETURN

END

N represents the number of parameters, and X represents the formal parameter vector.
The function should be written on the basis that EVOL searches for a minimum; if a
maximum is to be sought, F must be supplied with a negative sign.

7.2 Constraints function

This is to be written by the user in the general style:

FUNCTION G(J,N,X)
DIMENSION X(N)
G0T0(1,2,3,...,M)),J
1 G=...
RETURN
2 G=...

(1 + 1) Evolution Strategy EVOL 371

RETURN

M) G=...
RETURN
END

N and X have the meanings described for the objective function, while J (integer) is the
serial number of the constraint. The statements should be written on the basis that EVOL
will accept vector X as feasible if all the G values are larger than or equal to 0.0.

7.3 Function for controlling the computation time

This may be defined by the user or called from the subroutine library in the particular
machine. The following structure is assumed:

REAL FUNCTION T(D)

where D is a dummy parameter. T should be assigned the monitored quantity, e.g.,
the CPU time in seconds limited by TM. Many computers are supplied with ready-made
timing software. If this is given as a function, only its name needs to be supplied to EVOL
instead of T as a parameter. If it is a subroutine, the user can program the required
function. For example, the subroutine might be called SECOND(I), where parameter I is
an integer representing the CPU time in microseconds, in which case one could program:

FUNCTION T(D)
CALL SECOND(I)
T=1.E-6*FLOAT(I)
RETURN

END

7.4 Function for transforming a uniformly distributed random number to a normally
distributed one

See under Section 8.

7.5 Function for generating a uniform random number distribution in the range (0,1]
The structure must be

REAL FUNCTION R(D)

where D is dummy. R is the value of the random number. Note: The smallest value of
R must be large enough for the natural logarithm to be generated without floating-point
overflow. The standard library usually includes a suitable program, in which case only
the appropriate name has to be supplied to EVOL.

372 Appendix B

8. Function Z(S,R)

This function converts a uniform random number distribution to a normal distribution
pairwise by means of the Box-Muller rules. The standard deviation is supplied as pa-
rameter S, while the expectation value for the mean is always 0.0. The quantity LZ is
common to EVOL and 7 by virtue of a COMMON block and acts as a switch to transmit
only one of the two random numbers generated in response to each second call.

SUBROUTINE EVOL(N,M,LF,LR,LS,TM,EA,EB,EC,ED,SN,FB,
1¥B,SM,X,F,G,T,Z,R)

DIMENSION XB(1),SM(1),X(1),L(10)

COMMON/EVZ/LZ

EXTERNAL R

TN=TM+T (D)

LZ=1

IF(M)4,4,1

LF=-1

FEASIBILITY CHECK

QO Q=

FB=0.

DO 3 J=1,M
FG=G(J,N,XB)
IF(FG)2,3,3
FB=FB-FG
CONTINUE
IF(FB)4,4,5

w N

ALL CONSTRAINTS SATISFIED IF FB<=0

O Q0

LF=1
FB=F (N,XB)

INITIALIZATION OF SUCCESS COUNTER

DO 6 K=1,10
L(K)=N*K/5
LE=N+N
LM=0

LC=0

FC=FB

(O) NN NGO RN GEN®!]

Q

MUTATION, START OF MAIN LOOP

(1 + 1) Evolution Strategy EVOL

(00]

O QO

10
11

Q

12
13

14
15
16

Q

17

18
19

Q

20

21
22

Q

23
24

DO 8 I=1,N
X(I)=XB(I)+Z(SM(I),R)
IF(LF)9,9,12

AUXILIARY OBJECTIVE

FF=0.

DO 11 J=1,M
FG=G(J,N,X)
IF(FG)10,11,11
FF=FF-FG
CONTINUE
IF(FF)32,32,16

ALL CONSTRAINTS SATISFIED IF FF<=0

IF(M)15,15,13

DO 14 J=1,M
IF(G(J,N,X))19,14,14
CONTINUE

FF=F (N, X)
IF(FF-FB)17,17,19

SUCCESS

LE=LE+1

FB=FF

DO 18 I=1,N
XB(I)=X(I)

LM=LM+1

IF (LM-N*LR)7,20,20

SUCCESS RATE CONTROL

K=1
IF(LE-L(1)-N-N)23,22,21
K=K-1

K=K-1

ADAPTATION OF STEP SIZES
DO 24 I=1,N

SM(I)=AMAX1(SM(I)*SN**K,ABS(XB(I))+*EB,EA)
DO 25 K=1,9

373

374 Appendix B

25 L(K)=L(K+1)

L(10)=LE

LM=0

LC=LC+1

IF(LC-10%LS)31,26,26
C
C CONVERGENCE CRITERION
C

26 IF (FC-FB-EC)28,28,27
27 IF ((FC-FB)/ED-ABS(FC))28,28,30
28 LF=ISIGN(2,LF)

29 RETURN
30 LC=0
FC=FB
C
C TIME CONTROL

31 IF(T(D)-TN)7,29,29
32 DO 33 I=1,N
33 XB(I)=X(I)
FB=F (N,XB)
LF=0
GOTO 29
END
FUNCTION Z(S,R)
COMMON/EVZ/LZ
DATA ZP/6.28318531/
¢oTo(1,2),LZ
1 A=SQRT(-2.*ALOG(R(D)))
B=ZP*R(D)
Z=S*A*SIN(B)
LZ=2
RETURN
2 Z=S*A*C0S (B)
LZ=1
RETURN
END

(4, X) Evolution Strategies GRUP and REKO 375

B.2 (u,A) Evolution Strategies GRUP and REKO

1. Purpose
The GRUP subroutine is a FORTRAN program to handle a multimembered (L,LL) evo-

lution strategy with L. parents and LI descendants per generation. It is an iterative direct
search strategy for handling parameter optimization problems. A search is made for the
minimum in a non-linear function of an arbitrary but finite number of continuously vari-
able parameters. Derivatives of the objective function are not required. Constraints in
the form of inequalities can be incorporated (right hand side > 0). The user must supply
initial values for the variables and for the appropriate step sizes. If the initial state is
not feasible, a search is made for a feasible point that minimizes the sum of the negative
values for the constraints that have been violated.

2. Subroutine parameter list

GRUP (REKO,L,LL,N,M,LF,TM,EA,EB,EC,ED,SN,FA,FB,XB,SM,X,FK,XK,SK,F,G,T,Z,R)

All parameters apart from LF, FA, FB, X, FK, XK, SK, and Z must be assigned values
or names before or when the subroutine is called. The variables XB and SM do not retain
the values initially assigned to them.

REKO (logical) Switch for alternative with/without recombination.
REKO=.FALSE. No recombination. The step sizes retain the relationship
initially assigned to them.
REKO=.TRUE. Recombination occurs. The relationships between the step
sizes alter during the search.

L (integer) Number of parents (>1). This parameter should not be
chosen too small if recombination is to occur.

LL (integer) Number of descendants (>1.). Recommended to choose a
value > 6 - L.

N (integer) Number of parameters (>0).

M (integer) Number of constraints (>0).

LF (integer) Return code with the following meanings:

LF=-2 Starting point not feasible and search for a feasible state

unsuccessful. Feasible region probably empty.

LF=-1 Starting point not feasible and search for a feasible state
terminated because time limit was reached.

LF=0 Starting point not feasible, search for a feasible state suc-
cessful. The final values of XB can be used as starting point
for the search for a minimum if GRUP is called again.

LF=1 Search for minimum terminated because time limit was
reached.

LF=2 Search for minimum terminated in an orderly fashion.

376

™

EA

EB

EC

ED

SN

FA
FB

LF=2 (continued)

(real)

(real)

(real)

(real)

(real)

(real)

(real)
(real)

Appendix B

No further improvement in the value of the objective func-
tion could be achieved in the context of the framework of the
given accuracy parameters. Probably the final state XB (ex-
treme value) lies near a local minimum, perhaps the global
minimum.

Parameter used in monitoring the computation time, e.g., the
maximum CPU time in seconds, depending on the function
designated T (see below). The search is terminated if T >
TM. This check is performed after every generation = LL
objective function calls.

Lower bound to step sizes, absolute. EA > 0.0 must be chosen
large enough to be treated as different from 0.0 within the
accuracy of the computer used.

Lower bound to step sizes relative to values of variables. EB >
0.0 must be chosen large enough for 1.0 + EB to be treated as
different from 1.0 within the accuracy of the computer used.
Parameter in convergence test, absolute. The search is ter-
minated if the difference between the best and worst values
of the objective function within a generation is less than or
equal to EC (EC > 0.0, see EA).

Parameter in convergence test, relative. The search is ter-
minated if the difference between the best and worst values
of the objective function within a generation is less than or
equal to ED multiplied by the absolute value of the mean of
the objective function as taken over all L. parents in a genera-
tion (1.0 + ED > 1.0, see EB). Convergence is assumed if the
data pass one or both tests. If it is desired to delete a test, it
is possible either to set EC = 0.0 or to choose a value for ED
such that 1.0 + ED = 1.0 but ED > 0.0 within the accuracy
of the machine.

Auxiliary quantity used in step size adjustment. Normal value
C/SQRT(N), with C > 0.0, e.g., C = 1.0 for L, = 10 and LL
= 100. C can be increased as LL increases, but it must be
reduced as L increases. An approximation for L = 1 is LL
proportional to SQRT(C) - EXP(C).

Current best objective function value for population.

Best value of objective function attained during the whole
search. The minimum found may not be unique if FB differs
from FA because: (1) there is a state with an even smaller
value for the objective function (e.g., near a local minimum
or even near the global minimum) that has been lost over
the generations; or (2) the minimum consists of several quasi-
singular peaks on account of the finite accuracy of the com-
puter used. Usually, the difference between FA and FB is
larger in the first case than in the second, if EC and ED have
been assigned small values.

(4, X) Evolution Strategies GRUP and REKO 377

XB

SM

FK

XK

SK

N H

R

(one dimensional
real array of
length N)

(one dimensional
real array of

length N)

(one dimensional
real array of
length N)

(one dimensional
real array of
length 2 - L)
(one dimensional
real array of

length 2 - L - N)

(one dimensional
real array of

length 2 - L - N)
(real function)

(real function)

(real function)
(real function)

(real function)

3. Method

On call: holds initial values of variables.
On exit: holds best values of variables corresponding to FB.

On call: holds initial values of step sizes (more precisely, stand-
ard deviations of components of the mutation vector).

On exit: holds current step sizes of the last (not necessarily suc-
cessful) mutation. Optimum initialization: somewhere near the
local radius of curvature of the objective function hypersurface
divided by the number of variables. More practical suggestion:
SM(I) = DX(I)/SQRT(N), where DX(I) is a crude estimate of
either the distance between start and expected optimum or the
maximum uncertainty range for the variable X(I). If the SM(1)
are initially set too large, it may happen that a good starting
point is lost in the first generation. This is advantageous as
regards the probability of locating the global optimum in the
presence of several local optima.

Space for holding a variable vector.

Holds objective function values for the L best individuals in
each of the last two generations.

Holds the wvariable values for N components for each of the L
parents in each of the last two generations. XK(1) to XK(N)
hold the state vector X for the first individual, the next N
locations do the same for the second, and so on.

Holds the standard deviations, structure as for XK.

Name of the objective function, which is to be programmed by
the user.

Name of the function for calculating the values of the con-
straints, to be programmed by the user.

Name of function used in monitoring the computation time.
Name of function used in transforming a uniform random num-
ber distribution to a normal distribution. If the name 7 is re-
tained, the function 7 listed after the GRUP subroutine can
be used for this purpose.

Name of the function that generates a uniform random number
distribution.

GRUP has been developed from EVOL. The method is based on a very much simplified
simulation of biological evolution. See I. Rechenberg, Evolution Strategy: Optimization
of Technical Systems in Accordance with the Principles of Biological Evolution (in Ger-

378 Appendix B

man), vol. 15 of Problemata series, Verlag Frommann-Holzboog, Stuttgart, 1973; also
H.-P. Schwefel, Numerical Optimization of Computer Models, Wiley, Chichester, 1981
(translated by M. W. Finnis from Numerische Optimierung von Computer-Modellen mit-
tels der Evolutionsstrategie, vol. 26 of Interdisciplinary Systems Research, Birkhauser,

Basle, Switzerland, 1977).

The current L parameter vectors are used to generate LI new ones by means of small
random changes.

The best L of these become the initial ones for the next generation (iteration). At the
same time, the step sizes (standard deviations) for the changes in the variables (strategy
parameters) are altered. The selection leads to adaptation to the local topology if LL/L
is assigned a suitably large value, e.g., >6. The random changes in the parameters are
produced by the addition of normally distributed random numbers, while those in the
step sizes are produced from random numbers with a log-normal distribution by multipli-
cation.

4. Convergence criterion

Based on the differences in value of the objective function (see under EC and ED).

5. Peripheral I/O: none.

6. Notes

The multimembered strategy represents an improvement in reliability over the two mem-
bered strategy. On the other hand, the run time is greater when an ordinary (serial)
digital computer is used. The run time increases less rapidly than in proportion to LL
(the number of descendants per generation), because increasing LL increases the con-
vergence rate (over the generations). However, minima at a boundary of the feasible
region or at a vertex are attained only slowly or inexactly. In any case, although the
certainty of global convergence cannot be guaranteed, numerical tests have shown that
the multimembered strategy is far better than other search procedures in this respect. It
is capable of handling separated feasible regions provided that the number of parameters
is not large and that the initial step sizes are set suitably large. In doubtful cases it is
recommended to repeat the search each time with a different set of initial values and/or
random numbers. If the optimum being sought lies at a boundary of the feasible region, it
is probably better to choose a value for SN (the parameter governing the rates of change
of the standard deviations) less than the (maximal) value suggested above.

7. Subroutines or functions used

The function names are to be declared as external in the segment that calls GRUP.
7.1 Objective function

To be written by the user in the form:

(4, X) Evolution Strategies GRUP and REKO 379

FUNCTION F(N,X)
DIMENSION X(N)

F=...
RETURN
END

N represents the number of parameters, and X represents the formal parameter vector.
GRUP supplies the actual values. The function should be written on the basis that GRUP
searches for a minimum; if a maximum is to be sought, F must be supplied with a negative
sign.

7.2 Constraints function

To be written by the user in the general style:

FUNCTION G(J,N,X)
DIMENSION X(N)
G0T0(1,2,3,...,M)),J
1 G=...
RETURN
2 G=...
RETURN

M) G=...
RETURN
END

N and X have the meanings described for the objective function, while J (integer) is
the serial number of the constraint. The statements should be written on the basis that
GRUP will accept vector X as feasible if all the G values are larger than or equal to zero.

7.3 Function for monitoring the computation time

This may be defined by the user or called from the subroutine library in the particular
machine. The following structure is assumed:

REAL FUNCTION T(D)

where D is a dummy parameter. T should be assigned the monitored quantity, e.g.,
the CPU time in seconds limited by TM. Many computers are supplied with ready-made
timing software. If this is given as a function only its name needs to be supplied to GRUP,

380 Appendix B

instead of T, as a parameter. If it is a subroutine, the user can program the required
function. For example, the subroutine might be called SECOND(I), where parameter I is
an integer representing the CPU time in microseconds, in which case one could program:

FUNCTION T(D)
CALL SECOND(I)
T=1.E-6*FLOAT(I)
RETURN

END

7.4 Function for transforming a uniformly distributed random number to a normally
distributed one

See under 8.

7.5 Function for generating a uniform random number distribution in the range (0,1]
The structure must be

REAL FUNCTION R(D)

where D is dummy. R is the value of the random number.

Note: The smallest value of R must be large enough for the natural logarithm to be gen-
erated without floating-point overflow. The standard library usually includes a suitable
program, in which case only the appropriate name has to be supplied to GRUP.

8. Function Z(S,R)

This function converts a uniform random number distribution to a normal distribution
pairwise by means of the Box-Muller rules. The standard deviation is supplied as pa-
rameter S, while the expectation value for the mean is always zero. The quantity LZ is

common to GRUP and 7 by virtue of a COMMON block and acts as a switch to transmit
only one of the two random numbers generated in response to each second call.

SUBROUTINE GRUP(REKO,L,LL,N,M,LF,TM,EA,EB,EC,ED,SN,
1FA,FB,XB,SM,X,FK,XK,SK,F,G,T,Z,R)

LOGICAL REKO

DIMENSION XB(1),SM(1),X(1),FK(1),XK(1),SK(1)

COMMON/GRZ/LZ

EXTERNAL R

KK (RR)=(LA+IFIX(FLOAT(L)*RR))*N
C
C THE PRECEDING LINE CONTAINS A STATEMENT FUNCTION
C

TN=TM+T (D)

(4, X) Evolution Strategies GRUP and REKO 381

LZ=1
IF(M)4,4,1
LF=-1

FEASIBILITY CHECK

QQ Q-

FB=0.

DO 3 J=1,M
FG=G(J,N,XB)
IF(FG)2,3,3
FB=FB-FG
CONTINUE
IF(FB)4,4,5

w N

ALL CONSTRAINTS SATISFIED IF FB<=0

O QQ

LF=1

FB=F (N,XB)

5 DO 6 I=1,N

SK(I)=AMAX1(SM(I),ABS(XB(I))=EB,EA)

6 XK(I)=XB(I)

FK(1)=FB

KA=N

KB=0

Q

SETUP OF POPULATION

DO 21 K=2,L
SA=1.

7 DO 8 I=1,N

8 X(I)=XB(I)+Z(SM(I)*SA,R)
IF(LF)9,9,12

9 FF=0.
DO 11 J=1,M
FG=G(J,N,X)
IF(FG)10,11,11

10 FF=FF-FG

11 CONTINUE
IF(FF)60,60,17

12 IF(M)16,16,13

13 DO 15 J=1,M
IF(G(J,N,X))14,15,15

14 SA=5A*.5b
GOTO 7

332

15 CONTINUE
16 FF=F (N, X)
17 IF(FF-FB)18,19,19

C
C STORING OF BEST INTERMEDIATE RESULT
C
18 FB=FF
KB=K
19 DO 20 I=1,N
KA=KA+1

SK(KA)=AMAX1(SM(I)*SA,ABS(X(I))*EB,EA)
20 XK (KA)=X(I)
21 FK (K)=FF

IF(KB)24,24,22
22 KB=(KB-1) *N

DO 23 I=1,N
23 XB(I)=XK(KB+I)
C
C START OF MAIN LOOP
C
24 LA=L
LB=0

C

C LA AND LB FORM A ROTATING COUNTER TO AVOID SHUFFLING
C GENOTYPES WITHIN THE ARRAYS CONTAINING PARENTS AND
C
C

DESCENDANTS

25 LC=LB

LB=LA

LA=LC

LC=0

LD=0
26 SA=EXP(Z(SN,R))
C
C LOG-NORMAL STEP SIZE FACTOR
C

IF (REKO)GOTO 28
KI=KK(R(D))
DO 27 I=1,N
KI=KI+1
SM(I)=SK(KI)*SA
27 X(I)=XK(KI)+Z(SM(I),R)
C
C MUTATION WITHOUT RECOMBINATION ABOVE

Appendix B

(4, X) Evolution Strategies GRUP and REKO

28

Q

29
30

Q

31

32
33

GOTO 30
SA=5A*.5b

MUTATION WITH RECOMBINATION BELOW

DO 29 I=1,N
SM(I)=(SK(KK(R(D))+I)+SK(KK(R(D))+I))*SA
X(I)=XK(KK(R(D))+I)+Z(SM(I),R)
IF(LF)31,31,34

AUXILIARY OBJECTIVE

FF=0.

DO 33 J=1,M
FG=G(J,N,X)
IF(FG)32,33,33
FF=FF-FG
CONTINUE
IF(FF)60,60,38

ALL CONSTRAINTS SATISFIED IF FF<=0

IF(M)37,37,35

DO 36 J=1,M
IF(G(J,N,X))46,36,36
CONTINUE

FF=F (N, X)

LD COUNTS THE NUMBER OF DESCENDANTS PRODUCED

LD=LD+1
IF(LD-L)40,40,39

WHEREAS THE FIRST L DESCENDANTS ARE STORED AUTOMATICALLY
FURTHER DESCENDANTS REPLACE THE CURRENT WORST IN CASE OF
BEING BETTER ONLY

IF(FF-FS)41,41,46
KS=LB+LD
FK(KS)=FF
KS=(KS-1)*N

DO 42 I=1,N
KS5=KS+1

333

384 Appendix B

SK(KS)=AMAX1(SM(I),ABS(X(I))*EB,EA)
42 XK (KS)=X(I)
IF(LD-L)46,43,43

C
C DETERMINING THE CURRENT WORST
C
43 KS=LB+1
FS=FK(KS)
DO 45 K=2,L
KA=LB+K
FF=FK(KA)
IF (FF-FS)45,45,44
44 FS=FF
KS5=KA

45 CONTINUE

46 LC=LC+1
IF(LC-LL)26,47,47

47 IF(LD-L)26,48,48

C
C END OF A GENERATION
C
48 KA=LB+1
FA=FK(KA)
FC=FA
C
C DETERMINING THE CURRENT BEST AND SUM
C
DO 50 K=2,L
KB=LB+K
FF=FK(XB)
FC=FC+FF
IF(FF-FA)49,50,50
49 FA=FF
KA=KB

50 CONTINUE
IF(FA-FB)51,51,53

DETERMINING WHETHER THE CURRENT BEST IS BETTER THAN
THE SO FAR OVERALL BEST

g QQaQ

1 FB=FA
KB=(KA-1)*N
DO 52 I=1,N

52 XB(I)=XK(KB+I)

(4, X) Evolution Strategies GRUP and REKO 385

c
C CONVERGENCE CRITERION
c
53 IF(FS-FA-EC)55,55,54
54 IF ((FS-FA)*FLOAT(L)/ED-ABS(FC))55,55,59
55 LF=ISIGN(2,LF)
56 KB=(KA-1)*N
DO 57 I=1,N
57 X(I)=XK(KB+I)
58 RETURN
c
C TIME CONTROL
c
59 IF(T(D)-TN)25,56,56
60 DO 61 I=1,N
61 XB(I)=X(I)
FB=F (N,XB)
FA=FB
LF=0
GOTO 58
END
FUNCTION Z(S,R)
COMMON/GRZ/LZ
DATA ZP/6.28318531/
¢oTo(1,2),LZ
1 A=SQRT(-2.*ALOG(R(D)))
B=ZP*R(D)
Z=S*A*SIN(B)
LZ=2
RETURN
2 Z=S*A*C0S (B)
LZ=1
RETURN
END

386 Appendix B

B.3 (u 1 A) Evolution Strategy KORR

Plus additional subroutines: PRUEFG, SPEICH, MUTATI, DREHNG,
UMSPEI, MINMAX, GNPOOL, ABSCHA.
and functions: ZULASS, GAUSSN, BLETAL.

1. Purpose

The KORR subroutine is a FORTRAN coding of a multimembered evolution strategy.
It is an iterative direct search strategy for a parameter optimization problem. A search
is made for the minimum in a non-linear function of an arbitrary but finite number of
continuously variable parameters. Derivatives of the objective function are not required.
Constraints in the form of inequalities can be incorporated (right hand side > 0). The
user must supply initial values for the variables and for the appropriate step sizes. If the
initial state is not feasible, a search is made for a feasible point by minimizing the sum of
the negative values for the constraints that have been violated.

2. Parameter list for subroutine KORR

KORR (IELTER, BKOMMA, NACHKO, IREKOM, BKORRL, KONVKR, IFALLK, TGRENZ,
EPSILO, DELTAS, DELTAI, DELTAP, N, M, NS, NP, NY, ZSTERN, XSTERN,
ZBEST, X, S, P, Y, ZIELFU, RESTRI, GAUSSN, GLEICH, TKONTR, KANAL)

All parameters apart from IFALLK, ZSTERN, ZBEST, X, and Y must be assigned values
or names before or when the subroutine is called. The variables XSTERN, S, and P do
not retain the values initially assigned to them.

IELTER (integer) Number of parents of a generation.
IELTER > 1 if IREKOM = 111
IELTER > 1 IF IREKOM > 111
BKOMMA (logical) Switch for comma or plus version.
BKOMMA=.FALSE. Selection criterion applied to parents and descen-
dants; (IELTER + NACHKO) evolution strategy.
BKOMMA=.TRUE. Selection criterion applied only to descendants;
(IELTER, NACHKO) evolution strategy.
NACHKO (integer) Number of descendants in a generation.
NACHKO > 1 if BKROMMA = FALSE.
NACHKO > IELTER if BKROMMA = .TRUE.
[IREKOM (integer) Switch for recombination type consisting of three
digits each of which has values between 1 and 5.
The first digit applies to the object variables X, the
second one to the step sizes S, and the third one to
the correlation angles P. Thus 111 < IREKOM <
555. Each digit controls the recombination in the
following way:

(1 T A) Evolution Strategy KORR 387

1 No recombination

2 Discrete recombination of pairs of parents

3 Intermediary recombination of pairs of parents

4 Discrete recombination of all parents

5 Intermediary recombination of all parents in pairs

BKORRL (logical) Switch for variability of the mutation hyperellipsoid
(locus of equal probability density).
BKORRL=.FALSE. The ellipsoid cannot rotate.
BKORRL=.TRUE. The ellipsoid can extend and rotate.
KONVKR (integer) Switch for the convergence criterion:

KONVKR =1 The difference in the objective function values be-
tween the best and worst parents at the start of each
generation is used to determine whether to termi-
nate the search before the time limit is reached. It
is assumed that IELTER > 1.

KONVKR > 1 (best > 2 - N): The change in the mean of all the
parental objective function values in KONVKR gen-
erations is used as the search termination criterion.
In both cases EPSILO(3) serves as the absolute and
EPSILO(4) as the relative bound for deciding to ter-
minate the search.

IFALLK (integer) Return code with the following meaning:

IFALLK = =2 Starting point not feasible, search terminated on
finding a minimal value of the auxiliary objective
function without satisfying all the constraints.

IFALLK = —1 Starting point not feasible, search for a feasible pa-
rameter vector terminated because time limit was
reached.

IFALLK =0 Starting point not feasible, search for a feasible
XSTERN vector successful, search for a minimum
can be restarted with this.

IFALLK =1 Search for a minimum terminated because time limit
was reached.

IFALLK = 2 Search for minimum terminated regularly. The con-
vergence criterion was satisfied.

IFALLK = 3 As for IFALLK = 1, but time limit reached not at

the end of a generation but in an attempt to generate
NACHKO viable descendants.

TGRENZ (real) Parameter used in monitoring the computation time,
e.g., the maximum CPU time in seconds. Search
terminated at the latest at the end of the generation

for which TKONTR > TGRENZ.

338

EPSILO

DELTAS

DELTAI

DELTAP

Z 'z 7

(one dimensional
real array of
length 4)
EPSILO(1)
EPSILO(2)

EPSILO(3)

EPSILO(4)
(real)

(real)

(real)

(integer)
(integer)
(integer)

Appendix B

Holds parameters that affect the attainable accuracy of
approximation. The lowest possible values are machine-
dependent.

Lower bound to step sizes, absolute.

Lower bound to step sizes relative to values of variables
(not implemented in this program).

Limit to absolute value of objective function differences
for convergence test.

As EPSILO(3) but relative.

Factor used in step-size change. All standard de-
viations (=step sizes) S(I) are multiplied by a com-
mon random number EXP(GAUSSN(DELTAS)), where
GAUSSN(DELTAS) is a normally distributed random
number with zero mean and standard deviation DELTAS.
EXP(DELTAS) > 1.0.

As for DELTAS, but each S(I) is multiplied by its own
random factor EXP(GAUSSN(DELTAL)).
EXP(DELTAI) > 1.0. The S(I) retain their initial values
if DELTAS = 0.0 and DELTAT = 0.0. The variables
can be scaled only by recombination (IREKOM > 1) if
DELTAT = 0.0.

The following rules are suggested to provide the most
rapid convergence for sphere models:

DELTAS = C/SQRT(2.0 - N).

DELTAI = C/(SQRT(2.0 - N/SQRT(NS)).

The constant C can increase sublinearly with NACHKO,
but it must be reduced as IELTER increases. The empir-
ical value C = 1.0 has been found applicable for IELTER
=10, NACHKO = 100, and BKOMMA = . TRUE., which
is a (10,100) evolution strategy.

Standard deviation in random variation of the position
angles P(I) for the mutation ellipsoid.

DELTAP > 0.0 if BKORRL = .TRUE. Data in radians.
A suitable value has been found to be DELTAP = 5.0 -
0.01745 (5 degrees) in certain cases.

Number of parameters N > 0.

Number of constraints M > 0.

Field length in array S or number of distinct step-size
parameters that can be used, I<NS<N. The mutation
ellipse becomes a hypersphere for NS = 1. All the prin-
cipal axes of the ellipsoid may be different for N5 = N,
whereas 1<NS<N implies an ellipsoid of rotation, e.g.,
NS = 2 implies an ellipsoid in which only one principal
axis is different from the other N-1, which are equal in
length.

(1 T A) Evolution Strategy KORR 389

NP

NY

ZSTERN

XSTERN

ZBEST

ZIELFU

RESTRI

GAUSSN

(integer)

(integer)

(real)

(one dimensional
real array

of length N)

(real)

(one dimensional
real array of
length N)

(one dimensional
real array of

length NS)

(one dimensional
real array

of length NP)

(one dimensional
real array of

length NY)
(real function)

(real function)

(real function)

Field length of array P.

NP =N-(NS—1)—= ((NS—1)-NS)/2if BKORRL =
TRUE.; NP =1 if BKORRL = .FALSE.

Field length of array Y.

NY = (N4+NS+NP+1) - IELTER - 2 if BKORRL =
.TRUE.; NY = (N+NS+1) - IELTER - 2 if BRKORRL
= .FALSE.

Best value of objective function found during search for
minimum.

On call: initial parameter vector.

At end of search: best values for parameters correspond-
ing to ZSTERN, or feasible vector found for the special
case [FALLK = 0.

Current best value of objective function for the popu-
lation, may be different from ZSTERN if BRKOMMA =
.TRUE.

Holds the variables for a descendant.

Holds the step sizes for a descendant. The user must
supply initial values. Universally valid rules for selecting
the best S(I) are not available. If the step sizes are
too large, a very good starting point can be wasted
(BKOMMA = .TRUE.) or the step size adjustment may
be very much delayed (BKOMMA = .FALSE.).

If the initial step sizes are too small, there is only a
slight chance of locating the global optimum in the pres-
ence of several local ones. In general, the optimum over-
all step sizes vary with the number N of parameters as
C/SQRT(N), so the individual standard deviations vary
as C/N with C = const.

Holds the positional angles of the ellipsoid for a descend-
ant. The user must supply initial values if BKORRL =

.TRUE. has been selected. If no better values are known
initially, one can set P(I) = ATAN(1.0) for all I = 1(1)NP.
Holds the vectors X, S, P, and the objective function

values for the parents of the current generation and the

next generation as well.

Name of the objective function, to be programmed by the
user.

Name of the function for evaluating all constraints, to be
programmed by the user.

Name of the function used in transforming a uniform ran-
dom number distribution to a Gaussian one.

390 Appendix B

GLEICH (real function) Name of the function for generating uniformly distributed
random numbers.

TKONTR (real function) Name of the run-time monitoring function.

KANAL (integer) Channel number for output, relates only to messages out-
put by subroutine PRUEFG concerning formal errors de-
tected in the parameter list of subroutine KORR when the
latter is called.

3. Method
KORR is a development from EVOL, Rechenberg’s two membered strategy, and GRUP,

the older version of Schwefel’s multimembered evolution strategy. The method is based
on a very much simplified simulation of biological evolution. See I. Rechenberg, Evolution
Strategy: Optimization of Technical Systems in Accordance with the Principles of Bio-
logical Evolution (in German), vol. 15 of Problemata series, Verlag Frommann-Holzboog,
Stuttgart, 1973; also H.-P. Schwefel, Numerical Optimization of Computer Models, Wi-
ley, Chichester, 1981 (translated by M. W. Finnis from Numerische Optimierung von
Computer-Modellen mittels der Evolutionsstrategie, vol. 26 of Interdisciplinary Systems

Research, Birkhauser, Basle, Switzerland, 1977).

The IELTER parameter vectors are used to generate NACHKO new ones by introduc-
ing small normally distributed random changes. The IELTER best of these are used as
starting points for the next generation (iteration). At the same time the strategy param-
eters are altered. These are the parameters of the current normal distributions for the
lengths of the principal axes (standard deviations = step sizes) and the angular position
of the mutation ellipsoid in N-dimensional space. Selection results in adaptation to local
topology if the ratio NACHKO/IELTER is set large enough, e.g., at least 6. The random
variations in the angles are produced by the addition of normally distributed random
numbers, while those in the step sizes are produced from random numbers with a log-
normal distribution by multiplication.

4. Convergence criterion

The termination criterion is based on value differences in the objective function, see under

KONVKR, EPSILO(3), and EPSILO(4).
5. Peripheral I/O

Input: none.
Output: via channel KANAL, but only if there are formal errors in the
parameter list of KORR. See under KANAL.
6. Notes

The two membered strategy (EVOL) usually has the shortest run time of all these evolu-
tion strategies (the EVOL, GRUP, and KORR codings so far developed) because ordinary
(serial) computers can test the descendants only one after another in a generation, whereas
in nature they are tested in parallel. The run times of the multimembered strategies in-
crease less rapidly than in proportion to NACHKO because the convergence rate taken

(1 T A) Evolution Strategy KORR 391

over the generations tends to increase with NACHKO. However, there are frequent in-
stances where even the simpler multimembered scheme (GRUP) has a run time less than
that of EVOL because GRUP and KORR in principle allow one to adapt the step sizes
individually to the local topology, which is not possible with EVOL, and this permits one
to scale the variables in a flexible fashion. For this reason, the reliability and attainable
accuracy are appreciably better than those given by EVOL.

The new KORR program represents further improvements on GRUP in this respect on
account of the increased flexibility in the mutation ellipsoid, which improves the vari-
ability of the object variables. In addition to the lengths of the principal axes (standard
deviations = step sizes) the positions of the principal axes in N-dimensional space are
strategy parameters that are adjustable within the population. This together with the
scaling provides directional adaptation to any valleys or ridges in the objective function
surface. The changes in the object variables are no longer independent but linearly corre-
lated, and this improves the convergence rate (with respect to the number of generations)
quite appreciably in many instances. In special cases, however, there may be an increase
in the run time arising from the storage and modification of the positional angles, and
also from coordinate transformation. KORR enables the user to test how many strategy
parameters (=degrees of freedom in the mutation ellipsoid) may be adequate to solve
his special problem. The correlation can be suppressed completely, in which case KORR
becomes equivalent to GRUP. Intermediary stages can be implemented by means of the
NS parameter, the number of mutually independent step sizes. For example, for N5 = 2
< N we have a hyperellipsoid of rotation with N-N§S rotation axes. KORR differs from the
older EVOL and GRUP in being divided into numerous small subroutines. This modular
structure is disadvantageous as regards core requirement and run time, but it provides
insight into the mode of operation of the program as a whole, so that it is easier for the
user to modify the algorithm.

Although KORR in general allows one to improve the reliability of the optimum search
there are still two critical situations. Minima at the boundary of the feasible region or
in a vertex are attained only slowly or inaccurately. In any case, certainty of global
convergence cannot be guaranteed; however, numerical tests have shown that the multi-
membered strategy is far better than other search procedures in this respect. It is capable
of handling separated feasible regions provided that the number of parameters is not large
and that the initial step sizes are set suitably large. In doubtful cases it is recommended to
repeat the search each time with a different set of initial values and/or random numbers.

7. Subroutines or functions used

SUBROUTINES: PRUEFG, SPEICH, MUTATI, DREHNG, UMSPEI,
MINMAX, GNPOOL, ABSCHA

FUNCTIONS : ZIELFU, RESTRI, GAUSSN, GLEICH, TKONTR,
ZULASS, BLETAL

The segment that calls KORR should have the name of the functions ZIELFU, RESTRI,

392 Appendix B

GLEICH, and TKONTR declared as external. This applies also to the name of any

function used instead of GAUSSN to convert a uniform distribution to a normal one.

ZIELFU Objective function, to be programmed by the user in the form:

FUNCTION ZIELFU(N,X)
DIMENSION X(N)

ZIELFU=. ..
RETURN
END

N represents the number of parameters, and X represents the formal parameter vector.
The actual values are supplied by KORR. The function should be written on the basis
that KORR searches for a minimum; if a maximum is to be sought, F must be supplied
with a negative sign.

RESTRI Constraints function, to be programmed by the user in the general style:

FUNCTION RESTRI(J,N,X)
DIMENSION X(N)
G0T0(1,2,3,...,M)),J
1 RESTRI=...
RETURN
2 RESTRI=...
RETURN

(M) RESTRI=...
RETURN
END

N and X have the meanings described for the objective function, while J (integer) is
the serial number of the constraint. The statements should be written on the basis that

KORR will accept vector X as feasible if RESTRI > 0.0 for all J = 1(1)M.

TKONTR The function for monitoring the computation time may be defined by the user
or called from the subroutine library in the particular machine. The following structure
is assumed:

REAL FUNCTION TKONTR(D)

where D is a dummy parameter. TKONTR should be assigned the monitored quantity,
e.g., the CPU time in seconds limited by TGRENZ. Many computers are supplied with

(1 T A) Evolution Strategy KORR 393

ready-made timing software. If this is given as a function, only its name needs to be

supplied to KORR instead of TKONTR as a parameter.

GLEICH Function for generating a uniform random number distribution in the range
(0,1]. The structure must be:

REAL FUNCTION GLEICH(D)

where D is arbitrary. GLEICH is the value of the random number. The standard library
usually includes a suitable program, in which case only the appropriate name has to
be supplied to KORR. The other subroutines and functions are explained briefly in the
program itself.

SUBROUTINE KORR

1 (IELTER,BKOMMA ,NACHKO, IREKOM, BKORRL ,KONVKR , IFALLK,
2TGRENZ ,EPSILO,DELTAS ,DELTAI ,DELTAP,N,M,NS,NP,NY,
3ZSTERN,XSTERN,ZBEST ,X,S,P,Y,ZIELFU,RESTRI ,GAUSSN,
4GLEICH,TKONTR,KANAL)

LOGICAL BKOMMA,BKORRL,BFATAL,BKONVG,BLETAL
DIMENSION EPSILO(4),XSTERN(N),X(N),S(NS),P(NP),
1Y (NY)

COMMON/PIDATA/PIHALB,PIEINS,PIZWEI

EXTERNAL RESTRI,GAUSSN,GLEICH

IREKOX = IREKOM / 100

IREKOS = (IREKOM - IREKOX*100) / 10
IREKOP = TIREKOM - IREKOX*100 - IREKOS*10
D =0.

CALL PRUEFG
1 (IELTER,BKOMMA ,NACHKO, IREKOM, BKORRL ,KONVKR , TGRENZ,
2EPSILO,DELTAS,DELTAI ,DELTAP,N,M,NS,NP,NY,KANAL,

3BFATAL)
C
C CHECK INPUT PARAMETERS FOR FORMAL ERRORS.
C

IF (BFATAL) RETURN

C
C PREPARE AUXILIARY QUANTITIES. TIMING MONITORED IN
C ACCORDANCE WITH THE TKONTR FUNCTION FROM HERE
C ONWARDS.
C

TMAXIM=TGRENZ+TKONTR (D)
IF(.NOT.BKORRL) GOTO 1
PTHALB=2.*ATAN(1.)
PIEINS=PIHALB+PIHALB
PIZWEI=PIEINS+PIEINS

394

C

QO QQ

QOO

C
C

Appendix B

NL=1+N-NS

NM=N-1

NZ=NY/ (IELTER+IELTER)
IF(M.EQ.0) GOTO 2

CHECK FEASIBILITY OF INITIAL VECTOR XSTERN.

IFALLK=-1

ZSTERN=ZULASS(N,M,XSTERN,RESTRI)
IF(ZSTERN.GT.0.) GOTO 3

IFALLK=1

ZSTERN=ZIELFU(N,XSTERN)

CALL SPEICH
1(0,BKORRL,EPSILO,N,NS,NP,NY,ZSTERN,XSTERN,S,P,Y)

THE INITIAL VALUES SUPPLIED BY THE USER ARE STORED
IN FIELD Y AS THE DATA OF THE FIRST PARENT.

IF (KONVKR.GT.1) Z1=ZSTERN
ZBEST=ZSTERN

LBEST=0

IF(IELTER.EQ.1) GOTO 16
DSMAXI=DELTAS
DPMAXI=AMIN1(DELTAP*10.,PTHALB)
DO 14 L=2,IELTER

IF IELTER > 1, THE OTHER IELTER - 1 INITIAL VECTORS
ARE DERIVED FROM THE VECTOR FOR THE FIRST PARENT BY
MUTATION (WITHOUT SELECTION). THE STRATEGY
PARAMETERS ARE WIDELY SPREAD.

DO 4 I=1,NS
S(I)=Y(N+I)

IF (TKONTR(D) .LT.TMAXIM) GOTO 501

IFALLK=-3

GOTO 42

IF(.NOT.BKORRL) GOTO 7

DO 6 I=1,NP

P(I)=Y(N+NS+I)

CALL MUTATI
1(NL,NM,BKORRL ,DSMAXI ,DELTAI ,DPMAXI,N,NS,NP,X,S,P,
2GAUSSN,GLEICH)

MUTATION IN ALL OBJECT AND STRATEGY PARAMETERS.

(nt

8

QOO

QOO

10

11
12

13

Q Q

14

QOO

A) Evolution Strategy KORR 395

DO 8 I=1,N
X(I)=X(I)+Y(I)
IF(IFALLK.GT.0) GOTO 9

IF THE STARTING POINT IS NOT FEASIBLE, EACH
MUTATION IS CHECKED AT ONCE TO SEE WHETHER A
FEASIBLE VECTOR HAS BEEN FOUND. THE SEARCH ENDS
WITH IFALLK = 0 IF THIS IS SO0.

Z=ZULASS(N,M,X,RESTRI)

IF(Z)40,40,12

IF(M.EQ.0) GOTO 11
IF(.NOT.BLETAL(N,M,X,RESTRI)) GOTO 11

IF A MUTATION FROM A FEASIBLE STARTING POINT
RESULTS IN A NON-FEASIBLE X VECTOR, THEN THE STEP
SIZES ARE REDUCED (ON THE ASSUMPTION THAT THEY WERE
INITIALLY TOO LARGE) IN ORDER TO AVOID THE
THE CONSUMPTION OF EXCESSIVE TIME 1IN DEFINING THE
THE FIRST PARENT GENERATION.

DO 10 I=1,NS
S(I)=S(I)*.5
GOTO b5

Z=ZIELFU(N,X)

IF(Z.GT.ZBEST) GOTO 13

ZBEST=Z

LBEST=L-1

DSMAXI=DSMAXI*ALOG(2.)

CALL SPEICH
1((L-1)*NZ,BKORRL,EPSILO,N,NS,NP,NY,Z,X,S,P,Y)

STORE PARENT DATA IN ARRAY Y.

IF (KONVKR.GT.1) Z1=Z1+Z
CONTINUE

THE INITIAL PARENT GENERATION IS NOW COMPLETE.
ZSTERN AND XSTERN, WHICH HOLD THE BEST VALUES, ARE
OVERWRITTEN WHEN AN IMPROVEMENT OF THE INITIAL
SITUATION IS OBTAINED.

IF(LBEST.EQ.O0) GOTO 16

396

15
16

Q Q QQ

17

QOO

QOO0

Q Q

18

QOO

Appendix B

ZSTERN=ZBEST
K=LBEST*NZ

DO 15 I=1,N
XSTERN(I)=Y(K+I)
L1=IELTER

L2=0

IF (KONVKR.GT.1) KONVZ=0

ALL INITIALIZATION STEPS COMPLETED AT THIS POINT.
EACH FRESH GENERATION NOW STARTS AT LABEL 17.

L3=L2

L2=L1

L1=L3
IF(M.GT.0) L3=0
LMUTAT=0

LMUTAT IS THE MUTATION COUNTER WITHIN A GENERATION,
WHILE L3 IS THE COUNTER FOR LETHAL MUTATIONS WHEN
THE PROBLEM INVOLVES CONSTRAINTS.

IF (BKOMMA) GOTO 18

IF BKOMMA=.FALSE. HAS BEEN SELECTED, THE PARENTS
MUST BE INCORPORATED IN THE SELECTION. THE DATA FOR
THESE ARE TRANSFERRED FROM THE FIRST (OR SECOND)
PART OF THE ARRAY Y TO THE SECOND (OR FIRST) PART.
IN THIS CASE THE WORST INDIVIDUAL MUST ALSO BE
KNOWN, THIS IS REPLACED BY THE FIRST BETTER
DESCENDANT .

CALL UMSPEI

1 (L1*NZ,L2*NZ , IELTER*NZ ,NY,Y)

CALL MINMAX
1(-1.,L2,NZ,ZSCHL,LSCHL, IELTER,NY,Y)

THE GENERATION OF EACH DESCENDANT STARTS AT LABEL 18
K1=L1+IELTER*GLEICH(D)

RANDOM CHOICE OF A PARENT OR OF A PAIR OF PARENTS

IN ACCORDANCE WITH THE VALUE CHOSEN FOR IREKOM. IF

IREKOM=3 OR IREKOM=5, THE CHOICE OF PARENTS IS MADE
WITHIN GNPOOL.

(1 T A) Evolution Strategy KORR

QO Q

QOO QOO

QOO

QO QQ

19

20

K2=L1+IELTER*GLEICH(D)
CALL GNPOOL
1(1,L1,K1,K2,NZ,N,IELTER, IREKOS,NS,NY,S,Y,GLEICH)

STEP SIZES SUPPLIED FOR THE DESCENDANT FROM THE
POOL OF GENES.

IF (BKORRL) CALL GNPOOL
1(2,L1,K1,K2,NZ,N+NS,IELTER,IREKOP ,NP,NY,P,Y,GLEICH)

POSITIONAL ANGLES OF ELLIPSOID SUPPLIED FOR THE
DESCENDANT FROM THE POOL OF GENES WHEN CORRELATION
IS REQUIRED.

CALL MUTATI
1 (NL,NM,BKORRL ,DELTAS ,DELTAI ,DELTAP,N,NS,NP,X,S,P,
2GAUSSN,GLEICH)

CALL TO MUTATION SUBROUTINE FOR ALL VARIABLES,
INCLUDING POSSIBLY COORDINATE TRANSFORMATION. S
(AND P) ARE ALREADY THE NEW ATTRIBUTES OF THE
DESCENDANT, WHILE X REPRESENTS THE CHANGES TO BE
MADE IN THE OBJECT VARIABLES.

CALL GNPOOL
1(3,L1,K1,K2,NZ,0,IELTER, IREKOX,N,NY,X,Y,GLEICH)

OBJECT VARIABLES SUPPLIED FOR THE DESCENDANT FROM
THE POOL OF GENES AND ADDITION OF THE MODIFICATION
VECTOR. X NOW REPRESENTS THE NEW STATE OF THE
DESCENDANT .

LMUTAT=LMUTAT+1
IF(IFALLK.GT.0) GOTO 20

EVALUATION OF THE AUXILIARY OBJECTIVE FUNCTION FOR
THE SEARCH FOR A FEASIBLE VECTOR.

Z=ZULASS(N,M,X,RESTRI)
IF(Z)40,40,22
IF(M.EQ.0) GOTO 21

CHECK FEASIBILITY OF DESCENDANT. IF THE RESULT IS

397

398

Q Q

QO Q Q Q QQ QOO

QOO0

Q

C
C

21

22

23
24

25

26

NEGATIVE (LETHAL MUTATION), THE MUTATION IS NOT
COUNTED AS REGARDS THE NACHKO PARAMETER.

IF(.NOT.BLETAL(N,M,X,RESTRI)) GOTO 21
IF(.NOT.BKOMMA) GOTO 25
LMUTAT=LMUTAT-1

L3=L3+1

IF(L3.LT.NACHKO) GOTO 18

L3=0

TIME CHECK MADE NOT ONLY AFTER EACH GENERATION BUT
ALSO AFTER EVERY NACHKO LETHAL MUTATIONS FOR
CERTAINTY.

IF (TKONTR(D) .LT.TMAXIM) GOTO 18
IFALLK=3

GOTO 26

Z=ZIELFU(N,X)

EVALUATION OF OBJECTIVE FUNCTION VALUE FOR THE
DESCENDANT .

IF (BKOMMA . AND.LMUTAT.LE.IELTER) GOTO 23
IF(Z-ZSCHL)24,24,25

LSCHL=L2+LMUTAT-1

CALL SPEICH

1 (LSCHL*NZ ,BKORRL,EPSILO,N,NS,NP,NY,Z,X,S,P,Y)

TRANSFER OF DATA OF DESCENDANT TO PART OF ARRAY Y
HOLDING THE PARENTS FOR THE NEXT GENERATION.

IF(.NOT.BKOMMA.OR.LMUTAT.GE.IELTER) CALL MINMAX
1(-1.,L2,NZ,ZSCHL,LSCHL, IELTER,NY,Y)

LOOK FOR THE CURRENTLY WORST INDIVIDUAL STORED IN

ARRAY Y WITHOUT CONSIDERING THE PARENTS THAT STILL

CAN PRODUCE DESCENDANTS IN THIS GENERATION.
IF(LMUTAT.LT.NACHKO) GOTO 18

END OF GENERATION.

CALL MINMAX
1(1.,L2,NZ,ZBEST,LBEST, IELTER,NY,Y)

Appendix B

(1 T A) Evolution Strategy KORR 399

QOO

Q

Q Q

Q Q QQ

27
28

29

30

31

32

33

LOOK FOR THE BEST O0OF THE INDIVIDUALS HELD AS
PARENTS FOR THE NEXT GENERATION. IF THIS IS BETTER
THAN ANY DESCENDANT PREVIOUSLY GENERATED, THE DATA
ARE WRITTEN INTO ZSTERN AND XSTERN.

IF (ZBEST.GT.ZSTERN) GOTO 28
ZSTERN=ZBEST

K=LBEST*NZ

DO 27 I=1,N
XSTERN(I)=Y(K+I)
IF(IFALLK.EQ.3) GOTO 30
22=0.

K=L2x*NZ

DO 29 L=1,IELTER

K=K+NZ

Z2=72+Y (K)

CALL ABSCHA

1 (TELTER,KONVKR, IFALLK,EPSILO,ZBEST,ZSCHL,Z1,Z2,
2KONVZ,BKONVG)

TEST CONVERGENCE CRITERION.
IF (BKONVG) GOTO 30
CHECK TIME ELAPSED.
IF (TKONTR(D) .LT.TMAXIM) GOTO 17

PREPARE FINAL DATA FOR RETURN FROM KORR 1IF THE
STARTING POINT WAS FEASIBLE.

K=LBEST*NZ
DO 31 I=1,N
K=K+1
X(I)=Y(K)

DO 32 I=1,NS
K=K+1
S(I)=Y(K)
IF(.NOT.BKORRL) RETURN
DO 33 I=1,NP
K=K+1
P(I)=Y(K)
RETURN

400 Appendix B

PREPARE FINAL DATA FOR RETURN FROM KORR IF THE
STARTING POINT WAS NOT FEASIBLE.

QO Q

40 DO 41 I=1,N

41 XSTERN(I)=X(I)
ZSTERN=ZIELFU(N,XSTERN)
ZBEST=ZSTERN
IFALLK=0

42 RETURN
END

Subroutine PRUEFG

PRUEFG checks the values given with the parameter list on calling KORR. If discrepan-
cies are found, an attempt is made to eliminate them. If this is not possible, e.g.. arrays
required are not appropriately dimensioned, the search for the minimum is not initiated.
Then PRUEFG outputs a message to the peripheral unit denoted by KANAL on the cor-
rection of the error or else a warning message. BFATAL supplies KORR with information
on the outcome of the check as a Boolean value.

SUBROUTINE PRUEFG
1 (IELTER, BKOMMA ,NACHKO, IREKOM, BKORRL ,KONVKR , TGRENZ ,
2EPSILO,DELTAS,DELTAI ,DELTAP,N,M,NS,NP,NY,KANAL,
3BFATAL)
LOGICAL BKOMMA,BKORRL,BFATAL
DIMENSION EPSILO(4)
IREKOX = IREKOM / 100
IREKOS (IREKOM - IREKOX*100) / 10
IREKOP IREKOM - IREKOX*100 - IREKOS*10
100 FORMAT(1H ,’ CORRECTION. IELTER > O . ASSUMED: 2 AND
1 KONVKR = ’,I5)
101 FORMAT(1H ,’ CORRECTION. NACHKO > O . ASSUMED: ’,I5)
102 FORMAT(1H ,’ WARNING. BETTER VALUE NACHKO >= 6*IELTER’)
103 FORMAT(1H ,’ CORRECTION. IF BKOMMA = .TRUE., THEN
1 NACHKO > IELTER . ASSUMED: ’,I3)
1041 FORMAT(1H ,’ CORRECTION. 0 < IREKOX < 6 . ASSUMED: 1’)
1042 FORMAT(1H ,’ CORRECTION. 0 < IREKOS < 6 . ASSUMED: 1’)
1043 FORMAT(1H ,’ CORRECTION. 0 < IREKOP < 6 . ASSUMED: 1’)
105 FORMAT(1H ,’ CORRECTION. IF IELTER = 1, THEN
1 IREKOM = 111 . ASSUMED: 111°)
106 FORMAT(1H ,’ CORRECTION. IF N = 1 OR NS = 1, THEN
1 BKORRL = .FALSE. . ASSUMED: .FALSE.’)
107 FORMAT(1H ,’ CORRECTION. KONVKR > O . ASSUMED: ’,I5)

(1 T A) Evolution Strategy KORR 401

108 FORMAT(1H ,’ CORRECTION. IF IELTER = 1, THEN
1 KONVKR > 1 . ASSUMED: ’,I5)
109 FORMAT(1H ,’ CORRECTION. EPSILO(’,I1,’) > O.
1 SIGN REVERSED’)
110 FORMAT(1H ,’ WARNING. EPSILO(’,I1,’) TOO SMALL.
1 TREATED AS 0. .’)
111 FORMAT(1H ,’ CORRECTION. DELTAS >= 0.
1 SIGN REVERSED’)
112 FORMAT(1H ,’ WARNING. EXP(DELTAS) = 1.
1 OVER-ALL STEP SIZE CONSTANT’)
113 FORMAT(1H ,’ CORRECTION. DELTAI >= 0.
1 SIGN REVERSED’)
114 FORMAT(1H ,’ WARNING. EXP(DELTAI) = 1.
1 STEP-SIZE RELATIONS CONSTANT’)
115 FORMAT(1H ,’ CORRECTION. DELTAP >= 0.
1 SIGN REVERSED’)
116 FORMAT(1H ,’ WARNING. DELTAP = 0.
1 CORRELATION REMAINS FIXED’)
117 FORMAT(1H ,’ WARNING. TGRENZ <= O.
1 ONE GENERATION TESTED’)
118 FORMAT(1H ,’ CORRECTION. M >= 0 . ASSUMED: 0’)
119 FORMAT(1H ,’ FATAL ERROR. N <= 0’)
120 FORMAT(1H ,’ FATAL ERROR. NS <= 0’)
121 FORMAT(1H ,’ FATAL ERROR. NP <= 0’)
122 FORMAT(1H ,’ CORRECTION. 1 <= NS <= N . ASSUMED: ’,I5)
123 FORMAT(1H ,’ CORRECTION. IF BKOORL = .FALSE., THEN
1 NP =1 . ASSUMED: 1°)
124 FORMAT(1H ,’ FATAL ERROR. NY < (N+NS+1)*IELTER*2’)
125 FORMAT(1H ,’ CORRECTION. NY = (N+NS+1)*IELTER*2 .
1 ASSUMED: ’,I5)
126 FORMAT(1H ,’ FATAL ERROR. NP < N*(NS-1)-((NS-1)*NS)/2’)
127 FORMAT(1H ,’ CORRECTION. NP = N*(NS-1)-((NS-1)*NS)/2 .
1 ASSUMED: ’,I5)
128 FORMAT(1H ,’ FATAL ERROR. NY < (N+NS+NP+1)*IELTER*2’)
129 FORMAT(1H ,’ CORRECTION. NY = (N+NS+NP+1)*IELTER*2 .
1 ASSUMED: ’,I5)
BFATAL=.TRUE.
IF(IELTER.GT.0) GOTO 1
IELTER=2
KONVKR=N+N
WRITE (KANAL, 100)KONVKR
1 IF (NACHKO.GT.0) GOTO 2
NACHKO=6*IELTER
WRITE (KANAL,101)NACHKO

402 Appendix B

2 IF(.NOT.BKOMMA .OR.NACHKO.GE.6*IELTER) GOTO 3
WRITE (KANAL,102)
IF (NACHKO.GT.IELTER) GOTO 3
NACHKO=6*IELTER
WRITE (KANAL, 103)NACHKO

3 IF (IREKOX.GT.0.AND.IREKOX.LT.6) GOTO 301
TREKOX=1
WRITE (KANAL,1041)

301 IF (IREKOS.GT.0.AND.IREKOS.LT.6) GOTO 302
IREKOS=1
WRITE (KANAL, 1042)

302 IF(IREKOP.GT.0.AND.IREKOP.LT.6) GOTO 4
IREKOP=1
WRITE (KANAL, 1043)

4 IF(IREKOM.EQ.111.0R.IELTER.NE.1) GOTO 5
IREKOM=111
TREKOX=1
IREKOS=1
IREKOP=1
WRITE (KANAL, 105)

5 IF(.NOT.BKORRL.OR.(N.GT.1.AND.NS.GT.1)) GOTO 6
BKORRL=.FALSE.
WRITE (KANAL, 106)

6 IF (KONVKR.GT.0) GOTO 7
IF(IELTER.EQ.1) KONVKR=N+N
IF(IELTER.GT.1) KONVKR=1
WRITE (KANAL, 107)KONVKR

GOTO 8

7 IF (KONVKR.GT.1.0R.IELTER.GT.1) GOTO 8
KONVKR=N+N
WRITE (KANAL, 108)KONVKR

8 DO 12 I=1,4

IF(I.EQ.2.0R.I.EQ.4) GOTO 9
IF(EPSILO(I))10,11,12
9 IF((1.+4EPSILO(I))-1.)10,11,12
10 EPSILO(I)=-EPSILO(I)
WRITE (KANAL,109)I
GOTO 12
11 WRITE (KANAL,110)I
12 CONTINUE
IF (EXP(DELTAS)-1.)13,14,15
13 DELTAS=-DELTAS
WRITE(KANAL,111)
GOTO 15

(1 T A) Evolution Strategy KORR

14
15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

IF (EXP(DELTAI) .NE.1.) GOTO 15

WRITE (KANAL,112)

IF (EXP(DELTAI)-1.)16,17,18

DELTAI=-DELTAI
WRITE (KANAL,113)
GOTO 18

IF(IREKOS.GT.1.AND.EXP(DELTAS) .GT.1.) GOTO 18

WRITE(KANAL,114)

IF(.NOT.BKORRL) GOTO 21

IF(DELTAP)19,20,21
DELTAP=-DELTAP
WRITE (KANAL,115)
GOTO 21

WRITE (KANAL,116)

IF(TGRENZ.GT.0.) GOTO 22

WRITE (KANAL,117)
IF(M.GE.O0) GOTO 23
M=0

WRITE (KANAL,118)
IF(N.GT.0) GOTO 24
WRITE (KANAL,119)
RETURN

IF(NS.GT.0) GOTO 25
WRITE (KANAL,120)
RETURN

IF(NP.GT.0) GOTO 26
WRITE(KANAL,121)
RETURN

IF(NS.LE.N) GOTO 27
NS=N

WRITE (KANAL,122)N
IF (BKORRL) GOTO 31
IF(NP.EQ.1) GOTO 28
NP=1

WRITE (KANAL,123)

NYY=(N+NS+1)*IELTER*2

IF(NY-NYY)29,37,30
WRITE (KANAL,124)
RETURN

NY=NYY

WRITE (KANAL, 125)NY
GOTO 37

NPP=N* (NS-1)-((NS-1)*NS)/2

IF (NP-NPP)32,34,33

403

404 Appendix B

32 WRITE (KANAL, 126)
RETURN
33 NP=NPP
WRITE (KANAL, 127)NP
34 NYY=(N+NS+NP+1)*IELTER*2
IF(NY-NYY)35,37,36
35 WRITE (KANAL, 128)
RETURN
36 NY=NYY
WRITE (KANAL, 129)NY
37 BFATAL=.FALSE.
RETURN
END

Function ZULASS

This function is required only if there are constraints. If the starting point does not lie
in the feasible region, ZULASS generates an auxiliary objective function that is used to
search for a feasible initial vector.

If ZULASS, the negative sum of the values for the functions representing constraints
that have been violated, is zero, then X represents a feasible vector that can be used in
restarting the search with KORR.

XX represents XSTERN or X.

FUNCTION ZULASS

1(N,M,XX,RESTRI)

DIMENSION XX(N)

ZULASS=0.

DO 1 J=1,M

R=RESTRI(J,N,XX)

IF(R.LT.0.) ZULASS=ZULASS-R
1 CONTINUE

RETURN

END

Subroutine UMSPEI

UMSPEI is required only if BROMMA = .FALSE., whereupon the parents in the source
generation have to be subject to selection. UMSPEI transposes the data on the parents
within array Y.

K1, K2, and KK are auxiliary quantities transmitted from KORR that define the number
and addresses of the data to be transposed.

(1 T A) Evolution Strategy KORR 405

SUBROUTINE UMSPEI
1(K1,K2,KK,NY,Y)
DIMENSION Y(NY)

DO 1 K=1,KK

1 Y (K2+K) =Y (K1+K)
RETURN
END

Subroutine GNPOOL

GNPOOL supplies a set of variables for a descendant by drawing on the pool of parents
taken together in accordance with the type of recombination selected. This subroutine is
called once each for the object variables X, the strategy variables S, and possibly also P.
To minimize storage demand, the changes in the object variables by mutation are added
immediately (J = 3). In intermediary recombination for the positional angle (J = 2), a
check must be made on the difference between the parental angles to establish suitable
mean values. J = 1 denotes the case where step sizes are involved.

L1 denotes the part of the gene pool from which the parent data are to be drawn if IREKO
= 3 or IREKO = 5. K1 denotes the parent selected by KORR whose data are to be used
when IREKO = 1 (no recombination). K1 and K2 denote the two parents whose data are
to be recombined if IREKO = 2 or IREKO = 4 has been selected.

N7 and NN are auxiliary quantities for deriving the addresses in array Y.

NX represents N or NS or NP, XX represents X or S or P, IREKO represents one of the
digits of IREKOM, i.e., IREKOX or IREKOS or IREKOP.

SUBROUTINE GNPOOL
1(J,L1,K1,K2,NZ,NN,IELTER, IREKO,NX,NY ,XX,Y,GLEICH)
DIMENSION XX(NX),Y(NY)
COMMON/PIDATA/PIHALB,PIEINS,PIZWEI

EXTERNAL GLEICH

IF(J.EQ.3) GOTO 11

GoTo(1,1,1,7,9),IREKO

1 KI1=K1*NZ+NN
IF(IREKO.GT.1) GOTO 3
DO 2 I=1,NX

2 XX(I)=Y(KI1+I)
RETURN

3 KI2=K2*NZ+NN

IF(IREKO.EQ.3) GOTO 5

406

10

11

12

13

14

15

16
17

18
19

Appendix B

DO 4 I=1,NX

KI=KI1

IF(GLEICH(D) .GE..5) KI=KI2

XX(I)=Y(KI+I)

RETURN

DO 6 I=1,NX

XX1=Y(KI1+I)

XX2=Y (KI2+I)

XXI=(XX1+XX2)*.5

IF(J.EQ.1) GOTO 6

DXX=XX1-XX2

IF (ABS(DXX) .GT.PIEINS) XXI=XXI+SIGN(PIEINS,DXX)
XX(I)=XXI

RETURN

DO 8 I=1,NX
XX(I)=Y((L1+IFIX(IELTER*GLEICH(D))) *NZ+NN+I)
RETURN

DO 10 I=1,NX

XX1=Y ((L1+IFIX (IELTER*GLEICH(D))) *NZ+NN+I)
XX2=Y ((L1+IFIX (IELTER*GLEICH(D)))*NZ+NN+I)
XXI=(XX1+XX2)*.5

IF(J.EQ.1) GOTO 10

DXX=XX1-XX2

IF (ABS(DXX) .GT.PIEINS) XXI=XXI+SIGN(PIEINS,DXX)
XX(I)=XXI

RETURN

G0T0(12,12,12,18,20) ,IREKO

KI1=K1*NZ+NN

IF(IREKO.GT.1) GOTO 14

DO 13 I=1,NX

XX(I)=XX(I)+Y(KI1+I)

RETURN

KI2=K2*NZ+NN

IF(IREKO.EQ.3) GOTO 16

DO 15 I=1,NX

KI=KI1

IF(GLEICH(D) .GE..5) KI=KI2
XX(I)=XX(I)+Y(KI+I)

RETURN

DO 17 I=1,NX
XX(I)=XX(I)+(Y(KI1+I)+Y(KI2+I))*.5

RETURN

DO 19 I=1,NX

XX (I)=XX(I)+Y((L1+IFIX(IELTER*GLEICH(D))) *NZ+NN+I)

(1 T A) Evolution Strategy KORR 407

RETURN
20 DO 21 I=1,NX
21 XX(I)=XX(I)+(Y((L1+IFIX(IELTER*GLEICH(D))) *NZ+NN+I)
1+Y ((L1+IFIX(IELTER*GLEICH(D)))*NZ+NN+I))*.5
RETURN
END

Subroutine SPEICH

SPEICH transfers to the data pool Y for the parents of the next generation the data of
a descendant representing a successful mutation (the object variables X and the strategy
parameters S (and P, if used) together with the corresponding value of the objective func-

tion). A check is made that S (and P) fall within specified bounds.

J is the address in array Y from which point onwards the data are to be written and is

provided by KORR.
77 represents ZSTERN or 7, XX represents XSTERN or X.

SUBROUTINE SPEICH
1(J,BKORRL,EPSILO,N,NS,NP,NY,ZZ,XX,S,P,Y)
LOGICAL BKORRL
DIMENSION EPSILO(4),XX(N),S(NS),P(NP),Y(NY)
COMMON/PIDATA/PIHALB,PIEINS,PIZWEI
K=J
DO 1 I=1,N
K=K+1
1 Y (K)=XX(I)
DO 2 I=1,NS
K=K+1
2 Y(K)=AMAX1(S(I),EPSILO(1))
IF(.NOT.BKORRL) GOTO 4
DO 3 I=1,NP
K=K+1
PI=P(I)
IF(ABS(PI).GT.PIEINS) PI=PI-SIGN(PIZWEI,PI)
3 Y(K)=PI
4 K=K+1
Y(K)=ZZ
RETURN
END

408 Appendix B

Subroutine MINMAX

MINMAX searches for the smallest or largest value in a series of values of the objective
function held in an array. KORR calls this subroutine to determine the best or worst
parent, in the first case in order to transfer its data to the location ZBEST (and perhaps
also ZSTERN and XSTERN) and in the other case in order to give space for a better
descendant. C=1.0 initiates a search for the best (smallest) value of the function, while
C=—1.0 does the same for the worst (largest) value.

LL and N7 are auxiliary quantities used to transmit information on the position of the
required values within array Y. ZM and LM contain the best (or worst) values of the
objective function and the number of the corresponding parent minus one.

SUBROUTINE MINMAX
1(c,LL,NZ,ZM,LM,IELTER,NY,Y)
DIMENSION Y(NY)
LM=LL
K1=LL*NZ+NZ
ZM=Y (K1)
IF(IELTER.EQ.1) RETURN
K1=K1+NZ
K2=(LL+IELTER)*NZ
KM=LL
DO 1 K=K1,K2,NZ
KM=KM+1
ZZ=Y (K)
IF((ZZ-ZM)*C.GT.0.) GOTO 1
ZM=Z7Z
LM=KM

1 CONTINUE
RETURN
END

Subroutine ABSCHA

ABSCHA tests the convergence criterion. If KONVKR = 1 has been selected, the dif-
ference between the objective function values representing the best and worst parents
(ZBEST and ZSCHL) must be less than the limits set by EPSILO(3) (absolute) or EP-
SILO(4) (relative). Then the assignment BKONVG = .TRUE. is made.

Alternatively, the current difference ZSCHL-ZBEST is replaced by the change Z1—-72 in
the sum of all the parent objective function values occurring after KONVKR generations

divided by IELTER.

The Boolean variable BKONVG transmits the result of the convergence test to KORR.

(1 T A) Evolution Strategy KORR 409

KONVYZ is the generation counter if KONVKR > 1.

SUBROUTINE ABSCHA
1 (TELTER,KONVKR, IFALLK,EPSILO,ZBEST,ZSCHL,Z1,Z2,
2KONVZ,BKONVG)
LOGICAL BKONVG
DIMENSION EPSILO(4)
IF (KONVKR.EQ.1) GOTO 1
KONVZ=KONVZ+1
IF (KONVZ.LT.KONVKR) GOTO 3
KONVZ=0
DELTAF=Z1-72
21=72
GOTO 2
1 DELTAF=(ZSCHL-ZBEST) *IELTER
IF (DELTAF.GT.EPSILO(3)*IELTER) GOTO 3
IF (DELTAF.GT.EPSILO(4)*ABS(Z2)) GOTO 3
IFALLK=ISIGN(2,IFALLK)
BKONVG=.TRUE.
RETURN
3 BKONVG=.FALSE.
RETURN
END

Function GAUSSN

GAUSSN converts a uniform random number distribution to a normal one. The function
has been programmed for the trapezium algorithm (J. H. Ahrens and U. Dieter, Computer
Methods for Sampling from the Exponential and Normal Distributions, Communications
of the Association for Computing Machinery, vol. 15 (1972), pp. 873-882 and 1047). The
Box-Muller rules require in many cases (machine-dependent) a longer run time even if
both of the pair of numbers can be used.

SIGMA 1is the standard deviation, which is multiplied by the random number derived
from a (0.0,1.0) normal distribution.

FUNCTION GAUSSN
1 (SIGMA,GLEICH)

1 U=GLEICH(D)
UO=GLEICH(D)
IF(U.GE. .919544406) GOTO 2
X=2.40375766*(U0+U*.825339283)-2.11402808
GOTO 10

410 Appendix B

2 IF(U.LT..965487131) GOTO 4

3 U1=GLEICH(D)
Y=SQRT(4.46911474-2.%AL0OG(U1))
U2=GLEICH(D)
IF(Y*U2.GT.2.11402808) GOTO 3

GOTO 9
4 IF(U.LT..949990709) GOTO 6
5 U1=GLEICH(D)

Y=1.84039875+U1%.273629336

U2=GLEICH(D)
IF(.398942280*EXP (- .5%Y*Y)-.443299126+Y*.209694057
1.LT.U2%.0427025816) GOTO 5

GOTO 9
6 IF(U.LT..925852334) GOTO 8
7 U1=GLEICH(D)

Y=.289729574+U1%1.55066917
U2=GLEICH(D)
IF(.398942280*EXP (- .5%Y*Y)-.443299126+Y*.209694057
1.LT.U2%.0159745227) GOTO 7
GOTO 9
8 U1=GLEICH(D)
Y=U1x%.289729574
U2=GLEICH(D)
IF (.398942280+EXP (- .5%Y*Y)~-.382544556
1.LT.U2%.0163977244) GOTO 8
9 X=Y
IF(UO0.GE..5) X=-Y
10 GAUSSN=5IGMAx*X
RETURN
END

Subroutine DREHNG
DREHNG is called from MUTATTI only if BKORRL = .TRUE. and N > 1. DREHNG

performs the coordinate transformation of the modification vector for the object vari-
ables. Although the components of this vector are initially mutually independent, they
are linearly related on account of the rotation specified by the positional angles P and so
are correlated. The transformation involves NP partial rotations, in each of which only

two of the components of the modification vector are involved.

(1 T A) Evolution Strategy KORR 411

SUBROUTINE DREHNG
1 (NL,NM,N,NP,X,P)
DIMENSION X(N),P(NP)
NQ=NP
DO 1 II=NL,NM
N1=N-II
N2=N
DO 1 I=1,1II
X1=X(N1)
X2=X(N2)
SI=SIN(P(NQ))
C0=C0S(P(NQ))
X(N2)=X1*SI+X2*CO
X(N1)=X1*C0-X2*SI
N2=N2-1

1 NQ=NQ-1
RETURN
END

Logical function BLETAL

BLETAL tests the feasibility of an object variable vector immediately on production if
constraints are imposed. The first constraint to be violated causes BLETAL to signal
to KORR via the function name (declared as a Boolean variable) that the mutation was

lethal.

LOGICAL FUNCTION BLETAL
1(N,M,X,RESTRI)
DIMENSION X(N)

DO 1 J=1,M

IF(RESTRI(J,N,X).LT.0.) GOTO 2
1 CONTINUE

BLETAL=.FALSE.

RETURN
2 BLETAL=.TRUE.

RETURN

END

Subroutine MUTATI

MUTATT handles the random alteration of the strategy variables and the object vari-
ables. First, the step sizes are altered in accordance with the DELTAS and DELTAI

412 Appendix B

parameters by multiplication by two random factors with log-normal distributions. The
resulting normal distribution is used in a random vector X that represents the changes
in the object variables. If BKORRL = .TRUE. is set when KORR is called, i.e., linear
correlation is required, the positional angle P is also mutated, with random numbers from

a (0.0,DELTAP) normal distribution added to the original values. Also, DREHNG is

called in that case to transform the vector of modifications to the object variable.

NL and NM are auxiliary quantities transmitted from KORR via MUTATI to DREHNG.

SUBROUTINE MUTATI
1 (NL,NM,BKORRL,DELTAS ,DELTAT ,DELTAP,N,NS,NP,X,S,P,
2GAUSSN,GLEICH)
LOGICAL BKORRL
DIMENSION X(N),S(NS),P(NP)
EXTERNAL GLEICH
DS=GAUSSN(DELTAS,GLEICH)
DO 1 I=1,NS
1 S(I)=S(I)*EXP(DS+GAUSSN(DELTAI,GLEICH))
DO 2 I=1,N
2 X(I)=GAUSSN(S(MINO(I,NS)),GLEICH)
IF(.NOT.BKORRL) RETURN
DO 3 I=1,NP
3 P(I)=P(I)+GAUSSN(DELTAP,GLEICH)
CALL DREHNG
1 (NL,NM,N,NP,X,P)
RETURN
END

Without modifications the subroutines EVOL, GRUP, and KORR may be used to solve
optimization problems with integer (or discrete) and mixed-integer variables. The search
for an optimum then, however, will only lead into the vicinity of the exact solution.

The discreteness may be induced by the user when formulating the objective function, by
merely rounding the correspondent variables to integers or by attributing discrete values
to them.

The following two examples will give hints only to possible formulations. In order to get
the results in the form wanted the variables will have to be transformed in the same man-
ner at the end of the optimum search with EVOL, GRUP, or KORR, as is done within

the objective function.

(1 T A) Evolution Strategy KORR 413

Example 1

Minimize

FUNCTION F(N,X)
DIMENSION X(N)
F=0.

DO 1 I=1,N
IX=IFIX(ABS(X(I)))
XI=FLOAT(IX-I)

F=F+XI*XI
1 CONTINUE
RETURN
END
Example 2
Minimize

F(z) = (21 — 2)* + (21 — 223)*
with z7 from {1.3, 1.5, 2.2, 2.8} only

FUNCTION F(N,X)
DIMENSION X(N), Y(4)
DATA Y /1.3,1.5,2.2,2.8/
DO 1 I=1,4
X1=Y(I)
IF (X(1)-X1) 2,2,1

1 CONTINUE
F1=X1-2.
F2=X1-X(2)-X(2)
F =F1*F1+F2*F2
RETURN
END

414 Appendix B

