Appendix A

Catalogue of Problems

The catalogue is divided into three groups of test problems corresponding to the three
divisions of the numerical strategy comparison. The optimization problems are all for-
mulated as minimum problems with a specified objective function F'(x) and solution x*.
For the second set of problems, the initial conditions (®) are also given. Occasionally,
further local minima and other stationary points of the objective function are also indi-
cated. Inequality constraints are formulated such that the constraint functions Gi;(x) are
all greater than zero within the allowed or feasible region. If a solution lies on the edge
of the feasible region, then the active constraints are mentioned. The values of these con-
straint functions must be just equal to zero at the optimum. Where possible the structure
of the minimum problem is depicted geometrically by means of a two dimensional contour
diagram with lines F'(x1,22) = const. and as a three dimensional picture in which values
of F(xy1,x2) are plotted as elevation over the (1, x2) plane. Additionally, the values of
the objective function on the contour lines are specified. Constraints are shown as bold
lines in the contour diagrams. In the 3D plots the objective function is mostly floored
to minimal values within non-feasible regions. In some cases there is a brief mention of
any especially characteristic behavior shown by individual strategies during their iterative
search for the minimum.

A.1 Test Problems for the First Part of the
Strategy Comparison

Problem 1.1 (sphere model)

Objective function:

Minimum:

i =0, for i =1(1)n, F(z*)=0

For n = 2 a contour diagram as well as a 3D plot are sketched under Problem 2.17. For
this, the simplest of all quadratic problems, none of the strategies fails.
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Problem 1.2
Objective function:

n 7 2

Fx)=)_ ( flfj)

=1 \7=1
Minimum:
=0, for i =1(1)n, F(z")=0
A contour diagram as well as a 3D plot for n = 2 are given under Problem 2.9. The

objective function of this true quadratic minimum problem can be written in matrix
notation as:

F(x) —2l Az

The n x n matrix of coefficients A is symmetric and positive-definite. According to
Schwarz, Rutishauser, and Stiefel (1968) its condition number K is a measure of the
numerical difficulty of the problem. Among other definitions, that of Todd (1949) is
useful, namely:

where

Amaz = max{|A;|,2 = 1(1)n}

and similarly for A,,;,. The A; are the eigenvalues of the matrix A, and the a; are the
lengths of the semi-axes of an n-dimensional elliptic contour surface F'(x) = const.
Condition numbers for the present matrix

[ n n—1 n—?2 cooom—g4+1 .0 17
n—1 n—1 n—?2 cooom—g341 .01
n—?2 n—?2 n—?2 cooom—g341 .01
n—t+1 ... n—z4+1 ... n—24+1 ... o1

1 1 1 1 1]

were calculated for various values of n by means of an algorithm of Greenstadt (1967b),
which uses the Jacobi method of diagonalization. As can be seen from the following table,
K increases with the number of variables as O(n?).
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n K K /n?

1 1 1

2 6.85 1.71
3 16.4  1.82
6 64.9 1.80
10 175 1.75

20 678 1.69
30 1500 1.67
60 5930 1.65
100 16400 1.64

Not all the search methods achieved the required accuracy. For many variables the co-
ordinate strategies and the complex method of Box terminated the search prematurely.
Powell’s method of conjugate gradients even got stuck without the termination criterion
taking effect.

A.2 Test Problems for the Second Part of the
Strategy Comparison

Problem 2.1 after Beale (1958)
Objective function:

2
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Figure A.1: Graphical representation of Problem 2.1
F(x)=/0.1,1,4,~14.20, 36, 100/
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Minimum:

" =(3,0.5), F(z")=0
Besides the strong minimum z* there is a weak minimum at infinity:
' — (—o0,1), F(z')— 0
Saddle point:
2" =(0,1), F(a") ~ 14.20

Start:
2@ =0,0), F(z")~14.20
For very large initial step lengths the (141) evolution strategy converged once to the weak

minimum z’.

Problem 2.2
As Problem 2.1, but with:

Start:
¢ =(0.1,01),  F(z)~12.99

Problem 2.3

Objective function:

Fa) = —|esin(y/]])]

-~
- 400
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Figure A.2: Diagram F(x) for Problem 2.3
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There are infinitely many local minima, the position of which can be specified by a

V7] =2 tan (y/]27))

For |z*| > 1 we have approximately

transcendental equation:

¥~ (7 (0.5 +k))?, for K =1,2,3,... integer
and
F(z7) ~ |27

Whereas in reality none of the finite local minima is at the same time a global minimum,
the finite word length of the digital computer used together with the system-specific
method of evaluating the sine function give rise to an apparent global minimum at

¥ = +4.44487453 - 106

F(z*) = —4.44487453 - 10'°

Counting from the origin it is the 67,108, 864th local minimum in each direction. If x is
increased above this value, the objective function value is always set to zero. (Note that
this behavior is machine dependent.)

Start:
0 =0, F(z)y =0

Most strategies located the first or highest local minimum left or right of the starting
point (the origin). Depending on the sequence of random numbers, the two membered
evolution method found (for example) the 2nd, 9th, and 34th local minimum. Only the
(10, 100) evolution strategy almost always reached the apparent global minimum.

Problem 2.4

Objective function:

Minimum:

Start:

Problem 2.5 after Booth (1949)

Objective function:

F(z)=(z1 422 =1+ (22 + 22— 5)°
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Test Problems for the Second Part of the Strategy Comparison

An approach to the latter problem is to determine those values of x; and x5 that min-

The error is defined here in the sense of a Gaussian

approximation as the sum of the squares of the components of the residual vector.

imize the error in the equations.

Minimum:

F(z")=0

" =(1,3),

Start:

F(z©) =74

2 =1(0,0),

Objective function:

Problem 2.6

max{|zy +2x9 — 7|, 221 + 25 — 5|}

)

This represents an attempt to

F(x

solve the previous system of linear equations of Problem

2.5 in the sense of a Tchebycheft approximation. Accordingly, the error is defined as the

absolute maximum component of the residual vector.

Minimum:

Start:

0

IR

R

Figure A.5: Graphical representation of Problem 2.6

F(z)=/1,2,3,4,5,6,7,8,9,10,11/
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Several of the search procedures were unable to find the minimum. They converge to a
point on the line x1 45 = 4, which joins together the sharpest corners of the rhombohedral
contours. The partial derivatives of the objective function are discontinuous there; in the
unit vector directions, parallel to the coordinate axes, no improvement can be made.
Besides the coordinate strategies, the methods of Hooke and Jeeves and of Powell are
thwarted by this property.

Problem 2.7 after Box (1966)
Objective function:

10

F(z)= Z (exp (—0.1ja1) —exp (—0.1j 22) — x5 [exp (—0.17) — exp (—j)])2

i=1

Minima:

= (1,10,1), F(z*)=0
" =(10,1,—-1), F(z")=0

Besides these two equivalent, strong minima there is a weak minimum along the line

Because of the finite computational accuracy the weak minimum is actually broadened
into a region:
a ~ oy, x5 ~ 0, F(z") =0, if 21> 1

M I
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Figure A.6: Graphical representation of Problem 2.7 on the plane
z3 =1, F(x)=/0.03,0.3,1,~3.064, 10,30/
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Figure A.7: Graphical representation of Problem 2.7 on the planes
left: @3 = 0, right: z3 = —1,
F(x)=/0.03,0.3,1,~3.064, 10,30/
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Many strategies only roughly located the first of the strong minima defined above. The
evolution strategies tended to converge to the weak minimum, since the minima are at
equal values of the objective function. The second strong minimum, which is never re-
ferred to in the relevant literature, was sometimes found by the multimembered evolution

strategy.
Problem 2.8
As Problem 2.7, but with
Start:

2 =(0,10,20),  F(z®) ~ 1031
Problem 2.9
Objective function: '

F(z)=> > ;) forn=>5

=1 ;=1
Minimum:
xf =0 for i =1(1)n, F(z*)=0

Start:
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Numerical values of the constants a; and b; for ¢ = 1(1)11 can be taken from the following

table

1
0

2 0.1947
3 0

4 0
5 0.0844

6 0.0627
7 0.0456
8 0.0342
9 0.0323
10 0.0235

11
1
11

2.

7

see also Kowalik and Morr

?

/4,36, 100, 196,324, 484/

F(e)

Figure A.8: Graphical representation of Problem 2.9 for n = 2

Problem 2.10 after Kowalik (1967

Objective function
In this non-linear fitting problem, formulated as a m
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a;,j = 1(1)4 of a function
ay (22 4+ az 2)

22t asz+ oy

y(z) =

have to be determined with reference to eleven data points {y;, z;} such that the error, as
measured by the FEuclidean norm, is minimized (Gaussian or least squares approximation).
Minimum:

o~ (0.1928,0.1908,0.1231,0.1358),  F(z*) ~ 0.0003075
Start:
2@ =(0,0,0,0),  F(2)~0.1484

Near the optimum, if the variables are changed in the last decimal place (with respect
to the machine accuracy), rounding errors cause the objective function to behave almost
stochastically. The multimembered evolution strategy with recombination yields the best
solution. It deviates significantly from the optimum solution as defined by Kowalik and
Osborne (1968). Since this best value has a quasi-singular nature, it is repeatedly lost
by the population of a (10,100) evolution strategy, with the result that the termination
criterion of the search sometimes only takes effect after a long time if at all.

Problem 2.11
As Problem 2.10, but with:

Start:
2 =(0.25,0.39,0.415,0.39),  F(2®) ~0.005316

Problem 2.12
As Problem 2.10, but with:

Start:
2 = (0.25,0.40,0.40, 0.40) , F(2®) ~ 0.005566

Problem 2.13 after Fletcher and Powell (1963)

Objective function:

F(z) = Z (A; — Bi(z))?, forn =25
=1
where .
> (agjsina; + b cos aj)

Il
—

A=
= fori=1(1)n
Bi(xz) = 3 (agsina; + by cos x;)

7=1
a;j and b;; are integer random numbers in the range [—100,100], and «; are random
numbers in the range [—#, 7]. A minimum of this problem is simultaneously a solution of
the equivalent system of n simultaneous non-linear (transcendental) equations:
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Figure A.9: Graphical representation of Problem 2.13 for n = 2.

a1 = —2, a;3 = 27, as = —70, as; = —48
bll = —76, b12 = —51, b21 = 63, bzz = —50
a; = —3.0882, ay = 2.0539

F(x) = /238.864,581.372,1403.11, 3283.14, 7153.45,
13635.3,21479.6,27961.4,31831.7,33711.8,34533.5/

Z (aj;sina; + by cosa;) = Ay, for ¢ = 1(1)n

=1
The solution is again approximated in the least squares sense.

Minimum:

rr = a, for ¢ = 1(1)n, F(z™)=0

K3

Because the trigonometric functions are multivalued there are infinitely many equivalent
minima (real solutions of the system of equations), of which up to 2" lie in the interval

o —r7<x;<a;+T7, for ¢ = 1(1)n

Start:
0)

=a; + 6;, for ¢ = 1(1)n

2|
where ¢; are random numbers in the range [—7 /10, 7 /10]. To provide the same conditions
for all the search methods the same sequence of random numbers was used in each case,
and hence
F(a®) ~ 1182
Because of the proximity of the starting point to the one solution, =¥ = «; for ¢ = 1(1)n,
all the strategies approached this minimum only.
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Problem 2.14 after Powell (1962)

Objective function:
F(z) = (z1 +1022)* + 5 (23 — 24)* + (22 — 223)* + 10 (2; — 24)*
Minimum:
" =(0,0,0,0), F(z™)=0

Start:
¢ =(3,-1,0,1), F@9)=215

The matrix of second partial derivatives of the objective function goes singular at the
minimum. Thus it is not surprising that a quasi-Newton method like the variable metric
method of Davidon, Fletcher, and Powell (applied here in Stewart’s derivative-free form)
got stuck a long way from the minimum. Geometrically speaking, there is a valley which
becomes extremely narrow as it approaches the minimum. The evolution strategies there-
fore ended up by converging very slowly with a minimum step length, and the search had
to be terminated for reasons of time.

Problem 2.15
As Problem 2.14, except:

Start:
¢ =(1,2,3,4),  F(z©)=1512

Problem 2.16 after Leon (1966a)

Objective function:
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Figure A.10: Graphical representation of Problem 2.16
F(x) = /0.25,4, 64,250, 1000, 5000, 10000/
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Figure A.12: Graphical representation of Problem 2.18
F(x)=/1,3,10,30, 100,300/

The coordinate strategies terminated the search prematurely because of the lower bounds
on the step lengths (as determined by the machine), which precluded making any more
successful line searches in the coordinate directions.

Problem 2.19 by Wood (after Colville, 1968)

Objective function:
2 2
F(z) =100 (:1;1 — :1;3) + (z2 — 1)2 + 90 (:1;3 — l’i) + (x4 — 1)2

+10.1 (21— 1)? + (w5 — 1)2] +19.8 (2 — 1)(ws — 1)

Minimum:

= (1,1,1,1), F(z*)=0

There is another stationary point near
v~ (1,-1,1,-1), F(a') ~ 8

According to Himmelblau (1972a,b) there are still further local minima.

Start:
x(O) = (_17 _37 _17 _3)7 F(x(O)) = 19192

A very narrow valley appears to run from the stationary point z’ to the minimum. All
the coordinate strategies together with the methods of Hooke and Jeeves and of Powell
ended the search in this region.



Appendix A

te

1ma

The method of

forn=2>5

forn=2>5

S5
jesigesyss
SIS

¢9¢¢“~”¢¢~“¢”~"ﬂ"ﬂ~¢
SISO
OSSO,
eeNIstestianten:

SRR

85eesS

S

RS
RSSO

RS

s

_V“C S

Z|x2|7

7

1

1

i=1(1)

for

f Problem 2.20 for n = 2

mon o

ot
I,
I
DI,

N
N

\\\
Y
)

RN
NN
RN
TR
N
S

340

Problem 2.20

Objective function

inimum

M

Start

Problem 2.21

Objective function

max{|z;|, ¢ = 1(1)n},

inimum

M

Start

Since the start

t is at a corner of the cubic contour surface, none of the coord
strategies could find a point with a lower value of the objective function.
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Figure A.14: Graphical representation of Problem 2.21 for n = 2
F(x)=/2,4,6,8,10/

Powell also ended the search without making any significant improvement on the initial
condition. Both the simplex method of Nelder and Mead and the complex method of Box
also had trouble in the minimum search; in their cases the initially constructed simplex
or complex collapsed long before reaching the minimum, again near one of the corners.

Problem 2.22

Objective function:
F(z) =Y |ai| 4+ ] |, forn =5
=1 =1

Minimum:

xr =0, for i =1(1)n, F(z")=0

Start:
2=10,  fori=1n,  F(=)=100050

K3

The simplex and complex methods did not find the minimum. As in the previous Problem
2.21, this is due to the sharply pointed corners of the contours. The variable metric
strategy also finally got stuck at one of these corners and converged no further. In this
case the discontinuity in the partial derivatives of the objective function at the corners is

to blame for its failure.
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Problem 2.23
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Start:
:1;50) =10, for i =1(1)n, F(z®) =5.10"

Only the two strategies that have a quadratic internal model of the objective function,

namely the variable metric and conjugate directions methods, failed to converge, because
the function F'(x) is of much higher (10th) order.

Problem 2.24 after Rosenbrock (1960)

Objective function:
F(z) =100 (zg — 27)* + (21 — 1)?
Minimum:
= (1,1), F(z")=0
Start:
¢ =(-1.2,1),  F(29) =242

Problem 2.25

Objective function:

F(l')zz[(51?1—51??)24-(:1?2'—1)2], forn=>5
1=2
Minimum:

zf =1, for i =1(1)n, F(z")=0

&
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Figure A.17: Graphical representation of Problem 2.24
F(x)=/0.5,4,20,100, 250,500, 1000, 2000, 5000/
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Start:
:1;(»0) =10

K3 b

fori=1(1)n,  F(z%)=32124

For n = 2 this becomes nearly the same as Problem 2.24.

Problem 2.26
Objective function:
F(z) = —xsin(y/|z])

This problem is the same as Problem 2.3 except for the modulus. The difference has
the effect that the neighboring minima are further apart here. The positions of the local
minima and maxima are described under Problem 2.3.

Start:
0 =0, F(z)y =0

Again, only the multimembered evolution strategy converged to the apparent global min-
imum; all the other methods only converged to the first (nearest) local minimum.

Problem 2.27 after Zettl (1970)

Objective function:

F(z) = (:1;% + :1;3 — 2:1;1)2 +0.25 24

Minimum:

2"~ (—0.02990,0),  F(z*) ~ —0.003791

- 400

VY

- —400

v

Figure A.18: Diagram F'(x) of Problem 2.26
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Figure A.19: Graphical representation of Problem 2.27
F(x)=/0.03,0.3,1,3,10,30/

Because of rounding errors this same objective function value is reached for various pairs
of values of x1, x,.

Local maximum:

&\
12
—~
=
o
jop)
\'O-'J
o
~—
M
—
=
N
12

1.258
Saddle point:

[

o~ (1.967,0),  F(a") ~ 0.4962
Start:

Problem 2.28 of Watson (after Kowalik and Osborne, 1968)

Objective function:

9 2
30 [ 5 4 6 4
Fle)=73 (Gal ) = |3 (a7 )| — 1| +at
=1 \ 7=1 7=1
where
7 — 1

a; =

29

The origin of this problem is the approximate solution of the ordinary differential equation
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on the interval 0 < y < 1 with the boundary condition z(y = 0) = 0. The function
sought, z(y), is to be approximated by a polynomial

Hey) = ciy’™!
7=1

In the present case only the first six terms are considered. Suitable values of the poly-
nomial coefficients ¢;, 7 = 1(1)6, are to be determined. The deviation from the exact
solution of the differential equation is measured in the Gaussian sense as the sum of the
squares of the errors at m = 30 argument values y;, uniformly distributed in the range

[0,1]

2
<2
-z (C,y) vi - 1)
Y

The boundary condition is treated as a second simultaneous equation by means of a
similarly constructed term:

Fi(e) = i (ag(az v)

=1

Fy(e) = 22(0, y)‘

By inserting the polynomial and redefining the parameters ¢; as variables z; we obtain
the objective function F(x) = Fi(x) + Fy(x), the minimum of which is an approximate
solution of the parameterized functional problem.

y=0

Minimum:
"~ (—0.0158,1.012, —0.2329, 1.260, —1.513,0.9928), F(2™) ~0.002288

Start:
2 =1(0,0,0,0,0,0), F(2®) =30

Judging by the number of objective function evaluations all the search methods found
this a difficult problem to solve. The best solution was provided by the complex strategy.

Problem 2.29 after Beale (1967)

Objective function:

F(z) =22 4+22) + a5+ 22129+ 22103 — 82y — 62y —d g+ 9

Constraints:
Gi(x)=x; >0, for j =1(1)3
Gylr)=—x1—a2—223+32>0
Minimum:
S (%, g, %) ) F(z™) = %, only Gy active, i.e., Gy(2™) =0
Start:

¢ =1(0.1,0.1,0.1),  F(z©)=7.29
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Problem 2.30
As Problem 2.3, but with the constraints

Gh(x)=—x+3002>0, Gy(z) =2 +300>0

The introduction of constraints gives rise to two equivalent, global minima at the edge of
the feasible region:
Minima:

™ = +£300, F(a™) ~ —299.7, (1 or (G5 active

In addition there are five local minima within the feasible region. Here too, the absolute
minima were only located by the multimembered evolution strategy.

Problem 2.31
As Problem 2.4, but with constraints:

Gi(e)=2;,—12>0, for j =1(1)n, n=>5
Minimum:
x, =1, for ¢ = 1(1)n, F(z")=0, all G; active
Start:
2% =10, fori=1(1)n,  F(z®)=61105

The starting point is located outside of the feasible region.

FGO

A\ oo 7

Figure A.20: Diagram F'(z) for Problem 2.30
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Problem 2.32 after Bracken and McCormick (1970)

Objective function:

F(z) = —af — 23
Constraints:
Gi(x)=12;>0, for j =1,2
Gs(x)=—-21+12>0, Gylz)=—21—4a24+5>0
Minimum:

= (1,1), F(z™)= -2, (i3 and Gy active

Besides this global minimum there is another local one:

7 = (0, —) , F(2') = 16 (G and G4 active

Start:
¢ =(0,0), F9)=0

All the search methods converged to the global minimum.

Problem 2.33 after Zettl (1970)
As Problems 2.14 and 2.15, but with the constraints:

Gi(x)=2;42—22>0, for j =1,2

i)

Figure A.21: Graphical representation of Problem 2.32
F(x)=/0.04,0.16,0.36,0.64,1.0,1.44,1.96,2.56,3.24,4/
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Minimum:
™ = (1.275,0.6348,2.0,2.0) , F(z™) ~ 189.1, all G; active

Start:
¢ =(1,2,3,4),  F(z©)=1512

The (14+1) evolution strategy only solved the problem very inaccurately. Due to the 1/5
success rule the mutation variances vanish prematurely.

Problem 2.34 after Fletcher and Powell (1963)

Objective function:

Fz) =100 (x5 — 100)* + (R — 1)°] + 23

where
1= R cos (27 6)
9 = Rsin (27 6)
or
R = /2% + 23
%arctam i—f, if 29 # 0 and 21 > 0
0 = % 5 if Lo — 0
%(F—I— arctan i—f), if 29 # 0 and 21 <0
Constraints:
Minimum:

= (1,~0,0), F(z")=0, no constraint is active

The objective function itself has a discontinuity at o = 0, right at the minimum sought.
Thus x5 should only be allowed to approach closely to zero. Because of the multivalued
trigonometric functions there are infinitely many solutions to the problem, of which only
one, however, lies within the feasible region.

Start:
2 =(=1,0,0),  F(z) = 2500

Problem 2.35 after Rosenbrock (1960)

Objective function:
F(z)= -z 2325
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Constraints:

Gi(x)=12;>0, for j =1(1)3
G4($> = —I —21’2 —2$3—|—72 Z 0

The underlying question here was: What dimension should a parcel of maximum volume
have, if the sum of its length and transverse circumference is bounded?

Minimum:

ot =(24,12,12), F(z™) = —3456 , G4 active

Start:
¢ =1(0,0,00, F=0

All variants of the evolution strategy converged only to within the neighborhood of the
minimum sought, because in the end only a fraction of all trials were feasible.

Problem 2.36

This is derived from Problem 2.35 by treating the constraint G4, which is active at the
minimum, as an equation, and thereby eliminating one of the free variables. With

420, + 2a) =72

we obtain
F'(z) = —(72 = 22}, — 2a%) vy a3

or by renumbering of the variables a new objective function:

F(z)=—2122(72 =221 — 213)

Figure A.22: Graphical representation of Problem 2.36
F(x) =/ — 3400,—-3000, —2000, —1000, —300, 300, 1000/
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Constraints:
Gi(x)=12;>0, for j =1,2
Minimum:
"= (12,12), F(2™) = —3456, no constraints are active
Start:

O =11,  F=?)=-68

Y

Problem 2.37 (corridor model)
Objective function:

F(:z;):—z:zji, forn =3
=1

Constraints:

—x;+100 >0, for j = 1(1)n

Jj—n -
. B . Jj—ntl . B
G]‘(l'): Lj—nt1 i-n Z:lxl—l_ i—n >0, forn+1<j53<2n—-1

1=

7—2n+1

—2nt2 :
_xj—2n+2+j—2++1 Z; xi+./§_2+1120, for2n <j <3n-—2

Figure A.23: Graphical representation of Problem 2.37 for n = 2
F(x)=/—220,-215,—210, —205, —200, —195,
—190, —185,—180, —175, —170, —165, —160/
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The constraints form a feasible region, which could be described as a corridor with a
square cross section (three dimensionally speaking). The axis of the corridor runs along
the diagonal in the space

T =X =T3=...=I,

The contours of the linear objective function run perpendicular to this axis. In order
to obtain a finite minimum further constraints were added, whereby a kind of pencil
point is placed on the end of the corridor. In the absence of these additional constraints
the problem corresponds to the corridor model used by Rechenberg (1973), for which he
derived theoretically the rate of progress (a measure of the convergence rate) of the two
membered evolution strategy.

Minimum:
7 =100, for i =1(1)n, F(z™) = =300, G1 to G, active

Start:

Problem 2.38
As Problem 2.25, but with the additional constraints:

Gi(e)=2;,—12>0, for j =1(1)n, n=>5
Minimum:
i =1, for ¢ = 1(1)n, F(z*)=0, all G; active
Start:
2 =10,  fori=1(1)n,  F(a®)=48884

The starting point is not in the feasible region.

Problem 2.39 after Rosen and Suzuki (1965)

Objective function:

F(x):x%+$§+2$§—|—l’i—5$1—5$2—21$3+7$4

Constraints:
Gh(z) = —2x%—x§—x§—2xl—l—x2—l—x4—l—520
Go(z) = —ai—a—a5— 28— +a9—a3+24+8>0
Gy(x) = —a) =222 —a2—225+a+ 24 +102>0
Minimum:

" =(0,1,2,-1), F(z™) = —44, (7, active
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Start:
¢ =1(0,0,0,00, F®) =0

None of the search methods that operate directly with constraints, i.e., without reformu-
lating the objective functions, managed to solve the problem to satisfactory accuracy.

Problem 2.40

Objective function:

Constraints:
x; >0, for j = 1(1)5

Gi(x) = 5
— > (941¢)x; + 50000 >0, forj==~6
=1

This is a simple linear programming problem. The solution is in a corner of the allowed
region defined by the constraints (simplex).

Minimum:

™ = (5000,0,0,0,0), F(z™) = =5000, (G5 to Gg active

Tid0)

Figure A.24: Graphical representation of Problem 2.40 on the plane
r3 = T4 = Xy = 0
F(x)=/— 10500, —9500, —8500, —7500, —6500,
—5500, —4500, —3500, —2500, — 1500, —500, 500/
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Start:
2 = (250,250,250,250,250),  F(z©) = —1250

In terms of the values of the variables, none of the strategies tested achieved accuracies
better than 1072. The two variants of the (10,100) evolution strategy came closest to
the exact solution.

Problem 2.41

Objective function:

=1
Constraints:
as for Problem 2.40
Minimum: 50000 250000
* e I F * - —
’ (0’0’0’0’ 14 ) ’ (27) 14
G active for y = 1,2,3,4,6
Start:

2 = (250,250,250, 250, 250) , F(z®) = —3750

This problem differs from the previous one only in the numerical values; regarding the
accuracies achieved, the same remarks apply as for Problem 2.40.

Figure A.25: Graphical representation of Problem 2.41 on the plane
Lo = T3 = X4 = 0
F(z) =/ — 30000, —25000, —20000
—15000, —10000, —5000, 0/
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Problem 2.42

Objective function:

Constraints:
as for Problems 2.40 and 2.41
Minimum:
" =(0,0,0,0,0), F(z")=0, G1 to G5 active
Start:

#© = (250,250,250, 250,250),  F(2®) = 3750

The minimum is at the origin of coordinates. The evolution strategies were thus better
able to approach the solution by adjusting the individual step lengths. The multimem-
bered strategy with recombinations yielded an exact solution with variable values less
than 1078,

Problem 2.43
As Problem 2.42, except:

Start:
2 = (=250, —250, —250, —250, —250) , F(z®) = —3750

The starting point is not in the feasible region.
The solutions are the same as in Problem 2.42.

Fxix)

Figure A.26: Graphical representation of Problem 2.42 on the plane
r3 = T4 = Xy = 0
F(x)= /- 1000,1000, 3000, 5000,
7000, 9000, 11000, 13000, 15000/
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Problem 2.44
As Problem 2.26, but with additional constraints:

Gh(x)=—x+3002>0, Gy(z) =2 +300>0

Minimum:

¥ =-=300, F(a™) ~ —299.7, (G5 active
Besides this global minimum there are five more local minima within the feasible region.

Start:
29 =0, F(:L'(O)) =0

The global minimum could only be located by multimembered evolution. All the other
search strategies converged to the local minimum nearest to the starting point.

Problem 2.45 of Smith and Rudd (after Leon, 1966a)

Objective function:

F(:z;):ije_x", forn=>5
=1
Constraints:
z; >0, for j = 1(1)n
G =
2—2;n >0, forj=n+1(1)2n

- 400

ool el
ALY

x ;7400

N

N

Figure A.27: Diagram F'(x) for Problem 2.44
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i)

Figure A.28: Graphical representation of Problem 2.45 for n = 2
F(z)=/-1.0,0.0,0.3,0.4,0.6,0.8,0.9/

Minimum:
i =0, for i =1(1)n, F(z")=0, all G to G, active
Besides this global minimum there is another local one:
z,=(2,0,...,0), F(z')y=2e7?, G5 to G,y1 active

Start:
29=1,  fori=11)n, F9)~1.84

In the neighborhood of the minimum sought, the rate of convergence of a search strategy
depends strongly on its ability to make widely different individual adjustments to the
step lengths for the changes in the variables. The multimembered evolution solved this
problem best when working with recombination. Rosenbrock’s method converged to the
local minimum, as did the complex method and the simple evolution strategies.

Problem 2.46

Objective function:
F(z) = 2i+ 23

Constraints:
G1($)2$1—|—2$2—220
Minimum:
" =(0.4,0.8), F(z")=0.8, (1 active
Start:

¢ =(10,10),  F(2) =200
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Figure A.30: Graphical representation of Problem 2.47
F(z)y=/—4,-16,-36,—-64,—100,—144,—196, —256/

To the original problem have been added the two constraints G and G'z. Without them
there are two separate feasible regions and the global minimum is at infinity, in the
external, open region. Depending on the initial step lengths, the evolution strategies were
sometimes able to go out from the starting point within the inner, closed region into the
external region. After adding (g and G7, the multimembered strategies converged to the
global minimum, all other search methods located other local minima; which of these was
located by the two membered evolution strategy, depended on the sequence of random
numbers.

Problem 2.48 after Ueing (1971)

Objective function:

F(z) = —a} — 23
Constraints:
Gi(x) = x; >0, for j =1,2
Gg(l') = —$1—|—$2—|—4 Z 0
Gs(z) = zi+a5— 102, — 1025 +41 >0
Minimum:

™= (12,8), F(z™) = —208, GGz and G4 active

Besides this global minimum there are two more local minima:

¥~ (2.018,4.673),  F(a')~ —25.91
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—100

Fxtx2)

_200

— 300

Figure A.31: Graphical representation of Problem 2.48
F(z)=/—-—4,-16,-36,—64,—100, —144, —196, —256/

2"~ (6.293,2.293),  F(2") ~ —44.86

Start:
=00, FE")=0

There are two feasible regions which are unconnected and closed. The starting point and
the global minimum are separated by a non-feasible region. Only the (10, 100) evolution
strategy converged to the global minimum. It sometimes happened with this strategy that
one descendant of a generation would jump from one feasible region to the other; however,
the group of remaining individuals would converge to one of the other local minima. All
other strategies did not converge to the global minimum.

Problem 2.49 after Wolfe (1966)

Objective function:

4 3
F(z) = g(:z;%—l—xg—xlxzﬁ + 25
Constraints:
Gi(x)=12;>0, for j =1(1)3
Minimum:
" =(0,0,0), F(z™)=0, all G; active
Start:

2 =(10,10,10),  F(2”) ~52.16
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Problem 2.50

As Problem 2.37, but with some other constraints:

Gj(x) = —x; + 100 >0, for j = 1(1)n

n

Goyr(z) =1— Zn: (lzn:(x]) — :1;2) >0

i=1 j=1
Minimum:
;7 =100, for ¢ = 1(1)n, F(z™) = -300, for n = 3, G1 to G, active
Start:

2 = 0, for i =1(1)n, F(:L'(O)) =0

K3

Instead of the 2n — 2 linear constraints of Problem 2.37, a non-linear constraint served
here to bound the corridor at its sides. From a geometrical point of view, the cross section
of the corridor for n = 3 variables is now circular instead of square. For n = 2 variables
the two problems become equivalent.

A.3 Test Problems for the Third Part of the
Strategy Comparison

These are usually n-dimensional extensions of problems from the second set of tests, whose
numbers are given in brackets after the new problem number.

Problem 3.1 (analogous to Problem 2.4)

Objective function:

Minimum:

for i =1(1)n, F(z™)=0

No noteworthy difficulties arose in the solution of this and the following biquadratic
problem with any of the comparison strategies. Away from the minimum, the contour
patterns of the objective functions resemble those of the n-dimensional sphere problem
(Problem 1.1). Nevertheless, the slight differences caused most search methods to converge
much more slowly (typically by a factor 1/5). The simplex strategy was particularly
affected. The computation time it required were about 10 to 30 times as long as for
the sphere problem with the same number of variables. With n = 100 and greater,
the required accuracy was only achieved in Problem 3.1 after at least one collapse and
subsequent reconstruction of the simplex. The evolution strategies on the other hand
were all practically unaffected by the difference with respect to Problem 1.1. Also for
the complex method the cost was only slightly higher, although with this strategy the
computation time increased very rapidly with the number of variables for all problems.
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Problem 3.2 (analogous to Problem 2.25)

Objective function:
Minimum:

Problem 3.3 (analogous to Problem 2.13)

Objective function:

=1 \7=1 7=1

2
F(z) = Z (Z(aij sin arj + by cos o) — Z(aij sin a; + b;; cos :1;]))

where a;;, b;; for ¢, 7 = 1(1)n are integer random numbers from the range [—100, 100], and

a;,j = 1(1)n are random numbers from the range [—, 7.

Minimum:

7= a, for ¢ = 1(1)n, F(z™)=0

K3

Besides this desired minimum there are numerous others that have the same value (see
Problem 2.13). The a;; and b;; require storage space of order O(n?). For this reason
the maximum number of variables for which this problem could be set up had to be
limited to n,a: = 30. The computation time per function call also increases as O(n?).
The coordinate strategies ended the search for the minimum before reaching the required
accuracy when 10 or more variables were involved. The method of Davies, Swann, and
Campey (DSC) with Gram-Schmidt orthogonalization and the complex method failed
in the same way for 30 variables. For n = 30 the search simplex of the Nelder-Mead
strategy also collapsed prematurely, but after a restart the minimum was sufficiently
well approximated. Depending on the sequence of random numbers, the two membered
evolution strategy converged either to the desired minimum or to one of the others. This
was not seen to occur with the multimembered strategies; however, only one attempt
could be made in each case because of the long computation times.

Problem 3.4 (analogous to Problem 2.20)

Objective function:
Fa) =) il
=1

Minimum:

=0, for i =1(1)n, F(z")=0

K3

This problem presented no difficulties to those strategies having a line (one dimensional)
search subroutine, since the axes-parallel minimizations are always successful. The sim-
plex method on the other hand required several restarts even for just 30 variables, and
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for n = 100 variables it had to be interrupted, as it exceeded the maximum permitted
computation time (8 hours) without achieving the required accuracy. The success or fail-
ure of the (141) evolution strategy and the complex method depended upon the actual
random numbers. Therefore, in this and the following problems, whenever there was
any doubt about convergence, several (at least three) attempts were made with different
sequences of random numbers. It was seen that the two membered evolution strategy
sometimes spent longer near one of the corners formed by the contours of the objective
function, where it converged only slowly; however, it finally escaped from this situation.
Thus, although the computation times were very varied, the search was never terminated
prematurely. The success of the multimembered evolution strategy depended on whether
or not recombination was implemented. Without recombination the method sometimes
failed for just 30 variables, whereas with recombination it converged safely and with no
periods of stagnation. In the latter case the computation times taken were actually no
longer than for the sphere problem with the same number of variables.

Problem 3.5 (analogous to Problem 2.21)

Objective function:

F(z) = mlax{xi, i =1(1)n}

Minimum:

=0, for i =1(1)n, F(z™)=0

Most of the methods using a one dimensional search failed here, because the value of the
objective function is piecewise constant along the coordinate directions. The methods of
Rosenbrock and of Davies, Swann, and Campey (whatever the method of orthogonaliza-
tion) converged safely, since they consider trial steps that do not change the objective
function value as successful. If only true improvements are accepted, as in the conjugate
gradient, variable metric, and coordinate strategies, the search never even leaves the cho-
sen starting point at one of the corners of the contour surface. The simplex and complex
strategies failed for n > 30 variables. Even for just 10 variables the search simplex of the
Nelder-Mead method had to be constructed anew after collapsing 185 times, before the
desired accuracy could be achieved. For the evolution strategy with only one parent and
one descendant, the probability of finding from the starting point a point with a better
value of the objective function is
w, = 27"

For this reason the (141) strategy failed for n > 10. The multimembered version without
recombination, could solve the problem for up to n = 10 variables. With recombination,
convergence was sometimes still achieved for n = 30 variables, but no longer for n = 100
in the three attempts made.
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Problem 3.6 (analogous to Problem 2.22)

Objective function:

P(z) =Y lei| + I =l
=1 =1

Minimum:

=0, for i =1(1)n, F(z")=0

In spite of the even sharper corners on the contour surfaces of the objective function
all the strategies behaved in much the same way as they did in the minimum search
of Problem 3.4. The only notable difference was with the (10,100) evolution strategy
without recombination. For m = 30 variables the minimum search always converged;
only for n = 100 and above the search was no longer successful.

Problem 3.7 (analogous to Problem 2.23)

Objective function:

Minimum:

z; =0, for i =1(1)n, F(z")=0

The strategy of Powell failed for n > 10 variables. Since all the step lengths were set
to zero the search stagnated and the internal termination criterion did not take effect.
The optimization had to be interrupted externally. From n = 30, the variable metric
method was also ineffective. The quadratic model of the objective function on which it
is based led to completely false predictions of suitable search directions. For n = 10 the
simplex method required 48 restarts, and for n = 30 as many as 181 in order to achieve
the desired accuracy. None of the evolution strategies had any convergence difficulties
in solving the problem. They were not tested further for n > 300 simply for reasons of
computation time.

Problem 3.8 (similar to Problem 2.37) (corridor model)

Objective function:

F(:L'):—ixi

Constraints:
- J
\/]]i'l+$j+1—%2$i20, for j=1(1)n —1
=1
Gi(v) = |
T—nt2 1 7—n+1 )
Vit — Tient2 T oo Z; x; >0, for j =n(1)2n —2

The other constraints of Problem 2.37, which bound the corridor in the direction of the
minimum being sought, were omitted here. The minimum is thus at infinity.
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In comparing the results of this and the following circularly bounded corridor problem
with the theoretical rates of progress for this model function, the quantity of interest was
the cost, not of reaching a given approximation to an objective, but of covering a given
distance along the corridor axis. For the half-width of the corridor, b = 1 was taken. The
search was started at the origin and terminated as soon as a distance s > 10b had been
covered, or the objective function had reached a value F' < —10+/n.

Start:
:1;50) =0, for i =1(1)n, F(:L'(O)) =0

All the tested strategies converged satisfactorily. The number of mutations or generations
required by the evolution strategies increased linearly with the number of variables, as
expected. Since the number of constraints, as well as the computation time per function
call, increased as O(n), the total computation time increased as O(n®). Because of the
maximum of 8 hours per search adopted as a limit on the computation time, the two
membered evolution strategy could only be tested to n = 300, and the multimembered
strategies to n = 100. Intermediate results for n = 300, however, confirm that the
expected trend is maintained.

Problem 3.9 (similar to Problem 2.50)
Objective function:

Flz)=—=%

=1
Constraint: )
n 1 n
Gla)=1-=3 | => (z;) =] =0

=1 \ " 7=1

Minimum, starting point and convergence criterion as in Problem 3.8.

The complex method failed for n > 30, but the Rosenbrock strategy simply required
more objective function evaluations and orthogonalizations compared to the rectangular
corridor. The evolution strategies converged safely. They too required more mutations
or generations than in the previous problem. However, since only one constraint instead
of 2n — 2 was to be tested and respected, the time they took only increased as O(n?).
Recombination in the multimembered version was only a very slight advantage for this
and the linearly bounded corridor problem.

Problem 3.10 (analogous to Problem 2.45)

Objective function:

Constraints:
x; >0, for j = 1(1)n

2—xj_, >0, for j=n+1(1)2n
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Minimum:
=0, for ¢ = 1(1)n, F(z")=0, all G to GG, active

Besides this global minimum there is a local one within the feasible region:

;o 2, for: =1 N o 2
T {0, fori=2(1)n ~’ Fla) =2e

As in the solution of Problem 2.45 with five variables, the search methods only converged if
they could adjust the step lengths individually. The strategy of Rosenbrock failed for only
n = 10. The complex method sometimes converged for the same number of variables after
about 1,000 seconds of computation time, but occasionally not even within the allotted 8
hours. For n = 30 variables, none of the strategies reached the objective before the time
limit expired. The results obtained after 8 hours showed clearly that better progress was
being made by the two membered evolution strategy and the multimembered strategy
with recombination. The following table gives the best objective function values obtained
by each of the strategies compared.

Rosenbrock 10—t
Complex 1077
(1 4+ 1) evolution 10730
(10,100) evolution without recombination 107'2
(10,100) evolution with recombination 107%

TThe Rosenbrock strategy ended the search prematurely after about 5 hours. All the other values are
intermediate results after 8 hours of computation time when the strategy’s own termination criteria were
not yet satisfied. The searches could therefore still have come to a successful conclusion.



