Collective learning (n = 30)

• of one common step size (⇒ 1 step size):

$$f_1(\vec{x}) = \sum_{i=1}^n x_i^2$$

• of proper scalings ($\Rightarrow n$ step sizes):

$$f_2(\vec{x}) = \sum_{i=1}^n i \cdot x_i^2$$

• of a metric (⇒ correlated mutations):

$$f_3(\vec{x}) = \sum_{i=1}^n \left(\sum_{j=1}^i x_j\right)^2$$

(Schwefel, 1987) compares the progress rate for f_2 and a $(\mu,100)$ -ES for

- optimum prefixed scaling, i.e., perfect information $(\sigma_i = c/\sqrt{i})$ (A),
- prefixed arbitrary scaling $(\sigma_i = c')$ (B),
- adaptive scaling (C).