$rec: I^{\mu} \rightarrow I$, $rec = re \circ co$

- Creates one individual per application.
- Works according to:
 - co : $I^{\mu} \rightarrow I^{\varrho}$ Chooses ϱ parents at random. $\varrho \cdot \varrho$. $\varsigma = 2$
 - $\mathbf{re}: I^{\varrho} \to I$ Creates one offspring individual.
- Common cases:
 - $-\varrho=2$ bisexual recombination.
 - $-\varrho = \mu$ global recombination ("gene pool recombination").

Recombination types:

- No recombination, i.e., rec performs just a random choice of an individual.
- Global intermediary recombination:

$$b_i' = \frac{1}{\varrho} \sum_{k=1}^{\varrho} b_{k,i}$$

(Averaging over all parents).

• Local intermediary recombination:

$$b_i' = u_i b_{k_1,i} + (1 - u_i) b_{k_2,i}$$

 $u_i \sim U([0,1])$ or $u_i = 1/2$ $k_1, k_2 \sim U(\{1, \dots, \varrho\})$ for each offspring.

• Discrete recombination:

$$b_i' = b_{k_i,i}$$

 $k_i \sim \mathbf{U}(\{1,\ldots,\varrho\})$ at random for each i.