ELSEVIE

European Journal of Operational Research 135 (2001) 1-16

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

www.elsevier.com/locate/dsw

Invited Review
Adaptive memory programming: A unified view of metaheuristics

Eric D. Taillard ®*, Luca M. Gambardella °, Michel Gendreau ©¢, Jean-Yves Potvin ¢

& EIVD, University of Applied Sciences of Western Switzerland, Route de Cheseaux 1, CH-1400 Yverdon-Les-Bains, Switzerland
® IDSIA, SUPSI, Lugano, Switzerland
¢ Centre de recherche sur les transports, Université de Montréal, Montréal, Canada
4 Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Canada

Received 1 July 1999; accepted 12 September 2000

Abstract

The paper analyses recent developments of a number of memory-based metaheuristics such as taboo search (TS),
scatter search (SS), genetic algorithms (GA) and ant colonies. It shows that the implementations of these general solving
methods are increasingly similar. So, a unified presentation is proposed under the name of adaptive memory pro-
gramming (AMP). A number of methods recently developed for the quadratic assignment, vehicle routing and graph
colouring problems are reviewed and presented under the AMP point of view. AMP presents a number of interesting
aspects such as a high parallelization potential and the ability of dealing with real and dynamic applications. © 2001
Elsevier Science B.V. All rights reserved.

Keywords: Metaheuristics; Evolutionary computations; Genetic algorithms; Multi-agent systems; Taboo search;

Quadratic assignment; Vehicle routing

1. Introduction

Generic heuristic methods, also called meta-
heuristics or general local search methods are
growing at a very fast, exploding rate: the most
important conferences in operational research
have one or many sessions entirely devoted to
metaheuristics and there are also journals entirely
devoted to them. Among the most successful

28 &iedponding author. Tel.: +41-24-423-2111; fax: +41-24-
425-0050.
E-mail address: eric.taillard@eivd.ch (E.D. Taillard).

techniques, we can quote genetic algorithms (GA),
simulated annealing (SA), taboo search (TS),
scatter search (SS) and ant systems (AS). The
success of these methods depends on many factors,
like their ease of implementation, their ability to
consider specific constraints that arise in practical
applications and the high quality of the solutions
they produce.

From a theoretical point of view, however, the
use of these methods has not yet been justified. For
example, a few convergence theorems for SA or TS
exist (Aarts and Van Laarhoven, 1985; Hajek,
1988; Faigle and Kern, 1992) but they are useless
in practice. These theorems simply state that the

0377-2217/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PILS0377-2217(00)00



2 E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16

search has a very high probability of ending with
an optimal solution if a disproportionate com-
puting time is allowed (larger, in fact, than the
time needed for a complete enumeration of the
solution space (Aarts and Van Laarhoven, 1985)).
But these metaheuristics are really competitive in
practice. In this race for competitiveness, the most
efficient methods hybridize two or more meta-
heuristics. The result is that similar problem-solv-
ing methods are known under very different names
like genetic hybrids, probabilistic TS, adaptive
multi-start or MAX-MIN ant system. All these
methods have three features in common: first, they
memorize solutions or characteristics of solutions
generated during the search process; second, they
include a procedure that creates an initial solution
with the information stored in memory; third, they
apply a local search method, like a local search
improvement method, an elementary TS or SA to
improve the initial solution.

Observing the similarities between these meth-
ods, a unified presentation is useful and necessary,
as well as a more synthetic and general name. The
proposed terminology for grouping these meta-
heuristics under the same roof is adaptive memory
programming (AMP). This term was already
proposed by Glover in connection with taboo
search (Glover, 1997; Glover and Laguna, 1997).
It is true that TS has always been presented as an
open technique that can include components from
various fields, in particular artificial intelligence.
The inclusion of a memory and a learning process
within the TS framework was thus proposed very
early: even the name of the method comes from its
short term memory component! However, the
evolution of a particular TS implementation can
very well produce a method without any taboo list
(for example, if parameter tuning indicates that a
taboo list size of 0 is best). So, the name of the
method becomes hard to justify, but for historical
reasons.

The same phenomenon is observed with other
metaheuristics. For example, most efficient imple-
mentations of GA do not encode solutions of the
problem as binary vectors. Furthermore, the cross-
over and mutation operators have often little or
nothing to do with the standard operators for
which some theoretical results have been obtained.

The aim of this paper is thus to propose the
name AMP which is more general and seems to
better reflect the current reality. To justify the use
of this term, we first review in Section 2 various
metaheuristics that can be viewed as AMP meth-
ods, at least for their most recent and efficient
implementations. Section 3 then presents our views
on AMP and shows that many applications for
different combinatorial optimization problems
perfectly fit in this framework.

2. Metaheuristics with memory

The term memory was used explicitly for TS
only, but a number of other metaheuristics use
mechanisms that can be considered as memories.
For GA and SS, the memory is constituted by a
population of solutions; for AS, the pheromone
trail is also a form of memory. So, let us first
review a number of memory-based metaheuris-
tics.

2.1. Genetic algorithms

Basically, GA simulate the evolutionary pro-
cess of species that sexually reproduce. This evo-
lutionary process can be described as follows.
During sexual reproduction, a new individual,
different from its two parents, is created through
the action of two fundamental mechanisms. The
first one is cross-over which combines half of
the genetic patrimony of each parent to produce
the genetic patrimony of the new individual. The
second one is mutation by which a spontaneous
modification of the genetic patrimony occurs. The
new individual so created (child or offspring) will
therefore be different from its parents, but will
also share a number of their characteristics. If the
child inherits good characteristics from its par-
ents, its survival probability will be higher, as
compared to individuals that inherit bad charac-
teristics. It will thus have a higher probability to
reproduce and disseminate good characteristics to
its offspring.

The analogy between this evolutionary process
and the GA metaheuristic initiated by Holland



E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16 3

(1975) (who was not so much interested in opti-
mization) can be established in the following way.
An individual is associated with a feasible solution
of the problem at hand. The solution is encoded as
a binary vector. The cross-over operator then ex-
changes sub-strings taken from both parents to
produce an offspring. Mutation is a secondary
operator that flips bit values on the offspring vec-
tor, with a small probability at each position. The
quality of the newly created vector is finally eval-
uated according to the objective value of the so-
lution it encodes.

A simple genetic algorithm can be sketched as

follows:
1. Generate a population of vectors (individuals).
2. While a stopping criterion is not met do:

2.1. select, with replacement, a pool of parent
vectors from the population;

2.2. randomly match the parent vectors and
apply cross-over to produce offspring vec-
tors;

2.3. apply mutation to each offspring;

2.4. evaluate offspring;

2.5. insert offspring in the population;

2.6. eventually, remove individuals from the
population with a culling operator.

Typically, this procedure stops after a fixed

number of iterations (generations) or when the
population does not improve any more. It is worth
noting that the selection of parents is probabilis-
tically biased towards the best individuals. Hence,
the latter are more likely to disseminate their good
characteristics to offspring (like the corresponding
natural evolution process). Recent implementa-
tions of GA do not always use a binary vector for
coding a solution but they use a representation
that is better adapted to the application domain.
For example, permutation of integer values are
widely used for the travelling salesman problem
(TSP) or the quadratic assignment problem
(QAP). This influences directly the cross-over and
mutation operators. While the coding scheme was
the key point of earlier genetic implementations,
the most important elements of recent implemen-
tations are the definition of cross-over and muta-
tion operators that are able to extract relevant
(and a priori unknown) information on the struc-
ture of good solutions.

2.2. Scatter search

SS has been proposed by Glover (1977) to solve
integer programming problems. The method is
rather similar to GA, at least if one considers the
most recent ways of implementing the genetic
metaphor. The SS method is based on a popula-
tion of solutions (integer vectors) that evolves
through selection, linear combination, integer
vector transformation and culling to produce a
new population of solutions. With respect to a
standard genetic algorithm, SS has the following
particularities:

e binary vectors are replaced by integer vectors;

e more than two parents can be matched to pro-
duce a new vector;

e cross-over is replaced by a convex or non-con-
vex linear combination of two or more vectors;

e mutation is replaced by a procedure that repairs
or projects the newly created vector in the space
of feasible solutions.

These particularities can also be seen as gener-
alizations of the basic GA procedure. In fact, such
generalizations have later been proposed and ex-
ploited by various authors (see for example, Potvin
and Bengio, 1996; Miihlenbein et al., 1988). Let us
quote:

e departure from the binary vector scheme;

e use of a variable number of parents to produce
an offspring;

e development of specialized cross-over operators;

¢ use of local search methods to improve solutions
obtained through cross-over;

e use of repair operators;

e the solutions that are kept in the population
from one iteration to the next are chosen with
the help of an elaborated clustering method
rather than a simple culling operator.

2.3. Taboo search

Among the metaheuristics with memory pre-
sented in this section, TS is the only one that has
been explicitly developed with a memory, or more
exactly, with a set of memories. The term TS has
been proposed for the first time by Glover (1986).
The basic idea of this method is to locally and



4 E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16

repeatedly modify a solution while memorizing
these modifications to avoid visiting the same so-
lutions twice or in a cyclic manner. To this end,
modifications or characteristics of modifications
are stored in lists that forbid their use for a certain
number of iterations, thus leading to the names of
taboo list and TS.

In a sense, this method imitates a human being
looking for a good solution of a combinatorial
optimization problem. First, an initial solution is
looked for, even a bad one. Then, this solution is
iteratively improved through local modifications.
The latter modifications do not necessarily improve
the solution at each iteration but the aim is to direct
the search toward a good subset of solutions.

Later, Glover (1989, 1990) proposed a number
of strategies to guide the search and make it more
efficient; at the same time, he emphasized that TS
was open to any strategy well adapted to the
problem on which it is applied. In this sense, the
metaheuristics with memory presented in this sec-
tion are implicitly contained in TS. We think,
however, that the term TS does not appropriately
characterize their most recent implementations.

The most important idea of the first publication
on taboo search (Glover, 1986) is the use of a short
term memory, known as the taboo list. Numerous
applications, even recent ones, still only exploits
this mechanism. The use of long term memories
spreads well after the “complete” description of
TS by Glover (1989, 1990). These are found under
different forms, from statistics on modifications
made to the current solution (Taillard, 1991, 1993,
1994; Soriano and Gendreau, 1996) to complete
solutions of high quality visited during the search.
Their exploitation for guiding the search can also
vary from a perturbation of the objective function
value to the construction of a brand new starting
solution.

A basic TS can be sketched as follows:

1. Generate an initial solution s¢; initialize the
memories; k «— 0; s* < sp.
2. While a stopping criterion is not met do:

2.1. choose s, 1, a neighbour solution of s;, us-

ing data stored in the memories;

2.2. if 55,1 is better than s* then s* <« s;.4;

23. k—k+1;

2.4. update the memories.

Typically, the stopping criterion corresponds to
a fixed number of iterations or a number of con-
secutive iterations without improving the best
known solution s*. Each step of the above algo-
rithm can be very simple or very complicated. For
example, the choice of s;,; in step 2.1 may imply
that all neighbours of s, are examined and the best
non-taboo solution is chosen; it may also imply the
construction, in a complex way, of a solution that
is not so close of s;, through another embedded
metaheuristic, as in Rochat and Taillard (1995).

However, TS is composed of various other
principles. Among the most important ones, let us
quote strategic oscillations, based on alternating
intensification and diversification phases. These
phases are often implemented by repeatedly
building new solutions before running a basic TS
for a given number of iterations. The new solu-
tions built can be similar to the best solutions
found by the search so far (intensification) or
different from the solutions visited (diversifica-
tion).

2.4. Ant systems

The idea of imitating the behaviour of ants to
find solutions to combinatorial optimization
problems was initiated by Colorni et al. (1992a,b).
The metaphor comes from the way ants search for
food and find their way back to the nest. Initially,
ants explore the area surrounding their nest in a
random manner. As soon as an ant finds a source
of food, it evaluates the interest of the source
(quantity and quality) and carries some of the food
to the nest. During the return trip, the ant leaves
on the ground a chemical pheromone trail whose
quantity depends on the quality of the source. The
role of this pheromone trail is to guide other ants
toward the source. After a while, the path to a
good source of food will be indicated by a large
pheromone trail, as the trail grows with the num-
ber of ants that reach the source. Since sources
that are close to the nest are visited more fre-
quently than those that are far away, pheromone
trails leading to the nearest sources grow faster.
The final result of this process is that ants are able
to optimize their work.



E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16 5

The transposition of this food searching beha-
viour into an algorithmic framework for solving
combinatorial optimization problems is obtained
through an analogy between:

o the search area of the real ants and the set of
feasible solutions to the combinatorial problem;

e the amount of food associated with a source and
the objective function;

e the pheromone trail and an adaptive memory.

A detailed description of how such analogies
can be applied in the case of the TSP may be found
in Dorigo et al. (1996). A standard ant system is
schematically described as follows:

1. Initialize the pheromone trail.
2. While a stopping criterion is not met do:

2.1. for each ant, construct a new solution us-
ing the current pheromone trail and an
evaluation of the partial solution being
constructed;

2.2. update the pheromone trail.

The most important component of an ant
system is the management of pheromone trails. In
a standard ant system, pheromone trails are used
in conjunction with the objective function to
guide the construction of new solutions. Once a
solution has been produced, a standard ant sys-
tem updates the pheromone trails as follows: first
all trails are weakened to simulate the evapora-
tion of pheromone; then, pheromone trails that
correspond to components that were used to
construct the resulting solution are reinforced,
taking into consideration the quality of this so-
lution.

Based on the previous general scheme different
AS implementations have been proposed where
pheromone updating is performed in different
ways: in Colorni et al. (1992a) the pheromone is
updated by all ants involved in the optimization
process while in Gambardella and Dorigo (1996)
only the best ant is allowed to update pheromone
information. MAX-MIN ant system (Stiitzle and
Hoos, 1999) introduces an updating phase con-
strained between threshold values. Different ways
of modifying pheromone values generate different
types of search mechanism: for example, in Gam-
bardella and Dorigo (1996) the result of the up-
dating phase is to drive the search around the
neighbourhood of the best solutions found so far.

All the mentioned AS have been applied to dif-
ferent combinatorial optimization problems like
symmetric and asymmetric TSPs (Colorni et al.,
1992a; Gambardella and Dorigo, 1996; Dorigo
et al., 1996) and quadratic assignment problems
(Dorigo et al., 1996) with comparable or even
better performances than other natural inspired
systems. More recently it has been shown that AS
based algorithms are very powerful in combina-
tion with local search procedures. In these situa-
tions pheromone information is used to produce
solutions (diversification phase) that are optimized
by a local search (intensification phase). Optimized
solutions are then used to update pheromone in-
formation and new solutions are successively
generated by the ants. In particular let us mention
successful hybrid ant system implementations
applied to symmetric and asymmetric TSPs
(Gambardella and Dorigo, 1996; Dorigo and
Gambardella, 1997; Stiitzle and Hoos, 1999),
quadratic assignment problems (Taillard, 1998;
Gambardella et al., 1999; Stiitzle and Hoos, 1999)
and vehicle routing problems (Bullnheimer et al.,
1999; Gambardella and Dorigo).

3. Adaptive memory programming

Although the methods presented in the previ-
ous section may look very different at first glance,
an analysis of a number of implementations, and
especially the most efficient and recent ones, shows
that they are sometimes extremely close in their
working principles. In other terms, one observes a
unification of different metaheuristics in such a
way that it now becomes difficult to make clear
distinctions. Indeed, the population of a genetic
algorithm or SS, or the pheromone trail of an ant
system, can be considered as a special kind of
memory, like the memories found in TS. Con-
versely, a TS that periodically restarts from new
solutions constructed from a memory (a popula-
tion of solutions and/or a frequency-based mem-
ory) can be assimilated to a genetic algorithm or
an ant system. Hence, a large number of efficient
methods for solving combinatorial optimization
problems now share common characteristics.
More precisely:



6 E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16

1. aset of solutions or a special data structure that
aggregates the particularities of the solutions
produced by the search is memorized;

2. a provisional solution is constructed using the
data in memory;

3. the provisional solution is improved using a lo-
cal search algorithm or a more sophisticated
metaheuristic;

4. the new solution is included in the memory or is
used to update the data structure that memo-
rizes the search history.

These recent methods are thus characterized by
the exploitation of a memory to construct a new
solution, an improvement procedure to find an
even better solution and, finally, a memory update
procedure based on pieces of knowledge brought
by the improved solution. It thus looks appropri-
ate and natural to speak of AMP for this type of
metaheuristics. From an algorithmic point of view,
an AMP may be sketched as follows:

1. Initialize the memory.

2. While a stopping criterion is not met do:

2.1. Generate a new provisional solution s us-

ing data stored in the memory.

2.2. Improve s by a local search; let s’ be the

improved solution.

2.3. Update the memory using the pieces of

knowledge brought by s'.

There are other metaheuristics that share a
number of characteristics with this AMP scheme.
Let us mention the memetic algorithms of Mos-
cato (1999), the greedy randomized adaptive
search (GRASP) of Feo and Resende (1995), the
adaptive multi start (AMS) of Boese et al. (1994)
and the memory adaptive reasoning of Patterson
et al. (1999). There are also metaheuristics that
cannot enter the AMP scheme, such as the well
known SA and threshold accepting. Indeed, the
basic versions of these metaheuristics work
without memory. However, they may be in-
cluded in the improvement procedure of an
AMP.

In this section, we review a number of recent
and highly efficient applications, that can be nat-
urally presented as AMP methods, for the qua-
dratic assignment (QAP), vehicle routing (VRP)
and graph colouring problems. We briefly sketch
all these methods, emphasizing how the four main

characteristics of AMP have been used, namely:
the memory, the construction of a provisional so-
lution, the improvement procedure and the mem-
ory update procedure.

3.1. Quadratic assignment problem

In the QAP, a number of units must be as-
signed to the same number of locations. Given
the distance between each pair of locations and a
flow between each pair of units, an assignment
of units to locations (i.e., a permutation) is
searched for that minimizes the sum of the
distance x flow products over the assigned unit—
location pairs. Therefore, a QAP solution can be
viewed as a permutation. Many different AMP
methods have been designed for the QAP. They
are among the most efficient ones, in particular
for real applications, where the flow and distance
coefficients exhibit a very high variance. These
methods are:

e hybrid TS-genetic algorithm of Fleurent and

Ferland (1996);

e SS of Cung et al. (1997);

e hybrid ant system of Gambardella et al. (1999);
o fast ant system of Taillard (1998).

They are reviewed in the following.

3.1.1. Genetic hybrid of Fleurent and Ferland

3.1.1.1. Memory. The memory is a population
made of a number of best solutions found by the
search.

3.1.1.2. Provisional solution. The provisional solu-
tion is built using a cross-over operator designed
by Tate and Smith (1995). First, two solutions
(permutations) are selected from the population.
The elements of the provisional permutation are
then chosen in three phases:
1. elements common to both solutions are copied
in the new permutation at the same position;
2. if possible, the other elements are randomly
chosen from the selected solutions and copied
in the new permutation at the same position;
3. the unfilled positions are randomly chosen to
complete the permutation.



E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16 7

3.1.1.3. Improvement procedure. The provisional
solution is improved by means of a short TS due to
Taillard (1991).

3.1.1.4. Memory update. The new solution is in-
serted in the memory and the worst solution is
removed from it.

This application illustrates a typical evolution
of GA: the binary coding scheme is replaced by a
natural representation of the solutions, the cross-
over operator is replaced by a relatively elaborated
procedure and the mutation operator is replaced
by an elaborated local search. In Taillard (1998), it
is shown that the use of a simpler and faster local
search for improving the provisional solutions
may be more efficient than the use of TS (see also
Table 2).

3.1.2. Scatter search of Cung et al. (1997)

3.1.2.1. Memory. The memory stores a number of
best solutions.

3.1.2.2. Provisional solution. A number of solutions
are selected in a probabilistic way from the mem-
ory. The choice of the solutions to be combined is
done according to a policy that ensures a certain
level of diversity in the memory. The selected so-
lutions are manipulated as vectors of integers and
a linear combination of these vectors is computed:
the provisional solution is then the permutation
which is closest from the previously computed
vector. Cung et al. (1997) have shown that this
closest permutation can be found by solving a
linear assignment problem. Instead of solving this
assignment problem exactly, Cung et al. (1997) use
a faster heuristic method.

3.1.2.3. Improvement procedure. The provisional
solution is improved by means of a basic TS. The
number of iterations performed by this taboo is
modulated from one call to the other.

3.1.2.4. Memory update. The new solution is in-
serted in the memory and the worst solution is
removed from it.

3.1.3. Fast ant system of Taillard

3.1.3.1. Memory. The memory is a square matrix
that records frequency statistics on the position of
each element in the permutations (solutions) pro-
duced by the system.

3.1.3.2. Provisional solution. A new permutation is
sequentially constructed in a probabilistic way.
The probability of inserting a given element at a
given position is proportional to its frequency
value stored in memory.

3.1.3.3. Improvement procedure. The solution is
improved by means of a very fast local search that
does not necessarily reach a local optimum.

3.1.3.4. Memory update. The frequencies are re-
computed at each iteration, considering both the
solution just produced and the best solution ever
produced by the search. The memory is cancelled
and re-initialized each time the best solution
known is improved in order to intensify the search.
A diversification mechanism is also implemented
in case the provisional solution generated is the
same as the best solution produced so far.

The MAX-MIN ant system of Stiitzle and
Hoos (1999) is similar to this method but uses
slightly different statistics as memory. The im-
provement procedure performs a complete local
search reaching the first local optimum and the
diversification/intensification mechanism is differ-
ent: the values contained in the statistics-matrix
are lower and upper bounded by two parameters,
hence the name of the method.

3.1.4. Hybrid ant system of Gambardella et al.
(1999)

3.1.4.1. Memory. The memory is divided in two
parts: the first part contains a matrix that records
frequency statistics on solutions produced so far
by the search; the second part contains a small
population of solutions.

3.1.4.2. Provisional solution. As opposed to basic
AS where a new solution is constructed from
scratch, this method modifies the solutions found



8 E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16

in the population in the spirit of a local search, but
using the frequency matrix to choose the modifi-
cations to perform.

3.1.4.3. Improvement procedure. Each solution in
the population is improved by means of a fast local
search that does not necessarily reach a local op-
timum.

3.1.4.4. Memory update. The memories are up-
dated as follows. First, each solution in the current
population is replaced by the solution obtained
after the improvement procedure, unless the latter
is worser than the original solution. Second, the
frequency matrix is updated: it records a moving
average of the frequency (weighted by solution
quality) at which a given unit is found at a given
position in the best solution of the current popu-
lation.

A number of these AMPs are compared in
Taillard (1995), Stiitzle and Hoos (1999), Gam-
bardella et al. (1999), Taillard (1998) and the main
conclusions are the following. All AMPs are per-
forming well for instances that exhibit a high
variance in the entries of the data matrices. Such
instances are typically arising in real applications
and often present a large “flow dominance™ cri-
terion (Vollmann and Buffa, 1966) or a large
“ruggedness” value (Angel and Zissimopoulos,
1998). To obtain the best solutions in the shortest
time, the fast ant system of Taillard (1998) is one
of the best methods. If solutions of higher quality
are desired, it seems that keeping a number of
solutions in memory can be recommended. Im-
plementations of simulated annealing, GA or
variable neighbourhood search (VNS) that do not
exploit either memories or local search are less
efficient than AMPs (Taillard, 1998).

Table 1 compares the performances of various
methods running for a short time (equivalent to 20
calls to the improvement procedure embedded in
the fast ant system). The methods compared are:
fast ant system (FANT, Taillard, 1998), a basic TS
(Taillard, 1991) (without intensification or diver-
sification), VNS, reduced variable neighbourhood
search (RVNS) and SA (Connolly, 1990). We have
(re-)implemented all these methods and run them
on the same computer. All the methods were run

for the same computational time, corresponding to
20 FANT iterations, 26n TS iterations, 20 VNS
iterations, 10n> RVNS iterations and 40n> SA it-
erations (where »n is the size of the problem). We
have considered a selection of instances from the
QAPLIB. These instances originate from real life
or have been randomly generated according to
distribution laws that are similar to those observed
in real problems. The flow dominance of these
instances is high but for the instances nug.. and
sko.. The quality of the methods is measured in
percentage above the best solution known, aver-
aged over 10 runs of each algorithm. In this table,
we see that FANT is generally competitive for the
instances with high flow dominance. It is less
competitive than TS and SA for the relatively
uniform instances nug.. and sko.. In this table, we
have not considered other AMPs, since they re-
quire a larger computational effort (initialization
of the memory).

The efficiency (or inefficiency) of AMP can be
tentatively explained as follows: If the problem has
a strong structure (like els19 or tai..b instances),
the memory is able to efficiently direct the search
toward solutions with good general properties.
Then, the improvement procedure directs the
search toward very good solutions. For such in-
stances, methods like basic taboo searches can be
trapped in very bad local optima. Conversely, if
the problem has no structure, the memory is not
able to perform a self-organization and the AMP
fails to find good solutions.

Table 2 compares the performances of various
AMPs for longer runs. The methods compared are
fast ant system (FANT, Taillard, 1998), genetic-
descent hybrid (GDH, a modified version of the
method of Fleurent and Ferland (1996) in which
the TS has been replaced by the same fast im-
provement procedure as used in FANT, see Tail-
lard, 1998), hybrid ant system (HAS-QAP,
Gambardella et al., 1999) and TS-genetic hybrid
(TSGH, Fleurent and Ferland, 1996). The com-
putational time is equivalent to 1000 calls to the
improvement procedure embedded in FANT,
HAS-QAP or GDH and 130 calls to the TS em-
bedded in TSGH. We can see in this table that the
AMPs are generally finding very good solutions
but for problems with low flow dominance. FANT



E.D. Tuillard et al. | European Journal of Operational Research 135 (2001) 1-16 9

Table 1

Comparison of various methods for short runs, quadratic assignment instances
Problem Quality (% above best solution known) Time (s)
Name, size Dominance FANT TS VNS RVNS SA Sun Sparc 5
bur26a 275 0.11 0.21 0.21 0.29 0.21 0.92
bur26b 275 0.16 0.30 0.24 0.44 0.34 0.94
bur26¢c 228 0.09 0.22 0.22 0.46 0.14 0.93
bur26d 228 0.01 0.26 0.27 0.19 0.47 0.91
bur26e 254 0.01 0.21 0.16 0.27 0.20 0.91
bur26f 254 0.01 0.35 0.19 0.27 0.36 0.91
bur26g 280 0.02 0.28 0.16 0.54 0.18 0.92
bur26h 280 0.01 0.41 0.19 0.35 0.49 0.90
els19 531 3.08 22.27 14.77 13.90 24.36 0.32
kra30a 150 3.26 3.94 5.34 7.03 3.83 1.39
kra30b 150 2.99 1.74 4.52 4.76 1.73 1.37
nug20 104 1.27 0.96 3.52 3.93 0.82 0.37
nug30 113 1.64 0.61 2.67 3.67 0.86 1.43
sko42 109 1.66 1.04 2.28 3.32 1.20 4.55
sko49 109 1.66 0.80 1.93 2.97 0.90 7.61
sko56 111 1.65 0.89 1.98 2.80 0.91 11.88
sko64 108 1.59 0.82 2.24 2.48 0.68 18.11
sko72 107 1.53 1.04 1.97 2.27 0.71 26.59
sko81 107 1.49 0.71 1.33 1.94 0.72 38.33
sko90 108 1.45 0.72 1.52 2.15 0.86 54.20
tai20b 333 0.81 17.09 9.49 6.30 13.38 0.41
tai25b 310 1.19 14.13 6.25 10.59 18.74 0.81
tai30b 324 1.74 14.09 7.56 12.92 13.85 1.55
tai35b 310 0.87 10.61 4.62 5.29 10.81 2.56
tai40b 317 2.66 9.22 4.86 9.69 7.18 4.06
tai50b 314 1.49 7.90 4.52 5.11 4.61 8.47
tai60b 318 1.12 10.21 2.72 591 8.58 15.47
tai80b 323 2.54 5.03 3.19 4.98 5.68 38.33
Average 1.29 4.50 3.18 4.10 4.39

is slightly worse than HAS-QAP and GDH, in-
dicating that the use of a richer memory that
contains a number of solutions seems recom-
mended for long runs. TSGH is worse than GDH
due to the use of a slower improvement procedure.

3.2. Vehicle routing problem

The aim of the vehicle routing problem (VRP)
is to determine optimal collection or delivery
tours for transportation vehicles through a set of
customer locations, subject to various constraints.
Typically, “optimal” refers to a solution of min-
imum length or a solution that uses the minimum

number of vehicles (when this number is not
fixed).

Many different VRPs have been successfully
addressed in the past with either TS or GA. For
example, TS has been applied to the capacitated
VRP (CVRP), where a single type of constraint
states that the total load on a tour cannot exceed
vehicle capacity (Osman, 1993; Taillard, 1993;
Gendreau et al., 1994; Xu and Kelly, 1996), the
VRP with time windows (VRPTW), where cus-
tomers must be serviced within specified time in-
tervals (in addition to the capacity constraint)
(Potvin et al., 1996; Chiang and Russell, 1997),
and the VRP with back hauls and time windows
(VRPBTW) where customers can be either pick-up



10 E.D. Tuillard et al. | European Journal of Operational Research 135 (2001) 1-16

Table 2
Comparison of various AMPs for long runs, quadratic assignment instances

Problem Quality (% above best solution known) Time (s)
Name FANT HAS-QAP GDH TSGH Sparc 5
bur26a 0.03 0 0.03 0.02 46
bur26b 0.02 0 0.04 0.03 45
bur26¢c 0 0 0 0 46
bur26d 0 0 0 0 45
bur26e 0 0 0 0 46
bur26f 0 0 0 0 45
bur26g 0 0 0 0 46
bur26h 0 0 0 0 45
els19 0 0 1.44 0 31
kra30a 1.03 0.63 1.08 0.36 74
kra30b 0.09 0.07 0.17 0.06 83
nug20 0.14 0 0.02 0 22
nug30 0.25 0.10 0.16 0.04 78
sko42 0.24 0.08 0.09 0.19 237
sko49 0.24 0.14 0.19 0.20 400
sko56 0.32 0.10 0.15 0.30 619
sko64 0.19 0.13 0.14 0.38 951
sko72 0.35 0.28 0.20 0.39 1382
sko81 0.26 0.14 0.17 0.43 2018
sko90 0.40 0.23 0.19 0.43 2809
tai20b 0.09 0.09 0.09 0 24
tai25b 0 0 0.01 0.06 48
tai30b 0 0 0.03 0.14 85
tai35b 0.04 0.03 0.02 0.26 143
tai40b 0.20 0 0.20 0.74 228
tai50b 0.21 0.19 0.01 0.64 466
tai60b 0.25 0.05 0.01 0.83 830
tai80b 0.82 0.67 0.22 1.74 2041
Average 0.18 0.10 0.17 0.26

or delivery points (Duhamel et al., 1997). Appli-
cations of GA for variants of the VRPTW may
also be found in Blanton and Wainwright (1993),
Potvin and Bengio (1996), Thangiah et al. (1991,
1993), Thangiah (1995). These implementations,
mostly realized before 1995, can hardly be quali-
fied as AMP methods, with the exception of Potvin
and Bengio (1996) where a genetic algorithm is
hybridized with a local search heuristic, in the
same spirit as the genetic hybrid of Fleurent and
Ferland (1996) for the QAP. In 1994, however,
Taillard (1994) developed a true AMP method,
where a TS heuristic is used to improve provisional
solutions constructed from an adaptive memory.
The method was then tested on the VRPTW and

good results were published in Rochat and Tail-
lard (1995). Later, Taillard et al. (1997) designed
another AMP method for a variant of the
VRPTW, known as the VRP with soft time win-
dows (VRPSTW), where customer locations can
be visited outside of their associated time window
(at the expense of a penalty in the objective value).
A parallel version of the latter algorithm was im-
plemented on a network of workstations (Badeau
et al., 1997) and adapted for a real-time version of
the problem, where customer requests occur in an
on-going fashion (Gendreau et al., 1996, 1999).
These articles report numerical results obtained
with various methods: Two AMPs that use either a
simple descent method or a TS as improvement



E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16 11

procedure, and four different implementations of
insertion and rebuild methods that are using no
adaptive memory. It is shown that memory-based
heuristics are clearly superior to the other meth-
ods.

Adaptations of the original AMP method of
Taillard have also been applied to other variants
of the VRP, namely: the VRP with multiple uses of
vehicles (VRPM), where each vehicle is allowed to
perform many tours during a work day (Taillard
et al., 1996); the min-max CVRP and min-max
multiple TSP (MTSP) where the goal is to mini-
mize the length of the longest tour (Golden et al.,
1997); the VRP with heterogeneous, or non-iden-
tical, vehicles (VRPHE) (Taillard, 1999); and two
special cases of the latter problem, the vehicle fleet
mix (VFM) and vehicle fleet mix with variable
routing cost (VFMVRC) problems, where a fixed
cost is incurred for using a given vehicle type, as
well as a different cost by unit of length travelled
by each vehicle type.

For all these variants, efficient methods were
designed using the AMP framework. The basic
scheme is the following:

3.2.1. Memory
The memory contains a set 7 of tours belonging
to solutions produced by the search.

3.2.2. Provisional solution

A partial solution s is constructed by selecting a
number of tours contained in the memory, in a
probabilistic manner (i.e., tours associated with
better solutions have a higher probability of being
selected). More precisely, the provisional solution
is built as follows:
1. Makeacopy I" of T: T «— T.
2. Sets = 0.
3. While 7’ # () repeat:

3.1. Randomly choose a tour t € T".

3.2. Set s «— s U {t}.

33.V¢/ €T such that

T — T\ {¢}.

In this procedure, Step 3.3 looks for tours that
share one or more customers with the current se-
lected tour ¢. These tours are removed and are not
considered in the remainder of the selection pro-
cess. Hence, the provisional solution obtained at

fNne#0, set

the end is necessarily made of mutually exclusive
tours. However, it is possible that a number of
customers remains not serviced. These customers
are typically introduced in the provisional solution
through some least-cost insertion method to pro-
duce a complete solution. The insertion may also
be performed by means of the improvement pro-
cedure if the latter is able to make partial solutions
complete.

3.2.3. Improvement procedure
The provisional solution s is improved using
TS.

3.2.4. Memory update

The tours of the improved solution are inserted
in the memory 7T and the tours of the worst solu-
tion are removed from 7.

For a few variants of the VRP, the AMP solves
simpler auxiliary problems. A solution of the
original problem is then found by (implicitly)
enumerating all solutions that can be constructed
with tours contained in the memory, so that all
constraints of the original problem are satisfied.

The AMPs described above are able to produce
solution of very good quality, especially for irreg-
ular problems (i.e., problems for which the cus-
tomers are not uniformly spread on the plane and/
or the quantities ordered by the customers exhibit
a very high variance). So, the conclusions derived
for the performance of AMP applied to the qua-
dratic assignment problem seem also valid for
VRPs. The reader is referred to the articles men-
tioned above for detail numerical results.

3.3. Graph colouring

Graph colouring is aimed at partitioning a set
of vertices into a given number of subsets (colours)
such that the number of edges that connect two
vertices belonging to the same subset is minimized.
In Zufferey (1998), the idea is to use a memory and
a procedure for producing provisional solutions
similar to that presented just above for the VRP.
Indeed, instead of storing tours in 7, i.e., subsets
of customers, it is possible to store subsets of
vertices having received the same colour in a



12 E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16

solution. Then, the procedure presented above for
the VRP can be applied to build a partial colour-
ing that is improved by means of a TS (Hertz and
de Werra, 1987). So, the method goes along the
lines of the AMP of Rochat and Taillard (1995).

Costa et al. (1995) and Fleurent and Ferland
(1996) have proposed particularly effective AMP
methods for graph colouring that are designed in
the spirit of a genetic algorithm in which a local
search is embedded. They both use the same
memory and memory update mechanisms, but
differ in the way they construct and improve the
provisional solution. We now briefly sketch these
two methods.

3.3.1. Memory
The memory stores a number of solutions.

3.3.2. Provisional solution

Two solutions are selected from the memory
and combined to obtain the provisional solution.
Then, the colour of each vertex of the provisional
solution is copied from the selected solutions. This
copy is performed according to a policy that
slightly differs in both methods.

3.3.3. Improvement procedure

Costa et al. (1995) use a simple local search for
improving the provisional solution while Fleurent
and Ferland use a relatively elaborated TS (Hertz
and de Werra, 1987).

3.3.4. Memory update
Both methods insert the new solution in the
memory and remove the worst one from it.

3.4. Synthesis

Even if the list of successful applications of
AMP methods to solve combinatorial optimiza-
tion problems, as found in Sections 3.1-3.3, is far
from exhaustive, it should clearly demonstrate that
all these methods use the same working principles.
We must however, emphasize that they differ a lot
in their implementation details; these details
should not be overlooked, as they are responsible
for the success or failure of a given AMP method.

In fact, there is almost an infinite number of ways
of implementing a simple local search, a TS, a
genetic algorithm, etc.

While promoters of different metaheuristics
with memory developed increasingly sophisticated
mechanisms to maintain the competitiveness of
their approach, their efforts have often converged
to the same general principles: use of a memory
and procedures for constructing a new solution
and for improving it. A notable exception is sim-
ulated annealing, as it does not use any memory.
The framework of this technique being more rigid,
as compared to other metaheuristics, it may ex-
plain why it did not evolve in the same way.

Why did metaheuristics with memory converge
to the same basic approach? One answer could be
that the a natural way of alleviating the weak-
nesses of a given technique is to borrow compo-
nents from another technique (which does not
exhibit the same weaknesses). Shortly, this evolu-
tion could be described as follows for the different
approaches.

3.4.1. Genetic algorithms

Coding a solution with a binary vector is not
natural and can significantly impact the perfor-
mance. Hence, binary coding was replaced by a
more natural representation of solutions.

The classical cross-over operators do not cor-
respond to logical operations on solutions. Fur-
thermore, the use of other representations than
binary vectors naturally led to the design of spe-
cialized operators, well adapted to the solution
representation and capable of generating new
feasible solutions.

GA can easily identify different solution sub-
spaces with good characteristics, but they lack the
“killer instinct” that would allow them to intensify
the search in these areas. To alleviate this weak-
ness, the mutation operator was replaced by repair
procedures and local search.

3.4.2. Scatter search

This technique initially contained all the ingre-
dients of an AMP. This technique was not ex-
ploited for a long time but has recently emerged
when its similarity with other modern techniques



E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16 13

was noticed. Modern forms of SS incorporate the
learning capabilities provided by TS.

3.4.3. Ant system

Like GA, early implementations of ant system
converged too slowly toward high quality solu-
tions. Therefore, intensification mechanisms were
gradually introduced. For example, only the best
ant is allowed to update pheromone information
in Gambardella and Dorigo (1996). The most re-
cent implementations incorporate local search
mechanisms to improve the solutions produced by
the ants.

3.4.4. Taboo search

TS also contained all elements of the AMP
framework, at least in its complete version in
Glover (1989, 1990). However, a number of im-
plementations, even recent ones, use only the basic
ingredients found in Glover (1986). The main ad-
vantage of the basic version is its aggressiveness:
the search converges toward a local optimum and
examines the neighbourhood of this local optimum
very quickly. However, it can easily get trapped in
a sub-space containing only solutions of poor
quality. To diversify the search and force it to visit
solutions with different characteristics, one basic
idea was to increase the number of forbidden
components when performing local modifications
to a solution. So, the discussion quickly turned
around the optimum taboo list size, since a short
list allows a thorough examination of the neigh-
bourhood of a good solution while a long list fa-
cilitates the escape from a local optimum to
explore new regions of the search space. In fact,
the reactive TS proposed by Battiti and Tecchiolli
(1994) was designed to automatically adapt the
taboo list size and avoid the fastidious task of
explicitly managing the taboo list.

The main difficulty with TS is thus to efficiently
incorporate diversification and intensification
mechanisms. The use of a memory that stores
good solutions visited during the search and the
design of a procedure to create provisional solu-
tions from it is a way to achieve this goal. Indeed,
solutions contained in memory during the initial
search phase present different characteristics, thus
leading to a diversified search. Later, solutions

contained in memory are mostly representative of
one or a few good regions of the solution space.
The result is that the search gradually shifts from
diversification to intensification (Rochat and
Taillard, 1995).

4. Conclusion and perspective

Our goal was to demonstrate that metaheuristics
with memory have evolved toward a unified prob-
lem-solving approach that encompasses each one
of them. Our point of view is that the name AMP is
more general and better characterizes this unified
approach than the name of any particular meta-
heuristic. The simplicity of the general AMP
scheme could lead to think that one has reached the
ultimate goal of metaheuristics: A unique technique
that groups the essence of the good ideas contained
in every metaheuristic. On the contrary, we think
on the one hand that the reflections brought by this
article should stimulate the creation of new meta-
heuristics based on completely different principles.
On the other hand, designing an adaptive memory
programme requires an intelligence that cannot be
embedded in a metaheuristic.

This intelligence should be brought by the de-
signer that has the knowledge of the problem to
solve. First, we can think to the design of the
procedure that constructs a provisional solution
from solutions generated in the past. Undoubt-
edly, this construction requires knowledge about
the problem. However, the design of the improving
procedure could also benefit from future im-
provements. For example, it is reported in Taillard
(1996) that a simple local search procedure, using
an adequate neighbourhood of reasonable size,
could produce solutions that were often of higher
quality than previously designed taboo searches,
GA or variable neighbourhood searches (Hansen
and Mladenovic, 1999) for a class of clustering
problems.

Finally, let us point out a few advantages of
AMP. First, the technique is very well adapted for
a parallel implementation on distributed comput-
ers (Badeau et al., 1997). Indeed, the most com-
putationally expensive part of the algorithm is
often the local search procedure. Therefore, it is



14 E.D. Tuillard et al. | European Journal of Operational Research 135 (2001) 1-16

possible to place a local search process on many
processors, each of them working on different
provisional solutions. Second, AMP is particularly
well adapted for solving dynamic problems since
its working principle allows the method to adapt
to slightly modified data (Gendreau et al., 1996,
1999). So, it is able to benefit from past compu-
tations while other methods like SA or variable
neighbourhood searches ‘““forget” the way they
succeeded in finding — sometimes very efficiently —
the unique solution they can exhibit. Finally, an
adaptive memory programme is often able to ex-
hibit a number of different high quality solutions.
This enables the user to choose the practical so-
lution that solves best his problem. Indeed, it is
often not possible to include all features of a real
application into an optimization model and the
possibility of choosing a solution among a number
of alternatives is of great importance in practice.
For all these reasons, we think that the philosophy
of AMP will be more and more adopted in the
future, especially for real applications.

References

Aarts, E.H.L., Van Laarhoven, P.J.M., 1985. Statistical cool-
ing: A general approach to combinatorial optimization
problems. Philips Journal of Research 40, 193-226.

Angel, E., Zissimopoulos, V., 1998. On the quality of local
search for the quadratic assignment problem. Discrete
Applied Mathemetics 82, 15-25.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y., Taillard,
E.D, 1997. A parallel tabu search heuristic for the vehicle
routing problem with time windows. Transportation Re-
search 5C, 109-122.

Battiti, R., Tecchiolli, G., 1994. The reactive tabu search.
ORSA Journal on Computing 6, 126-140.

Blanton, J.L., Wainwright, R.L., 1993. Multiple vehicle
routing with time and capacity constraints using genetic
algorithms. In: Forrest, S. (Ed.), Proceedings of the Fifth
International Conference on Genetic Algorithms. pp. 452—
459.

Boese, K.D., Kahng, A.B., Muddu, S., 1994. A new adaptive
multi-start technique for combinatorial global optimiza-
tions. Operations Research Letters 16, 101-113.

Bullnheimer, B., Hartl, R.F., Strauss, C., 1999. Applying the
ant system to the vehicle routing problem. In: Voss, S.,
Martello, S., Osman, I.H., Roucairol, C. (Eds.), Metaheu-
ristics: Advances and Trends in Local Search Paradigms for
Optimization. Kluwer Academic Publisher, Dordrecht, pp.
285-296.

Chiang, W.-C., Russell, R.A., 1997. A reactive tabu search
metaheuristic for the vehicle routing problem with time
windows. INFORMS Journal on Computing 9, 417-430.

Colorni, A., Dorigo, M., Maniezzo, V. 1992a. Distributed
optimization by ant colonies. In: Varela, F.J., Bourgine, P.
(Eds.), Proceedings of the First European Conference on
Artificial Life (ECAL-91). The MIT Press, Cambridge, MA,
pp- 134-142.

Colorni, A., Dorigo, M., Maniezzo, V. 1992b. An investigation
of some properties of an ant algorithm. In: Manner, R.,
Manderick, B. (Eds.), Parallel Problem Solving from
Nature, vol. 2. North-Holland, Amsterdam, pp. 509-520.

Connolly, D.T., 1990. An improved annealing scheme for the
QAP. European Journal of Operational Research 46, 93—
100.

Costa, D., Hertz, A., Dubuis, O., 1995. Embedding of a
sequential procedure within an evolutionary algorithm for
coloring problems in graphs. Journal of Heuristics 1, 105—
128.

Cung, V.-D., Mautor, T., Michelon, P., Tavares, A., 1997. A
scatter search based approach for the quadratic assignment
problem. In: Baeck, T., Michalewicz, Z., Yao, X. (Eds.),
Proceedings of the IEEE International Conference on
Evolutionary Computation and Evolutionary Program-
ming. pp. 165-170.

Dorigo, M., Gambardella, L.M., 1997. Ant colony system: A
cooperative learning approach to the traveling salesman
problem. IEEE Transactions on Evolutionary Computation
1, 53-66.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant system:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems Man an Cybernetics 26B, 29-41.

Duhamel, C., Potvin, J.-Y., Rousseau, J.-M., 1997. A tabu
search heuristic for the vehicle routing problem with
backhauls and time windows. Transportation Science 31,
49-59.

Faigle, U., Kern, W., 1992. Some convergence results for
probabilistic tabu search. ORSA Journal on Computing 4,
32-37.

Feo, T., Resende, M., 1995. Greedy randomized adaptive
search procedures. Journal of Global Optimization 16, 109—
133.

Fleurent, C., Ferland, J.A., 1996. Genetic hybrids for the
quadratic assignment problem. DIMACS Series in Mathe-
matics and Theoretical Computer Science 16, 190-206.

Fleurent, C., Ferland, J.A., 1996. Genetic and hybrid algo-
rithms for graph coloring. Annals of Operations Research
63, 437-461.

Gambardella, L.M., Dorigo, M., 1996. Solving symmetric and
asymmetric TSPs by ant colonies. In: Proceedings of the
IEEE Conference on Evolutionary Computation
(ICEC’96). IEEE Press, New York, pp. 622-627.

Gambardella, L.M., Taillard, E.D., Agazzi, G. MACS-
VRPTW: A multiple ant colony system for vehicle routing
problems with time windows. In: Corne, D., Glover, F.,
Dorigo, M. (Eds.), New Ideas in Optimisation. McGraw-
Hill, New York, pp. 63-76.



E.D. Taillard et al. | European Journal of Operational Research 135 (2001) 1-16 15

Gambardella, L.M., Taillard, E.D., Dorigo, M., 1999. Ant
colonies for the quadratic assignment problem. Journal of
the Operational Research Society 50, 167-176.

Gendreau, M., Hertz, A., Laporte, G., 1994. A tabu search
heuristic for the vehicle routing problem. Management
Science 40, 1276-1290.

Gendreau, M., Badeau, P., Guertin, F., Potvin, J.-Y., Taillard,
E.D., 1996. A solution procedure for real-time routing and
dispatching of commercial vehicles. In: Proceedings of the
Third World Congress on Intelligent Transport Systems.
Orlando, FL.

Gendreau, M., Guertin, F., Potvin, J.-Y., Taillard, E.D., 1999.
Parallel tabu search for real-time vehicle routing and
dispatching. Transportation Science 33, 381-390.

Glover, F., 1977. Heuristics for integer programming using
surrogate constraints. Decision Sciences 8, 156-166.

Glover, F., 1986. Future paths for integer programming and
links to artificial intelligence. Computers and Operations
Research 13, 533-549.

Glover, F., 1989. Tabu search — Part I. ORSA Journal on
Computing 1, 190-206.

Glover, F., 1990. Tabu search — Part II. ORSA Journal on
Computing 2, 4-32.

Glover, F., 1997. Tabu search and adaptive memory program-
ming — advances, applications and challenges. In: Barr,
Helgason, Kennington (Eds.), Advances in Metaheuristics,
Optimization and Stochastic Modeling Technologies. Klu-
wer Academic Publishers, Boston, MA, pp. 1-75.

Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic
Publishers, Boston, MA.

Golden, B.L., Laporte, G., Taillard, E.D., 1997. An adaptive
memory heuristic for a class of vehicle routing problems
with min—-max objective. Computers and OR 24, 445-452.

Hajek, B., 1988. Cooling schedules for optimal annealing.
Mathematics of Operations Research 13, 311-329.

Hansen, P., Mladenovic, N., 1999. An introduction to variable
neighborhood search. In: Voss, S., Martello, S., Osman,
I.H., Roucairol, C. (Eds.), Metaheuristics: Advances and
Trends in Local Search Paradigms for Optimization. Klu-
wer Academic Publisher, Dordrecht, pp. 433-458.

Hertz, A., de Werra, D., 1987. Using tabu search techniques for
graph coloring. Computing 39, 345-351.

Holland, J.H., 1975. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann Arbor, MI.

Moscato, P., 1999. Memetic algorithms: A short introduction.
In: Corne, D., Glover, F., Dorigo, M. (Eds.), New Ideas in
Optimisation. McGraw-Hill, New York, pp. 219-235.

Miihlenbein, H., Gorges-Schleuter, M., Kraamer, O., 1988.
Evolution algorithms in combinatorial optimization. Paral-
lel Computing 7, 65-88.

Osman, .LH., 1993. Metastrategy simulated annealing and tabu
search algorithms for the vehicle routing problem. Annals of
Operations Research 41, 421-451.

Patterson, R., Pirkul, H., Rolland, E., 1999. A memory
adaptive reasoning technique for solving the capacitated
minimum spanning tree problem. Journal of Heuristics 5,
159-180.

Potvin, J.-Y., Bengio, S., 1996. The vehicle routing problem
with time windows — Part II: Genetic search. INFORMS
Journal on Computing 8, 165-172.

Potvin, J.-Y., Kervahut, T., Garcia, B.-L., Rousseau, J.-M.,
1996. The vehicle routing problem with time windows — Part
I: Tabu search. INFORMS Journal on Computing 8, 158—
164.

Rochat, Y., Taillard, E.D., 1995. Probabilistic diversification
and intensification in local search for vehicle routing.
Journal of Heuristics 1, 147-167.

Soriano, P., Gendreau, M., 1996. Diversification strategies in
tabu search algorithms for the maximum clique problem.
Annals of Operations Research 63, 189-207.

Stiitzle, T., Hoos, H., 1999. MAX-MIN ant system and local
search for combinatorial optimization problems — towards
adaptive tools for combinatorial global optimization. In:
Voss, S., Martello, S., Osman, I.H., Roucairol, C. (Eds.),
Metaheuristics: Advances and Trends in Local Search
Paradigms for Optimization. Kluwer Academic Publisher,
Dordrecht, pp. 313-329.

Taillard, E.D., 1991. Robust taboo search for the quadratic
assignment problem. Parallel Computing 17, 443-455.

Taillard, E.D., 1993. Parallel iterative search methods for
vehicle routing problems. Networks 23, 661-673.

Taillard, E.D., 1994. Parallel taboo search techniques for the
job shop scheduling problem. ORSA Journal on Computing
6, 108-117.

Taillard, E.D., 1994. A diversification/intensification technique
for local search applied to vehicle routing problems,
Working paper, Centre de recherche sur les transports,
Université de Montréal, Canada.

Taillard, E.D, 1995. Comparison of iterative searches for the
quadratic assignment problem. Location Science 3, 87—
105.

Taillard, E.D., 1996. Heuristic methods for large centroid
clustering problems, Technical report IDSIA-96-96, IDSIA,
Lugano.

Taillard, E.D, 1999. A heuristic column generation method for
the heterogeneous VRP. Operations Research — Recherche
opérationnelle 33, 1-14.

Taillard, E.D, Badeau, P., Gendreau, M., Guertin, F., Potvin,
J.Y., 1997. A tabu search heuristic for the vehicle routing
problem with soft time windows. Transportation Science 31,
170-186.

Taillard, E.D., 1998. FANT: Fast Ant System, Technical report
IDSIA-46-98, IDSIA, Lugano.

Taillard, E.D, Laporte, G., Gendreau, M., 1996. Vehicle
routing with multiple use of vehicles. Journal of the
Operational Research Society 47, 1065-1070.

Tate, D.E., Smith, A.E., 1995. A genetic approach to the
quadratic assignment problem. Computers and Operations
Research 22, 73-83.

Thangiah, S.R. 1995. An adaptive clustering method using a
geometric shape for vehicle routing problems with time
windows. In: Eshelman L.J. (Ed.), Proceedings of the Sixth
International Conference on Genetic Algorithms. Morgan
Kaufmann, San Mateo, CA, pp. 536-543.



16 E.D. Tuillard et al. | European Journal of Operational Research 135 (2001) 1-16

Thangiah, S.R., Nygard, K.E., Juell, P.L., 1991. GIDEON: A
genetic algorithm system for vehicle routing with time
windows. In: Proceedings of the Seventh IEEE Conference
on Artificial Intelligence Applications. IEEE Computer Soc.
Press, Silver Spring, MD, pp. 322-328.

Thangiah, S.R., Osman, I.H., Vinayagamoorthy, R., Sun, T.,
1993. Algorithms for vehicle routing problems with time
deadlines. American Journal of Mathematical and Man-
agement Sciences 13, 323-355.

Vollmann, T.E., Buffa, E.S., 1966. The facilities layout problem
in perspective. Management Science 12, 188-204.

Xu, J., Kelly, J.P., 1996. A network-flow based tabu search
heuristic for the vehicle routing problem. Transportation
Science 30, 379-393.

Zufferey, N., 1998. Coloration de graphe a ’aide de méthodes a
mémoire adaptative, Diploma thesis, Département de
mathématiques, Ecole Polytechnique Fédérale de Lausanne,
Lausanne.



