
MooN

User Manual

MooN - A Framework for Metaheuristical Optimization.
c© 2003-04 PG 431, Chair of Systems Analysis, University of Dortmund.

MooN is licensed under the GNU General Public License.

Preface

From the beginning of the development of MooN we had ambitious plans to not only
fulfill the requirements of the university course, but to provide a tool to the scientific
community with practical value. There were only a few comparable projects which
aimed at making the research work on evolutionary algorithms easier, and which was
what we identified as our main goal in the early stages of the project. We wanted to
help scientists focus on the ’real work’, giving them the possibility to mostly neglect
the ’craftmanship’ of programming an environment for the algorithms and problems
under examination. We hope that our concept of the plug-in structure lives up to
the ambitions we had in mind. Anyway, we already found the design quite helpful
during the last stages of our project. We hope that some people will find that as
well.

Projektgruppe 431

The ’PG 431’ is:
Selcuk Balci, Sören Blom, Daniel Blum, Vedran Divkovic, Dirk Hoppe, Djamila
Lindemann, Ulf Schneider, Bianca Selzam, Thomas Tometzki, Marko Tosic, Igor
Vatolkin and Stefan Walter.

CONTENTS iii

Contents

Preface ii

1 Introduction 1
1.1 Requirements . 2
1.2 Installing MooN . 3

2 Managing Plug-Ins 4
2.1 Installing Plug-Ins . 4
2.2 Deleting Plug-Ins . 5

3 Managing Single Runs 6
3.1 Problem . 7
3.2 Heuristic . 9
3.3 Exit Condition . 11
3.4 General Options . 12

4 Managing Complete Runs 14
4.1 Composing . 14
4.2 Running . 15
4.3 Saving . 16
4.4 Loading . 16

5 Command Line Usage 17
5.1 Invoking MooN from the Command Line 17
5.2 (Un-)Installing Plug-Ins from the Command Line 18

5.2.1 Installing a Plug-In . 18
5.2.2 Removing a Plug-In . 18
5.2.3 Listing Plug-Ins . 18

1 INTRODUCTION 1

1 Introduction

”One small step for man, one giant leap for mankind.”
- Neil Armstrong on landing on the moon

Welcome to MooN!
This is a short user manual which should help you exploring the MooN system.
MooN is a free software tool that provides a plug-in-based framework for implement-
ing heuristics and optimization problems. These plugins can be installed into the
core system, after which they are immediately available to be used for experiments.
The MooN core system provides all the functionality to run interesting experiments
on the installed plugins. There are a number of plugins included in the MooN dis-
tribution as it can be downloaded from
http://ls11-www.cs.uni-dortmund.de/lehre/SoSe03/PG431/MooN/moon.htm.

In the problem section you can find common test functions like:

• spherical function

• Schwefel function

• Griewank function

• Travelling Salesperson problem

In the heuristic section there are implementations of:

• genetic algorithms

• particle swarm optimization

• ant colony optimization

• evolution strategy

and other heuristics.
You can also find a number of exit conditions, such as

• number of generations

• exit at a given time

• fitness threshold

MooN has been developed by students of the University of Dortmund, Germany. It
was a project work of a course called ’Metaheuristics - New Ideas for Optimization’.
We wish you a lot of fun with MooN and hope that it makes your scientific work
easier!

1 INTRODUCTION 2

1.1 Requirements

MooN is written in the Java programming language. An installation of the Java 2
Platform Standard Edition (J2SE), version 1.4.21 is needed. For details about J2SE
downloading and installing instructions refer to:

http://java.sun.com/j2se/1.4.2/index.jsp

Additionally some third party packages are needed to run MooN. Those packages
are Log4J, Xerces and JDOM.

Log4J, version 1.2.8

Log4J is an Apache Software Foundation project for advanced logging control. The
main benefit is the logging output can be controlled through a configuration file with-
out modifying the source code. Log4J can be obtained from the project’s homepage:

http://logging.apache.org/log4j/docs/

Xerces 2 for Java, version 2.6.x

Xerces is a highly modular XML parser, both for XML parsing and generation.
MooN makes extensive use of Xerces, as XML is a main feature for providing ex-
tensibility and universality. Xerces is also an Apache Software Foundation project,
available on their XML website:

http://xml.apache.org/xerces2-j/index.html

Note that the Xerces2 Java Parser is needed. Two libraries out of the binary dis-
tribution package are of interest: xercesImpl.jar and xml-apis.jar.

JDOM, version 1.0 beta 9

JDOM is a complete, Java-based solution for accessing, manipulating, and out-
putting XML data from Java code. It is available on the project’s homepage:

http://www.jdom.org/

1Generally the latest installation of J2SE and the third-party packages should work with MooN.
Since downward compability is not always achieved, the exact version numbers are provided as used
to develop MooN

1 INTRODUCTION 3

1.2 Installing MooN

MooN is distributed as a jar-package including an installation routine. Typing

java -jar install.jar

at the command line will start the installation process. Depending on the systems
configuration double-clicking the install.jar file will do the same. The graphical
installation manager that is started by this is self-explanatory.

Files and Directory Structure Depending on the decisions during installation the
following subdirectories will be created in the MooN directory:

• bin - All class files and libraries are placed here. Also, necessary third party
libraries have to be copied to bin/lib (see below).

• doc - The MooN Documentation: user and developers manual, readme and
the JavaDoc can be found here.

• misc - The jar files of the included plugins and a sample R script for statistical
analysis reside here.

• src - The source files of MooN.

• Uninstaller - The uninstaller for automatical removing of MooN.

Copying the necessary Libraries In order to run MooN some third party libraries
must be copied to the moon/bin/lib directory. For details about those libraries and
where they can be obtained refer to section 1.1.
After downloading the described libraries, they need to be copied to moon/bin/lib.
MooN can then be started by either selecting the Moon.bat or Moon.sh depending
on the underlying operating system.

2 MANAGING PLUG-INS 4

2 Managing Plug-Ins

”Computers are useless. They can only give you answers.”
- Pablo Picasso

One of the main advantages of MooN is the plug-in approach. Through this approach
one can install and remove heuristics, problems and exit conditions at any time.
Given a valid heuristic plug-in (received through a colleagues email, downloaded
from the Internet, etc.), installing it into your installation of MooN is a matter of
seconds. The steps needed are described in detail below.

2.1 Installing Plug-Ins

Figure 1: Installing a plug-in

Installing a plug-in is as simple as loading a file: In the File menu choose Install
Plug-In (figure 1). In the appearing dialog, search and choose your plug-in .jar-file
and click Open (figure 2). The plug-in will be stored in the default plug-in directory,
ready for use and should appear in the list during the configuration of a single run
(see section 3.2).

2 MANAGING PLUG-INS 5

Figure 2: Selecting a plug-in

2.2 Deleting Plug-Ins

To remove a plug-in choose the Delete plug-in entry from the File menu (figure 3).
From the list of installed plug-ins choose the one to remove and confirm this by
clicking OK (figure 4). The plug-in files are deleted from the plug-in directory.

Figure 3: Deleting a plug-in

3 MANAGING SINGLE RUNS 6

Figure 4: Selecting a plug-in for deletion

3 Managing Single Runs

”Run, Forrest, run!”
- Jenny Curran to Forrest Gump

The smallest execution unit in MooN is called single run. A single run represents
one experiment with its parameter options for the respective heuristic, problem and
exit condition. In order to create a single run in MooN one needs to pick at the
least one heuristic, one problem and one exit condition.
The single run can be started with its default parameters. However, if real life
experiments are to be conducted, the options of the three plug-ins will need to be
tuned. After all options are set correctly the Accept button is enabled.

3 MANAGING SINGLE RUNS 7

3.1 Problem

We start with an explanation of the problem and its parameter configuration.

Figure 5: Single run parameter dialog

The single run problem dialog (close-up shown in figure 5) enables the user to select
problem specific options.

Figure 6: Problem selection dialog

To the left part of figure 5 there is a list with all installed problem plug-ins (close-up
in figure 6). If a desired plug-in is not found in the list, it needs to be installed.
After installing it (see section 2.1) it will be visible in this list and can be used in
single runs from there on.
When a problem is selected from the list, a detailed description of the plug-in is
displayed in the lower left corner, shown in figure 7.

3 MANAGING SINGLE RUNS 8

Figure 7: Problem description dialog

Figure 8: Problem configuration dialog

After deciding which problem to optimize within this single run, ensure that the
problem is configured to the needs of the experiment it will be take part in. The
problem configurator as shown in figure 8 shows all available options with their
values for the selected problem. To change the value for a specific option simply
select the corresponding table cell by clicking it and editing the value.
If it becomes necessary to reset values, clicking the Default button resets all pa-
rameter values to their factory setting. The button is located to the right of the
parameter list (see figure 5).

3 MANAGING SINGLE RUNS 9

3.2 Heuristic

In this section the heuristic part of the single run configuration is described. All
parameters regarding the strategy of the heuristic can be set as described here.
The single run heuristic dialog is similar to the problem dialog. This is where all
runtime options of the heuristic can be set.

Figure 9: Heuristic selection dialog

To the left part of figure 5 a list with all installed heuristic plug-ins can be found
(figure 9).

Figure 10: Heuristic description dialog

When a heuristic plug-in is selected, a detailed description of its function is displayed
in the lower left corner as shown in figure 10.
Similar to the situation in section 3.1 the list shown in figure 11 contains all available
options for the selected heuristic. Editing values in the list is done in the same way
as described there and the Default button has the same effect as well.
In addition to the dialog elements in the problem section (3.1) there are output
handler options. The output handler is the part of MooN that writes experiment
data to your hard disk for later evaluation. Since different heuristics may have

3 MANAGING SINGLE RUNS 10

Figure 11: Heuristic configuration dialog

different data to examine you can parameterize the output of the single run. There
are two important settings to consider: the output interval and the output file.
Depending how fine grained the heuristics output should be on a specific parameter,
the logging interval takes any positive integer including zero. A value of zero means
that no logging one that parameter is done, a positive value n means that logging
for this parameter is done every n-th generation. When considered usefull for later
data analysis, the output for every parameter can be written into individual files.
This option is enabled by activating the Log categories to separate files switch (see
figure 12).

Figure 12: Heuristic output handler dialog

3 MANAGING SINGLE RUNS 11

3.3 Exit Condition

The exit condition is the part of MooN that controls the termination of a single
run. For example, a single run can be stopped after a specific time or after a
certain number of generations. Exit conditions are also realized as plug-ins. One
exit condition needs to be selected for a single run to be complete.

Figure 13: Exit condition choose dialog

The dialog shown in figure 13 is used to select the exit condition. All installed exit
condition plug-ins are listed. When selected, a detailed description of the plug-in is
displayed in the lower left corner as shown in figure 14.

Figure 14: Exit condition description dialog

As before, parameter values of the selected exit condition can be edited in the
assocciated list.

3 MANAGING SINGLE RUNS 12

Figure 15: Exit condition configuration dialog

3.4 General Options

Single Run Description

In the description section of a single run one can enter a detailed description of
a single run. It is recommended to put a single, one line short description in the
first line since it will be displayed in the complete run overview. The length of
the description is not limited and the visible are provides enough space for detailed
informations regarding a single run (figure 16).

Figure 16: Single run description dialog

Although descriptions are not necessary for the execution of the single run, it is
strongly recommended to explain the experiment here in order to be able to under-
stand the purpose of the configuration without reviewing all values again.

Repeating Single Runs

Another feature, designed to conduct real life experiments easily, is the ability to re-
peat a single run several times by changing the repetitions’ value in the dialog shown
in figure 17. This reduces the variance and generates statistically more significant
results without creating new single runs with identical parameter settings.

Copying Single Runs

Another handy feature is the Copy item from the Single run menu. It is helpful
for creating complete runs that consist of similar single runs. When applied to a

3 MANAGING SINGLE RUNS 13

Figure 17: Single run repetitions dialog

selected single run in the complete run list, the copied single run is appended to the
list and the desired changes can be applied to it.

4 MANAGING COMPLETE RUNS 14

4 Managing Complete Runs

”There is a theory which states that if ever anybody discovers exactly what the
universe is for and why it is here, it will instantly disappear and be replaced by

something even more bizarre and inexplicable. There is another theory which states
that this has already happened.”

- Douglas Adams

In this part managing complete runs is explained. There are four main activites with
regard to complete runs: composing, running, saving and loading complete runs.

4.1 Composing

Single runs are administered in a task list called the ’complete run list’ (figure 18).
Every line represents a single run, hence the whole list represents the complete run.
To create a new complete run, select New in the File menu or click on the icon for
a new complete run in the toolbar.

Figure 18: Complete run list

Adding a single run to the list To add a new single run, select Add in the Single
run menu or click on the ”plus” button.

Duplicating single runs A feature which is very handy when composing list of
very similar single runs is the copy feature. To duplicate an existing single run,
select it an chose Copy from the Single run menu. The clone will appear at the end
of the list.

Changing the order of execution To move a single up and down the list, one can
use the Move up / Move down in the Single run menu or the arrow buttons in the
toolbar.

Removing single runs The ”minus” button or the Delete entry in the Single run
menu will remove a selected single run.

4 MANAGING COMPLETE RUNS 15

4.2 Running

After a complete run has been loaded or newly created, it can be started by selecting
Optimization/Run from the menubar. Alternatively, the ”play” button in the toolbar
(figure 20) does the same. Depending on how complex the complete run is, the
running process can take a long or short time. However, the course of optimizations
can be followed on the Runtime Visualization Graphic that opens up automatically
upon a run as shown in figure 19.

Figure 19: Runtime visualization

If you want to observe an interesting state of the optimization in more detail the
current run can be paused by the ”pause” button in the toolbar (figure 20). In
case you made a mistake in the configuration of a very long run you can cancel the
complete run by pressing the ”stop” button.

Figure 20: The toolbar

4 MANAGING COMPLETE RUNS 16

4.3 Saving

In order to save a complete run choose the Save entry from the file menu (see figure
21) or press the disk symbol on the toolbar (see figure 20). When saving a complete
run for the first time MooN will ask for a file name. Otherwise the file on the disk is
replaced with the recent complete run. Saving an already saved run into a different
file is done by selecting Save As from the File menu.

Figure 21: The menubar

After entering a proper name, pressing the Ok button of the File Save dialog and
MooN writes the complete run to the hard disk.

4.4 Loading

Complete runs are saved as .xml configuration files. To load a saved complete run
choose Open from the File menu. This opens a file chooser similar to the one in figure
2. After selecting the desired file, pressing the Ok button will load it. Note that
loading might not be sucessfull if the file specifies plug-ins that are not installed or
have different parameters. This might be the case if the complete run was created
with an installation of MooN that had more or other plug-ins installed. Installing
the missing plug-ins will help this problem.

5 COMMAND LINE USAGE 17

5 Command Line Usage

”Bad Command or File Name. Good try, though.”
- Anonymous

For automation purposes MooN can be invoked from the command line. This can be
very helpful to conduct complex and time consuming experiments on environments
that only allow shell access, e.g. batch systems or mainframes. Following operations
can be called from the command line:

• starting complete runs

• installing plug-ins

• uninstalling plug-ins

• listing plug-ins

These functionalities are described in detail in the following subsections.

5.1 Invoking MooN from the Command Line

Starting MooN from the command line is simple. All one needs is to specify the path
to a valid XML complete run definition. This XML file can be created using the
GUI (as described in the preceding chapters). Of course, manipulating it with a text
editor is also possible (see the developers manual for details on the file structure).
One can call Moon with the parameter -r (for run):

Moon -r <pathToCompleteRunXML>

MooN will process the tasks in the XML definition file. There will be no runtime
visualization, only the described output handling is performed.

Even if no batch system is used, one might consider running MooN from the com-
mand line, since avoiding the runtime visualization causes a noticeable performance
gain.

5 COMMAND LINE USAGE 18

5.2 (Un-)Installing Plug-Ins from the Command Line

As mentioned above, one can install, remove and list the plugins.

5.2.1 Installing a Plug-In

One needs a valid plug-in in form of a .jar archive. Install the plug-in by using the
-i parameter:

Moon -i <pathToPlugin.jar>

The plug-in will be extracted and stored in the standard plug-in directory of MooN
(./plugins in the Moon directory). Installing it into a different directory is done
by using the optional -d parameter:

Moon -i <pathToPlugin.jar> -d <pluginDirectory>

5.2.2 Removing a Plug-In

Removing a plug-in requires its full name. To obtain a list of all plug-ins from the
command line see 5.2.3. Knowing the name, uninstalling a plug-in is done with the
-u switch:

Moon -u <pluginName>

5.2.3 Listing Plug-Ins

The -l switch is used for listing all installed plug-ins:

Moon -l

We hope that this manual will be found helpful in introducing the user to MooN
and its usage.

PG 431

	Preface
	1 Introduction
	1.1 Requirements
	1.2 Installing MooN

	2 Managing Plug-Ins
	2.1 Installing Plug-Ins
	2.2 Deleting Plug-Ins

	3 Managing Single Runs
	3.1 Problem
	3.2 Heuristic
	3.3 Exit Condition
	3.4 General Options

	4 Managing Complete Runs
	4.1 Composing
	4.2 Running
	4.3 Saving
	4.4 Loading

	5 Command Line Usage
	5.1 Invoking MooN from the Command Line
	5.2 (Un-)Installing Plug-Ins from the Command Line
	5.2.1 Installing a Plug-In
	5.2.2 Removing a Plug-In
	5.2.3 Listing Plug-Ins

