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Abstract. This paper presents various Metamodel–Assisted Evolution
Strategies which reduce the computational cost of optimisation problems
involving time–consuming function evaluations. The metamodel is built
using previously evaluated solutions in the search space and utilized to
predict the fitness of new candidate solutions. In addition to previous
works by the authors, the new metamodel takes also into account the
error associated with each prediction, by correlating neighboring points
in the search space. A mathematical problem and the problem of design-
ing an optimal airfoil shape under viscous flow considerations have been
worked out. Both demonstrate the noticeable gain in computational time
one might expect from the use of metamodels in Evolution Strategies.

1 Introduction

Evolution Strategies (ES) are a powerful tool for global optimisation in high-
dimensional search spaces. However, their known weakness is that they require
a high number of evaluations. Similar problems may be reported for other
population–based methods, such as the widely used Genetic Algorithms. In op-
timisation problems with time–consuming evaluation software (applications in
the field of aeronautics are typical examples) this renders the total CPU cost to
be prohibitive for industrial use. A way for keeping this cost as low as possible
is through the use of a surrogate evaluation tool, i.e. the so–called metamodel;
a relevant literature survey can be found in [3], at least from the viewpoint
of applications in aeronautics. The Metamodel–Assisted Evolution Strategies
(MAES) can be applied for global optimisation with any time–consuming evalu-
ation method, especially in industrial design optimisation. Extending a previous
work by the same authors [5], a new enhanced metamodel is employed herein. In
the course of evolution, the metamodel’s role is to point to the most promising
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individuals that will be re–examined through the time–consuming evaluation
software. The use of the metamodel prerequisites the existence of a database
and procedure for optimally selecting the database subset to be used for its
construction.

Various metamodels can be devised. In the past, Giannakoglou et al [4] uti-
lized radial basis function networks as surrogate models. Other algorithmic vari-
ants that use metamodels in evolutionary optimisation can also be found in the
literature (for instance, in Jin et al. [6]).

In the present study, we will extend the use of metamodels, as described in
[5], by incorporating a local error estimation technique that enables the opti-
misation method to estimate the reliability of the approximated function values
and to exploit further this information. The error estimation is based on the
local density and clustering of points and on estimates of local correlations. A
search criterion is used, which considers both the local error estimation and the
fitness estimation. Furthermore, it will be demonstrated that the step-size self-
adaptation is preserved despite the use of the metamodel. Unlike [5], which made
use of small population size ES, in the present paper ES with large population
size will be employed; to the authors experience, the latter is best suited for
global optimisation.

This paper is organised as follows. The metamodel is first introduced and then
the ES along with the search criterion based on fitness and error estimations are
described. For the assessment of the proposed method, artificial landscapes and
an airfoil optimisation problem will be analysed.

2 Kriging and Local Error Estimation

A metamodel approximates a multivariate function using points that have al-
ready been evaluated. It is a reasonable assumption to consider that the time
required for building the metamodel is negligible compared to the CPU cost for
an exact evaluation, at least in real world problems. Thus, a metamodel is to be
considered as a fast surrogate model to the exact evaluation software.

Henceforth, x1, . . . ,xm ∈ R
n will denote previously evaluated candidate so-

lutions and y = (y1, . . . , ym) := (f(x1), . . . , f(xm)) are results from the exact
evaluations associated with each one of the aforementioned solutions. Using any
interpolation method, the estimation function f̂ returns the exact value yi, at
the data sites xi, i = 1, . . . , m. In this paper, the metamodel is based on Kriging
techniques, which provide estimates to the fitness values of new candidate solu-
tions. Kriging stands for an isotropic interpolation method which can deal with
irregularily distributed points in the search space. We recall that an interpola-
tion method is called isotropic if f̂ depends exclusively on distances ‖ x − xi ‖
from neighbouring points instead of the absolute value of x and the direction
x − xi. Kriging was originated by the mining engineer Krige, who used this
method to estimate ore concentrations in gold mines. Later, Kriging was formu-
lated rigorously by Matheron [9]. In recent years it has been used in geostatistics
[12] and in metamodelling and optimisation [8,11,2]. Kriging assumes that that
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each measured value of the objective function f is the realisation of an isotropic
n-dimensional Gaussian stochastic process with unknown mean β ∈ R and co-
variance function of the form c(s, t) = σ2rθ(s, t). Here σ2 > 0 and θ are unknown
and

rθ(s, t) := exp(−θ ‖ s − t ‖2) (1)

Note that this kernel allows to estimate values that are lower than the minimal
values of �y. An alternative kernel function would be rθ(s, t) := exp(−θ ‖ s−t ‖).
For this function the optima of the Kriging approximation are the same as the
optima in the set of measured values {y1, . . . , yn} (cf. [7]).

In order to construct an approximation by Kriging, unknown parameters
(β, σ, θ) have to be estimated by the maximum likelihood method. This is done
by solving a minimisation problem with a local search method.

n log σ̂2(θ̂) + log detR(θ̂) → min

β̂ = [IT R(θ̂)I]−1IT R(θ̂)−1y (2)

σ̂2(θ̂) =
1
n

[y − Iβ̂]T R(θ̂)−1[y − Iβ̂]

R(θ̂) := [rθ̂(xi,xj)]

Once θ̂ has been obtained, estimations of function values at new points can be
computed as follows

f̂(x) := β̂ + (y − Iβ̂)T R(θ̂)−1r(x; θ̂), with r(x; θ̂) := [rθ̂(xi,x)] (3)

The mean squared error of this estimation is estimated as follows

ˆMSE(x) = σ2 − σ2[I; r(x, θ̂)T ]
[

0 I
I R(θ̂)

]−1 [
I

r(x; θ̂)

]
(4)

The value of ˆMSE depends on the correlation of the landscape as well as on the
local density of points. This has been illustrated in Figure 1. From this figure
it comes out that the approximation is precise at the points that have been
evaluated and more precise in regions with a high point density. In this region
the ˆMSE is low. The approximation is also precise, if a point lies between two
data points for which exact measurements exist. This illustrates that Kriging
takes into account the clustering of points. The right part in Figure 1 f shows a
sinusoidal function with doubled frequency with the same points xi, i = 1, . . . , 8
being evaluated. In this case the correlation between neighbouring points is much
weaker, which worsens the quality of the function approximation. The increased
difficulty has an effect on the ˆMSE prediction too, which is much more pessimistic
in that case.

Although it has been stated that the metamodel’s CPU cost could be safely
neglected in real word optimisation problems with time–consuming evaluation
methods, the real CPU cost of the Kriging method depends mainly on the num-
ber of evaluated sites and not so much on the dimension of the search space. In or-
der to estimate θ, repetitive inversions of the covariance matrix R(θ̂) are needed.
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Fig. 1. Interpolation with Kriging: Original function, approximation and error-
estimation for the one-dimensional function sin(x) (left) and sin(2x) (right).

The CPU cost for this inversion is in O(m3) and this determines the asymptotic
time complexity of the metamodelling algorithm, which is O(Noptm

3 + nm2)
(Nopt is the number of iterations for the local minimisation of the MSE with
Nopt ≈ 200). Note that the time complexity for calculating ˆMSE and f̂ is in
O(nm2), once the metamodel has been built.

The Kriging metamodel used in this work is based on the k nearest neighbours
at each point, so it will be referred to as local metamodel. The value of k has
been set to 20. Any further increase in k seems to slightly improve the results
but, at the same time, increases the computation time significantly. The Kriging
algorithm is the one proposed by Padula et al. [7] with pseudo inversion of the
covariance matrix. One building and evaluation of the local metamodel takes
about 0.2 seconds on a Pentium III, 1GHz PC. Failed evaluations are treated
by penalizing them with the worst feasible value multiplied by 10. It is also
recommended to increase k for highly dimensioned search spaces or in case that
the exact evaluation tool is time–consuming.

3 Metamodel Assisted Evolution Strategies

It is known that ES are powerful and robust optimisation tools. They are estab-
lished as standard tools in practical optimisation. In an ES, parameter vectors
(search points) x ∈ R together with one or many step-size parameter(s) σ ∈ R

+

form an individual. A set of individuals is termed a population. Modern (µ, κ, λ)-
ESs usually work with increased populations. They can be easily adapted to
different computing environments and representations. In this study they will
be used for continuous parameter optimisation.

The (µ, κ, λ)-ES has first been applied by Schwefel [10]. Within any genera-
tion, mutation and recombination operators are applied to generate λ offspring
from µ parents. In order to form a new generation, the best from the µ + λ
individuals are selected. Individuals that exceed the age of κ generations are
eliminated from the selection procedure.

Throughout this study we employed the mutative self adaptation suggested
by Ostermeier [10] with a single global step-size. According to [10], a discrete re-
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combination operator has been used for the object variables and an intermediate
recombination for the step-size parameter. A recommended strategy variant for
complex multimodal problems is the (15, 5, 100)-ES. Thanks to the large parent
population size, the recombination operator becomes beneficial. Furthermore,
the selection pressure λ/µ ≈ 7 is high enough to enable the self-adaptation of
step sizes. The maximum life time of 5 generations makes the strategy robust,
even in the presence of discontinuities.

In this work, the metamodel will be used to accelerate the (15, 5, 100)-ES.
As in Trosset and Torczon [11], direct optimisation in continuous spaces will be
combined with metamodelling techniques. A fitness criterion based on both the
estimated value and the estimated local variance of the prediction model is used
by setting up a search criterion to estimate the potential outcome of a computer
experiment:

Sc(x) := f̂(x) − w

√
ˆMSE(x). (5)

In the MAES, this criterion Sc is used to pre-select s (0 < s < λ) individuals out
of λ offspring, in order to evaluate them exactly. Only the individuals with the
lowest values for Sc are chosen for this. The behaviour for w = 1 and for w = 0
will be studied. In the latter case, Sc reduces to Sc,w=0(x) = f̂(x). The difference
between both criteria is that with w = 0 the most promising candidate solutions
are selected whereas with w = 1 this concept is extended to still unexplored
search areas, by considering the estimation error and additionally selecting the
individuals with a potential of good performance. Thus, it is recommended to
use Sc in order to make the whole algorithm more robust.

The parameter w can be used to increase the influence of the error term. Its
value should be increased in complex problems. On the other hand, the algorithm
will converge faster to a local optimum if w is low. The value of w = 1.0 is used
as default throughout this study.

The number of individuals that are selected for exact evaluations is an im-
portant parameter. About 10 exact evaluations per generation is a figure that
turned out to perform well. It allows to get enough iterations for making the
step-size adaptation work and also to have a sufficient amount of new infor-
mation for areas of the search space, which are of interest in the forthcoming
iteration. Over and above to the individuals which are pre-selected by the search
criterion(s), individuals which outperform the so-far best individual are also ex-
amined through the exact evaluation tool. By this measure, the algorithm can
hardly be trapped in artificial local optima.

With the proposed metamodel assisted selection scheme it is possible for the
ES not only to learn from promising individuals but also to memorize and make
use of search points with bad performance, by accessing the long term memory
of the evolution’s history.

In order to increase the metamodel’s performance each run is started using
a randomly initialised population of 100 individuals, which has been exactly
evaluated. From this population the 15 best individuals have been selected in
order to build the starting population for the ES.
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Fig. 2. Average plots of 20 runs on sphere function. Fitness value (right) and the global
step-size (left) vs the number of exact evaluations.

Six different strategy variants have been compared in this study:

– (15, 5, 100)-ES: The canonical (15, 5, 100)-ES with random starting popula-
tion of 100 individuals.

– (2, 5, 10)-ES: The canonical (2, 5, 10)-ES with a random starting population
of 10 individuals.

– MAES-KRIGING-MSE: Metamodel–Assisted (15, 5, 100)-ES - 10 individu-
als are exactly evaluated per generation, selected using criterion Sc,w=1.

– MAES-KRIG-MSE-2-8: Metamodel–Assisted (15,5,100)-ES - 2 individuals
are pre-selected using Sc,w=1 and 8 individuals by f̂ , per generation.

– MAES-KRIGING: Metamodel–Assisted (15,5,100)-ES - 10 individuals are
pre-selected using the criterion f̂ .

4 Studies on Artificial Landscapes

In order to prove the general applicability of our approach and learn about
their global and local convergence behaviour (speed, reliability), experiments on
artificial landscapes have been conducted. The algorithms employed started with
a randomly selected population of λ individuals, all of them exactly evaluated.
The initial step-size was set to 5% of the variables range. The first test function
was a simple sphere function (

∑n
i=1 x2

i , x ∈ [−10, 10]n ⊂ R
n). It has been selected

to demonstrate the different local search characteristics of the strategy variants
and to investigate their ability to adapt step-sizes.

The result shows that despite the large population size, it is still possible
to self-adjust step-sizes by mutative self-adaptation within a comparably low
number of exact evaluations. Another conclusion drawn from these computations
is that the convergence behaviour is not seriously affected if the search criterion
f̂ is replaced (partly) by Sc,w=1. However, it can be seen that the strategies that
only employ f̂ as pre-selection criterion are slightly better than those also using
Sc,w=1.

The second function is the multimodal Keane’s Bump problem 3, which is
denoted as follows:
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Fig. 3. Keane’s function plotted in 2-dimensions for a cut of the search space. The
optimum is indicated by the black spot in the upper right corner of the contour plot.

min −| ∑n
i=1(cos4 xi) − 2 ∗ ∏n

i=1(cos2(xi))|√∑n
i=1 i ∗ x2

i

, (6)

n∏
i=1

xi > 0.75,

n∑
i=1

xi <
15n

2
, x ∈]0, 10[n⊂ R

n

This problem is characterized by a nonlinear boundary and a high number of
local optima. The optimal solution is located near the constraint boundary.

The global convergence behaviour of different strategies was investigated (cf.
4). The (15, 5, 100)-ES performs much better than the (2, 5, 10)-ES. This indi-
cates that strategies with a small population size are not robust for such prob-
lems. In contrast to the previous study, it now matters which search criterion is
applied. Runs using Sc,w=1 perform much better (in average) than those guided
only by the function estimation with Kriging f̂ . Here we get the desired effect
that the strategy concentrates not only on the most promising solutions but
makes also evaluations in unexplored regions of the search space that have a
high potential of containing better solutions.

In the case of complex multimodal functions it is typical that MAES based
on Kriging start by yielding a wide margin and that later they are overtaken
by the (15, 5, 100)-ES. This is contradictory to what often occurs in unimodal
functions. The fact that the (15, 5, 100)-ES overtakes the Kriging variants in the
long term, might be explained by the fact that this strategy adapts the step-size
much slower and the high step-size makes it easier to escape from local optima.

Though they work with the same number of iterations the (2, 5, 10)-ES leads
to very bad results in the Keane function problem. This should be noticed in
contrast to what is often believed, viz. that only small populations lead to good
results when working with time consuming evaluations. This is certainly applica-
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Fig. 4. Results on 20 dimensional Keane Function using the Kriging approximator:
Averaged fitness histories for 20 runs (left) and a histogram for the best found values
in the 20 runs after 1000 exact evaluations (right) are plotted.

ble for simple convex and unimodal functions. But EAs are not intended to solve
problems, where the function topology is simple and for which other (faster) op-
timization tools can be recommended. ES are used in real-world application with
highly nonlinear and multimodal characteristics.

5 Airfoil Shape Optimisation

This problem deals with the redesign of a 2D airfoil (the starting profile is
the well known RAE 2822 ) in order to minimize the drag coeficient (CD) and
maximize the lift coefficient (CL) at certain flow conditions. These are: Re =
6.2×106, M∞ = 0.75, α∞ = 2.734o where Re stands for the freestream Reynolds
number based on the chord length, M∞ for the freestream Mach number and
α∞ for the freestream flow angle. The transition was fixed on both sides at 3%
of the chord.

For the parameterization of each shape one circle for the leading edge and
two Bezier curves with five control points each have been used. The leading and
trailing edge positions were fixed and the total number of design parameters was
equal to 22.

The simulation tool was M. Drela’s MSES analysis software [1] which at the
aforementioned flow conditions yields CL = 0.748, CD = 0.0235. One evaluation
takes about 1min on a Pentium III 1GHz PC. The cost function was defined as

F = CD +
10
CL

(7)
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Fig. 5. Left: Average convergence histories of 3 runs of the airfoil shape optimization
problem with the ES and MAES using one and both selection criteria. Right: Initial
airfoil profile and the optimal ones computed using ES and MAES.

Working with a (15,5,100) strategy, average convergence histories are shown
in fig.5 (left) with the conventional ES and MAES using one and both selection
criteria. Each curve is the average of three optimization tasks. This plot indicates
that the MAES technique is capable of reducing the computing cost compared
to the conventional ES. On the right part of figure 5, the initial RAE 2822 and
the new optimal profiles are illustrated.

6 Conclusions

The use of metamodels in the context of ES–based optimisation algorithms was
proved to offer economy in computing time. This economy results from the fewer
exact evaluations that this method requires. It proved advantageous to use the
metamodel not only for predicting the fitness value of new individuals but also for
guessing the error associated with these predictions. In particular, the function
estimation contributes mostly to reduction of the computational time whereas
the error estimation helps to increase the global convergence reliability in com-
plex multimodal problems. It was also proved that the metamodel does not harm
the self-adaptivity properties of the method and that populations of increased
size with good exploration capabilities can be used with low computing cost.
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