
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 8, no. 2, pp. 179–194 (2004)

Simple and Efficient Bilayer Cross Counting

Wilhelm Barth Petra Mutzel

Institut für Computergraphik und Algorithmen
Technische Universität Wien
http://www.ads.tuwien.ac.at/

barth@ads.tuwien.ac.at mutzel@ads.tuwien.ac.at

Michael Jünger
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Abstract

We consider the problem of counting the interior edge crossings when a
bipartite graph G = (V, E) with node set V and edge set E is drawn such
that the nodes of the two shores of the bipartition are drawn as distinct
points on two parallel lines and the edges as straight line segments. The
efficient solution of this problem is important in layered graph drawing.
Our main observation is that it can be reduced to counting the inversions
of a certain sequence. This leads directly to an O(|E| log |V |) algorithm
based on merge sorting. We present an even simpler O(|E| log |Vsmall|) al-
gorithm, where Vsmall is the smaller cardinality node set in the bipartition
of the node set V of the graph. This algorithm is very easy to implement.
Our computational experiments on a large collection of instances show
that it performs well in comparison to previously published algorithms,
which are much more complicated to understand and implement.
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1 Introduction

Let G = (N,S,E) be a bipartite graph with disjoint node sets N and S and
let all edges in E have one end node in N and one in S. Furthermore, let
LN , LS ∈ IR2 be two disjoint parallel lines, a “northern” and a “southern”
line. A bilayer drawing BLD(G) assigns all nodes ni ∈ N = {n0, n1, . . . , np−1}
to distinct points P (ni) on LN and all nodes sj ∈ S = {s0, s1, . . . , sq−1} to
distinct points P (sj) on LS . The edges ek = (ni, sj) ∈ E = {e0, e1, . . . , er−1}
are assigned to straight line segments with end points P (ni) and P (sj), see
Fig. 1 for an example.
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Figure 1: A bilayer drawing

Given a bilayer drawing BLD(G) of a bipartite graph G = (N,S,E), the
bilayer cross count is the number BCC (BLD(G)) of pairwise interior intersec-
tions of the line segments corresponding to the edges. The example in Fig. 1 has
a bilayer cross count of 12. It is a trivial observation that BCC (BLD(G)) only
depends on the relative positions of the node points on LN and LS and not on
their exact coordinates. Therefore, BCC (BLD(G)) is determined by permuta-
tions πN of N and πS of S. Given πN and πS , we wish to compute BCC (πN , πS)
efficiently by a simple algorithm. For ease of exposition, we assume without loss
of generality that there are no isolated nodes and that q ≤ p.

In automatic graph drawing, the most important application of bilayer cross
counting occurs in implementations of Sugiyama-style layout algorithms [11].
Such a procedure has three phases. In the first phase, the nodes are assigned to
m parallel layers for some m ∈ IN such that all edges join two nodes of different
layers. Edges that connect non-adjacent layers are subdivided by artificial nodes
for each traversed layer. In the second phase, node permutations on each layer
are determined with the goal of achieving a small number of pairwise interior
edge crossings. In the third phase, the resulting topological layout is transformed
to a geometric one by assigning coordinates to nodes and edge bends. See
Fig. 2 for a typical Sugiyama-style layout in which an artificial node is assumed
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wherever an edge crosses a layer. In this example, the artificial nodes coincide
with the edge bends.
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Figure 2: A typical Sugiyama-style layout

In phase two, popular heuristics approximate the minimum number of cross-
ings with a layer by layer sweep. Starting from some initial permutation of the
nodes on each layer, such heuristics consider pairs of layers (Lfixed, Lfree) =
(L0, L1), (L1, L2), . . . , (Lm−2, Lm−1), (Lm−1, Lm−2), . . . , (L1, L0), (L0, L1), . . .
and try to determine a permutation of the nodes in Lfree that induces a small bi-
layer cross count for the subgraph induced by the two layers, while keeping Lfixed

temporarily fixed. These down and up sweeps continue until no improvement is
achieved. The bilayer crossing minimization problem is NP-hard [4] yet there
are good heuristics and it is even possible to solve this problem very quickly to
optimality for instances with up to about 60 nodes per layer [6]. A common
property of most algorithmic approaches is that a permutation of the nodes of
the free layer is determined by some heuristic and then it must be decided if
the new bilayer cross count is lower than the old one. This is the bilayer cross
counting problem that we address in this paper. It has been observed in [12]
that bilayer cross counting can be a bottleneck in the overall computation time
of Sugiyama-style algorithms.

Of course, it is easy to determine if two given edges in a bilayer graph with
given permutations πN and πS cross or not by simple comparisons of the relative
orderings of their end nodes on LN and LS . This leads to an obvious algorithm
with running time O(|E|2). This algorithm can even output the crossings rather
than only count them, and since the number of crossings is Θ(|E|2) in the worst
case, there can be no asymptotically better algorithm. However, we do not need
a list of all crossings, but only their number.
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The bilayer cross counting problem is a special case of a core problem in
computational geometry, namely counting (rather than reporting) the number
of pairwise crossings for a set of straight line segments in the plane. Let C be
the set of pairwise crossings. The best known algorithm for reporting all these
crossings is by Chazelle and Edelsbrunner [2] and runs in O(|E| log |E| + |C|)
time and O(|E|+ |C|) space; the running time is asymptotically optimum. The
best known algorithm for counting the crossings is by Chazelle [1] and runs
in O(|E|1.695) time and O(|E|) space. For the bilayer cross counting problem,
a popular alternative in graph drawing software is a sweep-line algorithm by
Sander [10] that runs in O(|E|+ |C|) time and O(|E|) space. This algorithm is
implemented, e.g., in the VCG tool [9] or the AGD library [5].

A breakthrough in theoretical and practical performance is an algorithm by
Waddle and Malhotra [12] that runs in O(|E| log |V |) time and O(|E|) space,
where V = N ∪ S. The authors report on computational experiments that
clearly show that the improvement is not only theoretical but leads to drastic
time savings in the overall computation time of a Sugiyama-style algorithm
that is implemented in an internal IBM software called NARC (Nodes and ARC)
graph toolkit. Their algorithm consists of a sweep-line procedure that sweeps the
bilayer graph once, say from west to east, and maintains a data structure called
accumulator tree that is similar to the range tree data structure that is common
in computational geometry, e.g., when a finite set of numbers is given and the
task is to determine the cardinality of its subset of numbers that lie in a specified
interval, see Lueker [8]. The sweep-line procedure involves complicated case
distinctions and its description takes several pages of explanation and pseudo-
code.

In Section 2 we give a simple proof of the existence of O(|E| log |V |) al-
gorithms for bilayer cross counting by relating the bilayer cross count to the
number of inversions in a certain sequence. This observation immediately leads
to a bilayer cross counting algorithm that runs in O(|E|+ |C|) time and O(|E|)
space like the algorithm by Sander [10] and another algorithm that runs in
O(|E| log |V |) time and O(|E|) space like the algorithm by Waddle and Mal-
hotra [12]. In Section 3, we present an even simpler algorithm that runs in
O(|E| log |Vsmall|) time and O(|E|) space, where Vsmall is the smaller cardinality
set of N and S. This algorithm is very easy to understand and can be imple-
mented in a few lines of code. The question how the old and the new algorithms
perform in direct comparison is addressed empirically in Section 4. It turns out
that the algorithm presented in detail in Section 3 outperforms the others not
only in terms of implementation effort, but in most cases also in terms of running
time. In Section 5 we present an extension to the weighted case where the edges
e ∈ E have nonnegative weights w(e) and a crossing between two edges e1 and
e2 costs w(e1) ∗w(e2). In Section 6 we discuss the computational complexity of
bilayer cross counting, and in Section 7 we summarize our findings.



W. Barth et al., Bilayer Cross Counting , JGAA, 8(2) 179–194 (2004) 183

2 Bilayer Cross Counts and Inversion Numbers

In a sequence π = 〈a0, a1, . . . , at−1〉 of pairwise comparable elements ai (i =
0, 1, . . . , t − 1), a pair (ai, aj) is called an inversion if i < j and ai > aj . The
inversion number INV (π) = |{(ai, aj) | i < j and ai > aj}| is a well known
measure of the degree of sortedness of the sequence π.

In a bilayer graph with northern layer permutation πN = 〈n0, n1, . . . , np−1〉
and southern layer permutation πS = 〈s0, s1, . . . , sq−1〉 let πE = 〈e0, e1, . . . , er−1〉
be sorted lexicographically such that ek = (nik

, sjk
) < (nil

, sjl
) = el in πE iff

ik < il or ik = il and jk < jl. In Fig. 1, the edges are sorted like this. Let
π = 〈j0, j1, . . . , jr−1〉 be the sequence of the positions of the southern end nodes
in πE . In our example, we have π = 〈0, 1, 2, 0, 3, 4, 0, 2, 3, 2, 4〉. Each inversion
in π is in a 1-1 correspondence to a pairwise edge crossing in a bilayer graph
drawing BLD(G) according to πN and πS . Therefore, BCC (πN , πS) is equal to
the number of inversions in π.

It is well known that the number of inversions of an r-element sequence π
can be determined in O(r log r) time and O(r) space, e.g., Cormen, Leiserson,
and Rivest [3] suggest an obvious modification of the merge sort algorithm
in exercise 1-3d. Since the lexicographical ordering that leads to π can be
computed in O(|E|) time and space, this implies immediately the existence of an
O(|E| log |V |) time and O(|E|) space algorithm for bilayer cross counting. More
precisely, the (modified) merge sorting algorithm requires O(r log RUN (π)) time
and O(r) space, where RUN (π) is the number of runs, i.e., the number of sorted
subsequences in π. This appears attractive when RUN (π) is expected to be
small. We will test this empirically in Section 4. The number of inversions
of a sequence π can also be determined with the insertion sort algorithm with
O(r + INV (π)) time and O(r) space consumption, and this immediately gives
an O(|E|+ |C|) time and O(|E|) space algorithm for bilayer cross counting. We
will work out this idea in detail in the following section, and develop another
algorithm with O(|E| log |Vsmall|) running time. An algorithm for counting the
inversions of an r-element sequence π with elements in {0, 1, . . . , q − 1}, q ≤ r,
with running time better than O(r log r) would immediately improve the bilayer
cross counting approaches based on counting inversions. We do not know if such
an algorithm exists. We shall discuss this issue in Section 6.

3 A Simple O(|E| log |Vsmall|) Algorithm

Our task is the efficient calculation of the number of inversions of the sequence
π coming from a bilayer graph drawing according to πN and πS as described in
Section 2.

We explain our algorithm in two steps. In step 1, we determine the bilayer
cross count by an insertion sort procedure in O(|E|2) time, and in step 2, we
use an accumulator tree to obtain O(|E| log |Vsmall|) running time. We use the
example of Fig. 1 to illustrate the computation. Here is step 1:
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(a) Sort the edges lexicographically according to πN and πS by radix sort as
described in Section 2. This takes O(|E|) time. In Fig. 1, this step has
already been performed and the edges are indexed in sorted order.

(b) Put the positions of the southern end nodes of the edges into an array in
sorted order of (a). In the example, we obtain 〈0, 1, 2, 0, 3, 4, 0, 2, 3, 2, 4〉.

(c) Run the insertion sort algorithm (see, e.g. [3]) on the array and accumulate
the bilayer cross count by adding the number of positions each element
moves forward. In the illustration on our example in Fig. 3 we also show
the nodes of N and the edges of E. This additional information is not
needed in the algorithm, it just helps visualizing why the procedure indeed
counts the crossings. In our example, the answer is 2 + 4 + 2 + 1 + 3 = 12
crossings.

The correctness of this algorithm follows from the fact that whenever an
element is moved, the higher indexed elements are immediately preceding it
in the current sequence. This is the important invariant of the insertion sort
algorithm. So the total number of positions moved is equal to the number of
crossings.

Insertion sort takes linear time in the number of edges plus the number
of inversions, and since there are

(|E|
2

)
inversions in the worst case, we have

described an O(|E|2) algorithm for bilayer cross counting.
Now in step 2 of our explanation we use an accumulator tree as in [12] in

order to obtain an O(|E| log |Vsmall|) algorithm. Namely, let c ∈ IN be defined
by 2c−1 < q = |S| ≤ 2c, and let T be a perfectly balanced binary tree with 2c

leaves whose first q are associated with the southern node positions.
We store the accumulator tree T in an array with 2c+1 − 1 entries in which

the root is in position 0 and the node in position i has its parent in position
� i−1

2 �. All array entries are initialized to 0. Our algorithm accumulates the
number of the associated southern nodes in each tree leaf and the sum of the
entries of its children in each internal tree node. It builds up this information
by processing the southern end node positions in the order given by π. For
each such position, we start at its corresponding leaf and go up to the root and
increment the entry in each visited tree position (including the root) by 1. In
this process, whenever we visit a left child (odd position in the tree), we add
the entry in its right sibling to the number of crossings (which is initialized to
0). In Fig. 4, we demonstrate this for our example: Inside each tree node, we
give its corresponding tree index, and to the right of it, we give the sequence of
entries as they evolve over time. An entry v

j indicates that value v is reached
when the j-th element of the sequence π is inserted. The bilayer cross count
becomes 2, 6, 8, 9, and 12, when the southern end node positions of e3, e6, e7,
e8, and e9, respectively, are inserted.

By our reasoning above, the correctness of the algorithm is obvious and, if
we assume without loss of generality that |S| ≤ |N |, i.e., Vsmall = S, we have a
running time of O(|E| log |Vsmall|). Fig. 5 displays a C-program fragment that
implements the algorithm. The identifier names correspond to the notation
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Figure 3: Counting crossings via insertion sort

we have used above, or are explained in comments, respectively. The identi-
fier southsequence points to an array corresponding to the sequence π of the
southern end node positions after the radix sorting (not shown here) has taken
place.
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Figure 4: Building the accumulator tree and counting the crossings

/* build the accumulator tree */

firstindex = 1;
while (firstindex<q) firstindex *= 2;
treesize = 2*firstindex - 1; /* number of tree nodes */
firstindex -= 1; /* index of leftmost leaf */
tree = (int *) malloc(treesize*sizeof(int));
for (t=0; t<treesize; t++) tree[t] = 0;

/* count the crossings */

crosscount = 0; /* number of crossings */
for (k=0; k<r; k++) { /* insert edge k */
index = southsequence[k] + firstindex;
tree[index]++;
while (index>0) {
if (index%2) crosscount += tree[index+1];
index = (index - 1)/2;
tree[index]++;

}
}
printf("Number of crossings: %d\n",crosscount);

Figure 5: C program fragment for simple bilayer cross counting
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4 Computational Experiments

In order to obtain an impression of how old and the new algorithms for bilayer
cross counting perform in direct comparison, we made an empirical study.

We implemented the following algorithms in the C programming language
as functions and used them in various computational experiments:

SAN is the algorithm by Sander [10] that runs in O(|E|+ |C|) time and O(|E|)
space,

WAM is the algorithm by Waddle and Malhotra [12] that runs in O(|E| log |V |)
time and O(|E|) space,

MER is a merge sorting algorithm (Section 2) that runs in O(|E| log RUN (π))
time and O(|E|) space,

INS is a plain insertion sorting algorithm (Section 3, step 1) that runs in
O(|E| + |C|) time and O(|E|) space,

BJM is the algorithm of Section 3, step 2, that runs in O(|E| log |Vsmall|) time
and O(|E|) space.

In order to make the comparison as fair as possible, all C-functions have the
same parameters:

int p: p is the number of nodes in the northern layer,

int q: q is the number of nodes in the southern layer (q ≤ p),

int r : r is the number of edges,

int∗ NorthNodePos: NorthNodePos[k] ∈ {0, 1, . . . , p − 1} is the position of the
northern end node of edge k ∈ {0, 1, . . . , r−1} in the northern permutation
πN ,

int∗ SouthNodePos: SouthNodePos [k] ∈ {0, 1, . . . , q − 1} is the position of the
southern end node of edge k ∈ {0, 1, . . . , r−1} in the southern permutation
πS .

No assumption is made about the ordering of the edges, e.g., MER and BJM
start by computing southsequence by a two phase radix sort. Likewise, the other
algorithms compute the internally needed information from the given data that
should be readily available in any reasonable implementation of a Sugiyama-style
layout algorithm. Furthermore, the functions are responsible for allocating and
freeing temporarily needed space. We made an effort in implementing all five
algorithms as well as we could.

All experiments were performed under Linux on a SONY VAIO PCG-R600
notebook with an 850 MHz INTEL Mobile Pentium III processor and 256 MB
of main memory. The software was compiled by the GNU gcc compiler with op-
timization option O3. All uniformly distributed random numbers needed in our
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experiments were generated by the C-function gb unif rand of Donald Knuth’s
Stanford GraphBase [7]. In all subsequent plots, data points are averages for
100 instances each.

The crossing minimization phase of a Sugiyama-style layout algorithm typ-
ically starts with random permutations of the nodes on each layer, and in the
course of the computation, the edges become more and more untangled. This
means that a bilayer cross counting algorithm is likely to be initially confronted
with random permutations πN and πS and later with permutations that induce
significantly less crossings. In our experiments, we take this phenomenon into
account by running each layer pair twice – first with random permutations and
then with permutations generated by a crossing minimization algorithm. The
fastest method with good practical results we know is the so-called MEDIAN
crossing minimization algorithm [4]. While the node permutation in one of
the two layers is temporarily fixed, the nodes of the other layer are reordered
according to the median positions of their neighbors in the fixed layer. The
MEDIAN heuristic can be implemented to run in O(|E|) time and space. After
some experimentation, we decided that four iterations (reorder southern, then
northern, then southern, and finally northern layer) give reasonable results. The
second run is performed after such a reordering.
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Figure 6: Running time for sparse graphs

In our first experiment, we consider sparse graphs with 1,000 to 30,000 nodes
on each layer and 2,000 to 60,000 randomly drawn edges. The average running
times are plotted in Fig. 6. Here and in the subsequent figures, the suffix “RAN”
indicates that the running times are for the instances with random permutations
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of the two layers and the suffix “MED” indicates that the running times are for
the MEDIAN-ordered instances.

The first observation is that SAN and INS are impractical for large instances
while all other procedures have very reasonable running times. This behavior
extends to very large graphs as can be seen in Fig. 7 for instances up to 500,000
nodes on each layer and 1,000,000 randomly drawn edges. BJM dominates all
other methods for up to about 50,000 nodes both for the “RAN” and for the
“MED” instances, for larger instances BJM leads in the “MED” case and MER
leads in the “RAN” case. However, the differences are so small that they can
possibly be attributed to system or implementation peculiarities, just like the
slight peak for 350,000 nodes in Fig. 7.
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Figure 7: Running time for large sparse graphs

All methods are faster for the median sorted instances. This is no surprise
for SAN, INS, or MER. An analysis of WAM shows that with a decreasing
number of crossings also the number of computational operations decreases.
Therefore, also the observed behavior of WAM is not surprising. However, the
fact that BJM is faster for the “MED” instances is puzzling since the number
of computational operations is completely independent of the node permuta-
tions (and the resulting cross count). We suspected that cache effects are the
reason, because for the “MED” instances, the paths in the accumulator tree
of two subsequent insertions are likely to be similar, whereas for the “RAN”
instances, two subsequent insertions tend to start at far distant leaves of the
accumulator tree. In the “MED” case, we can expect that the accessed data is
more likely in the cache than in the “RAN” case. In order to gain confidence,
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we performed experiments on another computer with switched-off cache, and
the running times were indeed independent of the number of crossings. This
is a practical indication on how important the recently flourishing research on
algorithms and data structures in hierarchical memory really is.

Now we study the behavior of the algorithms for instances of increasing
density with 1,000 nodes on each layer. The number of edges grows from 1,000
to 100,000. Fig. 8 shows the results.
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Figure 8: Running time for graphs with increasing density

As before, SAN and INS are not competitive. Up to about 30,000 edges,
BJM is the best method and beyond, WAM is slightly better.

Finally, we ran the algorithms on a selection of real-world graphs compiled
from the AT&T directed graph collection by Michael Krüger of the Max-Planck-
Institut für Informatik in Saarbrücken. We used the first phase of the AGD
Sugiyama implementation in order to obtain layerings with the Longest-Path
and Coffman-Graham options from which we extracted the resulting layer pairs
as test instances. Thus, we compiled two collections of 30,061 instances and
57,300 instances, respectively. For each instance, we applied 10 random shuffles
of the northern and southern layers, each followed by a MEDIAN-ordered run
as explained above. So we ran a total of 601,220 and 1,146,000 instances of the
Longest-Path generated layer pairs and the Coffman-Graham generated layer
pairs, respectively.

In the Longest-Path case, the number of northern nodes varies between 1
and 6,566, with 63 on the average, the number of southern nodes varies between
1 and 5,755, with 57 on the average, and the number of edges varies between
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1 and 6,566, with 64 on the average. For the random shuffles, the number
of crossings varies between 0 and 10,155,835, with 24,472 on the average and
for the MEDIAN ordered layers, the number of crossings varies between 0 and
780,017, with 182 on the average.

In the Coffman-Graham case, the number of northern nodes varies between
1 and 3,278, with 142 on the average, the number of southern nodes varies
between 1 and 3,278, with 137 on the average, and the number of edges varies
between 1 and 3,276, with 141 on the average. For the random shuffles, the
number of crossings varies between 0 and 2,760,466, with 47,559 on the average
and for the MEDIAN ordered layers, the number of crossings varies between 0
and 2,872, with 4 on the average.
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Figure 9: Running time for AT&T graphs

The total running times are reported in Fig. 9. The low crossing numbers
in the MEDIAN case explain why INS and MER are the clear winners. With
very few inversions and very few runs, INS and MER have almost nothing to do
while the other methods do not profit much from this fact. Nevertheless, BJM
and MER have low running times independently of the number of crossings, so
they can be considered safe choices.

5 Extension to the Weighted Case

In certain applications, some edges are more important than others, and crossing
such edges is even less desirable. Let us assume that the importance of edges
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is expressed by nonnegative (not necessarily integer) weights w(e) for each edge
e ∈ E, and that a crossing between the edges e1 and e2 is counted as w(e1) ∗
w(e2). Then an easy modification of our algorithm can compute the weighted
bilayer cross count. This is obvious in the plain insertion sort version that we
have explained in step 1: instead of accumulating 1’s we accumulate the weight
products. The modifications in the accumulator tree version are straightforward
as well, see Figure 10.

/* build the accumulator tree */

firstindex = 1;
while (firstindex<q) firstindex *= 2;
treesize = 2*firstindex - 1; /* number of tree nodes */
firstindex -= 1; /* index of leftmost leaf */
tree = (int *) malloc(treesize*sizeof(int));
for (t=0; t<treesize; t++) tree[t] = 0;

/* compute the total weight of the crossings */

crossweight = 0; /* total weight of the crossings */
for (k=0; k<r; k++) { /* insert edge k */
index = southsequence[k] + firstindex;
tree[index] += w[k];
weightsum = 0;
while (index>0) {
if (index%2) weightsum += tree[index+1];
index = (index - 1)/2;
tree[index] += w[k];

}
crossweight += (w[k]*weightsum);

}
printf("Total weight of the crossings: %d\n",crossweight);

Figure 10: C program fragment for the weighted case

Each leaf of the accumulator tree builds up the sum of the weights of the
edges incident to the associated southern node while each internal tree node ac-
cumulates the weight sum of all leaves in the subtree it defines. The modification
implies no loss in time or space requirements.

6 Complexity of Bilayer Cross Counting

Finally, we would like to discuss the complexity of bilayer cross counting. As
we have observed in Section 2, this problem is equivalent to the problem of
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counting the inversions in a sequence with |E| elements. The fact that this
can be done in O(|E| log |E|) time leads to our algorithm. However, our cross
counting algorithm does more than just computing the number |C| of edge
crossings. In each iteration of the while-loop, it computes the number c(k) of
crossings (inversions) that the k-th edge (the k-th element), k ∈ {0, 1, . . . , |E| −
1}, induces with all preceding edges (elements). These numbers are summed
up to |C|. All other algorithms known to us follow a similar strategy in the
sense of these observations. The key question seems to be whether there is a
way to compute |C| without computing the c(k) for each k. As long as the c(k)
must be computed and the computations are based on pairwise comparisons
only, there is no hope for an asymptotically faster algorithm. If there were
such an algorithm, we could use it to compute not only the c(k) but also the
crossings (inversions) c̄(k) of the k-th edge (element) with all subsequent edges
(elements) in the sequence. Once we have computed the c(k) and the c̄(k), we
can sort the sequence in linear time, because putting the k-th edge (element) in
position k − c(k) + c̄(k), we obtain a sorted sequence. This sorting algorithm
with running time less than O(|E| log |E|) could be applied to any sequence
of pairwise comparable elements (not just integers in the range {0, 1, . . . , |S| −
1} with |S| ≤ |E| as we have in our bilayer cross counting problem). This
would contradict the well-known lower bound of Ω(|E| log |E|) for sorting by
comparisons.

7 Conclusion

We have reduced the bilayer cross counting problem to the problem of counting
the number of the inversions of a certain sequence π of length |E|. This gave
us immediately an O(|E| log RUN (π)) algorithm (MER). Moreover, we have
introduced an even simpler algorithm (BJM) based on the accumulator tree
data structure with O(|E| log |Vsmall|) running time. A practical advantage of
our new algorithm is its very easy implementation in a few lines of code, and
this applies as well to its extension to the weighted case. We have also argued
that it may be hard to find an asymptotically faster algorithm for bilayer cross
counting.

Our extensive computational experiments show that BJM as well as MER
are safe choices for efficient bilayer cross counting. It should be kept in mind that
the running times of a MEDIAN step for bilayer crossing minimization and a
bilayer cross counting step with one of the fast algorithms are similar, in fact, the
latter is asymptotically slower. Therefore, bilayer cross counting may dominate
the work in the second phase of a Sugiyama-style layout algorithm significantly,
unless BJM, MER, WAM, or a method of comparable performance is used.
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