

Faculty of Computer Science
Algorithm Engineering (Ls11)
44221 Dortmund / Germany
http://ls11-www.cs.uni-dortmund.de/

The Multiple Peaks Model 2

Simon Wessing

Algorithm Engineering Report
TR15-2-001
April 2015

ISSN 1864-4503

The Multiple Peaks Model 2

Simon Wessing

We present the multiple peaks model 2, a refinement of several existing test
problem generators. The improvements pertain to the initialization of the
problem instance, which guarantees to exactly produce a certain number of
local optima, and the shape of the peaks, which are now modeled by a function
that avoids the disadvantages of Gallagher’s Gaussians and the function used
by Preuss and Lasarczyk. Concern regarding the latter is that the worst
objective value of the problem cannot be bounded easily, while the former
are criticized for their steep slope. We also demonstrate how to determine
the attraction basin any point in the search space belongs to.

1 Description of the Problem Generator

Many test problems in real-valued optimization do not provide information about impor-
tant problem properties, as, e. g., the positions of all local optima and the correspond-
ing attraction basins. Knowing these characteristics would be helpful in many cases of
benchmarking of optimization algorithms. Since Eiben and Jelasity [1] suggested to use
parametrized problem generators that can produce test instances randomly but with
controllable difficulty, several problem formulations appeared for which these new re-
quirements can be handled well [6, 2, 8]. The common ground of all these is that the
objective function is generated by taking the maximum or minimum of several unimodal
functions.

Here, we propose a refined version of this approach, which shall be named multiple
peaks model 2 (MPM2), in recognition of the similarity to extensions to the generator
in [6] made in [5] under the name multiple peaks model. The generator produces multi-
modal problem instances by combining several randomly distributed peaks. Hence, the
problems are irregular and non-separable, which are also important features of difficult
real-world problems. The problem is defined by the following formulas:

f(x) = 1−max{g(x,p) | p ∈ P} (1)

g(x,p) =
hp

1 + md(x,p)sp

rp

(2)

md(x,p) =

√

(x− p)⊤Σ−1
p (x− p) (3)

1

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

Figure 1: One-dimensional MPM2 functions (solid black) with their individual peaks
(dashed). On the left, we have a random, and on the right a funnel topology.
These example functions have ten optima each.

The objective function is given in (1). It takes the minimum of Npeaks = |P | unimodal
functions (2) around peak positions p ∈ P . This has the advantage that local optima
with known positions are created, which is necessary to calculate some quality indicators.
The principle is illustrated in Figure 1. Rönkkönen et al. [8] criticize the exponential
decay of the Gaussians used in [2]. Therefore, we are using the polynomial form in (2).
Each of these functions is associated with parameters hp, sp, and rp for height, shape,
and radius, respectively. The idea of random shape and radius parameters is taken
from [6]. By slightly deviating from locally quadratic behavior (sp = 2), we intend to
increase the difficulty for local search algorithms. Radii rp influence the size of attraction
basins, and thus the probability to place a starting point in the basin. Optima with small
attraction basins will be difficult to find [9, 8]. Additionally, a randomly drawn covariance
matrix Σp belongs to each peak. This matrix is used to create the optima’s basins as
rotated hyperellipsoids, by calculating the Mahalanobis distance in (3). All mentioned
parameters are drawn randomly during initialization and then stored. By convention, we
will always set max{hp | p ∈ P} = 1 and use a box-constrained search space X = [0, 1]n.
The former has the advantage that objective function values are always in [0, 1], which
makes it easy to convert from maximization to minimization and to calculate some quality
indicators. The latter provides some protection from numerical problems, which would
appear when calculating small differences of large numbers. The matrix Σp is generated
in the same way as in [2], by creating a random rotation matrix R first, according to the
method of Rudolph [7]. Then a vector v of random values vi ∼ U(0.0025, 0.0525) is used
to create Σp = R

⊤(vI)R.
Note that the number of optima ν can be smaller than Npeaks, because peaks can be

masked by others. All previous landscape generators [6, 2, 8] suffer from this problem.
We therefore employ a sophisticated initialization procedure, to obtain problems with
a given number of optima. This heuristic is shown in Algorithm 1 (with a slightly
overloaded notation, as p rather denotes the peak object including parameters than only
the position). First, it generates a problem instance with ν peaks and iteratively reduces
the radii until at least 80% of all peaks are local optima. Then, the still missing optima

2

Algorithm 1 Initialization of MPM2
Input: number of optima ν, number of variables n, topology
Output: test problem instance
1: hmin ← 0.5; hmax ← 0.99
2: smin ← 1.5; smax ← 2.5
3: rmin ← 0.25

√
n; rmax ← 0.5

√
n

4: p1 ← randomUniformPeak(1, U(smin, smax), U(rmin, rmax)) // global optimum
5: P ← {p1}
6: if topology is random then

7: P ← P ∪ {ν − 1 additional random uniform peaks}
8: else if topology is funnel then

9: P ← P ∪ {ν − 1 additional randomly clustered peaks around p1}
10: end if

11: f ← createInstance(P , topology)
12: while |localOptima(f)| < 0.8 · |P | do

13: for all p ∈ P do

14: rp ← 0.95 · rp // reduce radii of all peaks
15: end for

16: end while

17: while |localOptima(f)| < ν do

18: νprev ← |localOptima(f)|
19: while νprev + 1 6= |localOptima(f)| do // do rejection sampling
20: if topology is random then

21: p← randomUniformPeak(U(hmin, hmax), U(smin, smax), U(rmin, rmax))
22: else if topology is funnel then

23: p← clusteredPeak(U(hmin, hmax), U(smin, smax), U(rmin, rmax), p1)
24: end if

25: νprev ← |localOptima(f)|
26: f ← createInstance(P ∪ {p}, topology)
27: end while

28: P ← P ∪ {p}
29: end while

30: return f

are created by adding random peaks by rejection sampling. This means that a randomly
drawn peak is only accepted if it increases the number of optima by one. Unfortunately,
determining the number of optima ν takes O(N2

peaks) time, because we have to test for
each p ∈ P if f(p) = 1 − hp. If the condition is fulfilled, an optimum is located at p.
In practice, this makes the use of test problems of this kind infeasible for more than a
few hundred optima, because the complete initialization procedure has cubic worst-case
time complexity.

The algorithm is also capable of generating two different global structures. The first
structure represents a more or less stationary case, where there is no trend in the depths of

3

Algorithm 2 getBasinOptimum(x)
Input: solution x

Output: position of local optimum
1: pcurr ← x

2: repeat

3: pprev ← pcurr

4: pcurr ← argmax{g(pcurr,p) | p ∈ P}
5: until pprev = pcurr // if fulfilled, we have arrived at local optimum
6: return pcurr

local optima and locations of optima are distributed uniformly over the search space. This
structure is called the random topology. The other one contains one large funnel, that
is, optima are clustered around the global one and the depths are negatively correlated
with distance from the global optimum. These two topologies are chosen, because it is
expected that they represent two extremes on the difficulty scale of multimodal problems
– at least for global optimization [10, p. 11]. This belief is reiterated in [9], where the
authors speak of isolated and embedded global optima, and in [4].

Clustered peaks are drawn from a normal distribution N(p1,
n
36I), where I is the iden-

tity matrix. More complicated arrangements with more than one funnel are of course
possible in principle. The function createInstance in Algorithm 1 takes the set of peaks
and the desired topology as inputs. The topology is necessary as argument, because
if we want a funnel structure, additionally to the clustering also the height values are
redistributed among the peaks so that they shrink with increasing Euclidean distance
from the global optimum p1.

To identify the attraction basin a point belongs to, we are using the heuristic displayed
in Algorithm 2. From an arbitrary position x ∈ X , the algorithm jumps to the peak
pcurr which is responsible for f(x). As pcurr itself may be masked by another peak, the
procedure is iterated until pcurr is an optimum. Thus, the set basin(x∗) for an optimum
position x

∗ is approximated as

basin(x∗) ≈ {x ∈ X | getBasinOptimum(x) = x
∗} .

Note that this realization via Algorithm 2 does not exactly emulate the behavior of a
gradient descent algorithm with infinitely small step size, because we may jump over small
basins that a descent algorithm would have converged to. Thus, this approach should be
seen rather as an approximation. However, when assessing a set of solutions P , the error
introduced by this approach should decrease with increasing amount of local search that
has been spent on P .

2 Conclusion

The test problem generator MPM2 fulfills the same desirable properties as the max-set
of Gaussians by Gallagher and Yuan [2]. They characterize appropriate test functions as

4

difficult to solve using simple methods such as hill climbing algorithms (P1); nonlinear,
nonseparable, and nonsymmetric (P2); scalable in terms of problem dimensionality (P3);
scalable in terms of time to evaluate the objective function (P4); tunable by a small
number of user parameters (P5); able to be generated at random and difficult to reverse
engineer (P6); and exhibiting an array of landscape-like features (P7). Property P4 is of
course not really required; it can be imitated by considering different budgets of function
evaluations. A corollary of P6 is that the global optimum should be distributed uniformly
in X , to avoid unintentional advantages for some solution strategies. This requirement is
fulfilled by MPM2, but according to the authors not given in the black-box optimization
benchmarking setup [3].

Furthermore, we have developed cost-efficient heuristics to initialize an instance with
a given number of optima and to approximately determine the attraction basin a point
belongs to.

References

[1] Agoston E. Eiben and Mark Jelasity. A critical note on experimental research
methodology in EC. In IEEE Congress on Evolutionary Computation (CEC), vol-
ume 1, pages 582–587, 2002.

[2] Marcus Gallagher and Bo Yuan. A general-purpose tunable landscape generator.
IEEE Transactions on Evolutionary Computation, 10(5):590–603, 2006.

[3] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter
black-box optimization benchmarking 2010: Experimental setup. Technical Report
RR-7215, INRIA, 2010.

[4] Monte Lunacek and Darrell Whitley. The dispersion metric and the CMA evolution
strategy. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’06, pages 477–484. ACM, 2006.

[5] Mike Preuss. Multimodal Optimization by Means of Evolutionary Algorithms.
Springer, 2015. (in print).

[6] Mike Preuss and Christian Lasarczyk. On the importance of information speed in
structured populations. In Xin Yao, Edmund K. Burke, José A. Lozano, Jim Smith,
Juan Julián Merelo-Guervós, John A. Bullinaria, Jonathan E. Rowe, Peter Tiňo,
Ata Kabán, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature
– PPSN VIII, volume 3242 of Lecture Notes in Computer Science, pages 91–100.
Springer, 2004.

[7] Günter Rudolph. On correlated mutations in evolution strategies. In R. Männer
and B. Manderick, editors, Parallel problem solving from nature 2, pages 105–114.
Elsevier, 1992.

5

[8] Jani Rönkkönen, Xiaodong Li, Ville Kyrki, and Jouni Lampinen. A generator for
multimodal test functions with multiple global optima. In Xiaodong Li, Michael
Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hussein Abbass, Zbigniew
Michalewicz, Tim Hendtlass, Kalyanmoy Deb, KayChen Tan, Jürgen Branke, and
Yuhui Shi, editors, Simulated Evolution and Learning, volume 5361 of Lecture Notes
in Computer Science, pages 239–248. Springer, 2008.

[9] Aimo Törn, Montaz M. Ali, and Sami Viitanen. Stochastic global optimization:
Problem classes and solution techniques. Journal of Global Optimization, 14(4):437–
447, 1999.

[10] Aimo Törn and Antanas Žilinskas. Global Optimization, volume 350 of Lecture Notes
in Computer Science. Springer, 1989.

6

	Description of the Problem Generator
	Conclusion

