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Abstract. Convergence analyses of evolutionary multiobjective opti-
mization algorithms typically deal with the convergence in limit (stochas-
tic convergence) or the run time. Here, for the first time concrete results
for convergence rates of several popular algorithms on certain classes
of continuous functions are presented. We consider the algorithms in
the version of using a (1+1) selection scheme. Then, SMS-EMOA and
IBEAε+ achieve linear convergence rate, proved by showing algorith-
mic equivalence to the single-objective (1+1)-EA with self-adaptation,
whereas NSGA-II and SPEA2 have a sub-linear convergence rate, proved
by reducing them to a multiobjective algorithm with known properties.

Keywords: multiobjective optimization, convergence rate, hypervolume,
self-adaptation.

1 Introduction

Research on evolutionary algorithms is developed further for single-objective
optimization than for multi-objective optimizers. A common hope is that the
understanding of evolutionary multiobjective optimization algorithms (EMOA)
can profit from the bases acquired for the single-objective case. Here, we transfer
knowledge on the convergence of the single-objective (1+1)-EA to gain insights
into the convergence behavior of complex EMOA.

Convergence properties of EMOA are yet not well understood. More recently,
theory concentrated on the convergence or runtime of simple EMOA on spe-
cial discrete problems, considering whether and how quickly the Pareto set is
reached. For the case of a continuous search space Rn only a few results exist
for specialized algorithms, the first obtained by Rudolph [1]. He showed that a
multiobjective (1+1)-EA that accepts incomparable points with probability 1

2
converges with probability 1 to the Pareto set if the step size is chosen propor-
tional to the distance to the Pareto set, while two other step size concepts fail.
Hanne [2] considered stochastic convergence of EMOA with different selection
schemes, the possibilities of temporary fitness deterioration, and on problems
with unattainable solutions. A recent subject of interest has been whether a cer-
tain distribution on the Pareto front can be obtained that is optimal regarding
specified preferences.



Despite these advances, the convergence rate in continuous space remains a
neglected topic. Teytaud [3] shows that the convergence rate scales badly with
increasing number of objectives entailing that any comparison-based EMOA
performs hardly better than random search for a large number of objectives.
Also a general lower bound for the convergence time is given.

In this paper we consider popular EMOA in the simple version of using a
(1+1) selection scheme. For (strongly) convex quadratic objective functions, the
order of the convergence rate is calculated, whereas SMS-EMOA and IBEAε+

reach a linear convergence rate. This is to the best of our knowledge the first
time that a linear convergence rate is shown for a multiobjective evolutionary
algorithms that does not use an explicit weighting of objectives.

The next section introduces the technical background of our topic. Section 3
shows the linear convergence rate for SMS-EMOA and IBEA, whereas Section 4
gives the negative results for NSGA-II and SPEA2. We summarize our findings
in section 5 and give hints on future research.

2 Preliminaries

2.1 Single-objective Optimization with the (1+1)-EA

Let f : Rn → R be the objective function to be minimized. The (1 + 1) Evolu-
tionary Algorithm (EA) (cf. Alg. 1) minimizes f(·) by drawing an n-dimensional
random vector from a multivariate standard normal distribution that is scaled
by factor σ and then added to the current position. If the new point is better it
is accepted, otherwise it is rejected. Then the scaling factor is adapted and this
sequence is run again.

Algorithm 1: (1 + 1)-Evolutionary Algorithm with Self-Adaptation

1 choose X(0) ∈ Rn and σ(0) > 0, set t = 0 and k = 0
2 repeat
3 draw Z(t) from a multivariate standard normal distribution

4 Y (t) = X(t) + σ(t) Z(t)

5 if f(Y (t)) ≤ f(X(t)) then
6 X(t+1) = Y (t) ; increment k

7 else X(t+1) = X(t)

8 σ(t+1) = adapt(σ(t), t, k ; δ, ps, γ)
9 increment t

10 until termination criterion fulfilled

Procedure adapt(σ, t, k ; δ, ps, γ)

1 if t mod δ 6= 0 then return σ
2 qs = k/δ ; k = 0
3 if qs ≥ ps then return σ × γ else return σ/γ

The self-adaptation mechanism considered here (Procedure adapt) is termed
the 1

5 -success rule that has some parameters: the observation interval δ > 0,



the success probability ps = 1
5 and the adaptation factor γ > 1. If the self-

adaptation procedure is properly parameterized a remarkable result has been
proven by Jägersküpper [4, 5]:

Theorem 1. Let f : Rn → R be a quadratic function f(x) = x′Ax+b′x+c with
positive definite matrix A whose condition number is bounded. The (1 + 1)-EA
with self-adaptation as in Procedure adapt using δ = Θ(n), ps = 1

5 and c ≥ 2
halves the distance to the optimum in O(n) iterations in expectation, provided
that σ(0) = Θ(D/n) where D is the distance to the optimum after initialization.

In other words: under the conditions of the theorem the (1+1)-EA with
self-adaptation minimizes every strongly convex quadratic function with linear
convergence rate, i.e., the approximation error decreases exponentially fast.

2.2 Multi-objective Optimization with the SMS-EMOA

We consider unconstrained multiobjective optimization problems min f(x) :
Rn → Rd where f(x) = (f1(x), . . . , fd(x)) maps an n-dimensional vector of
the search space to a d-dimensional vector of the objective space.

A strict partial order, called Pareto dominance, holds in the objective space
based on the coordinate-wise total order: a point p = (p1, . . . , pd) weakly dom-
inates a point q (written as p � q) iff pi ≤ qi holds for all 1 ≤ i ≤ d. A point
p dominates q iff p � q and p 6= q. Two distinct points p 6= q are incomparable
(p ‖ q) iff neither point dominates the other. Considering a set A ⊆ Rd, points
of A that are not dominated by any other of A are referred to as non-dominated
in A or the minima of A. Those points that are non-dominated regarding the
whole objective space are Pareto-optimal and called the Pareto front. The set of
their preimages in the search space is named the Pareto set.

In the continuous domain only an approximation of the Pareto set can be
expected to be achieved. In order to compare the results of different EMOA, sev-
eral quality measures exist, typically rewarding quantity, closeness to the Pareto
set, and high diversity. Among these, the hypervolume indicator (or S-metric or
Lebesque measure) by Zitzler and Thiele [6] is of outstanding importance due
to its consistency with the Pareto dominance relation, cf. [7].

Definition 1. Let {v(1), v(2), . . . , v(µ)} ⊂ Rd, d ≥ 2 be a finite set of elements,
which are mutually incomparable w. r. t. to the dominance relation �. Let r ∈ Rd
indicate the reference point with v(i) ≺ r for all i = 1, . . . , µ ∈ N. The quantity

H(v(1), . . . , v(µ); r) = Leb

(
µ⋃
i=1

[v(i), r]

)
(1)

is termed the dominated hypervolume or S-metric where Leb(·) denotes the
Lebesgue measure in Rd.



If d = 2, provided the elements v(1), . . . , v(µ) have been labeled in ascending order

of their first component, i.e., v
(1)
1 < v

(2)
1 < . . . < v

(µ)
1 , equation (1) specializes to

H(v(1), . . . , v(µ); r) = (r1 − v(1)1 ) (r2 − v(1)2 ) +

µ∑
i=2

(r1 − v(i)1 ) (v
(i−1)
2 − v(i)2 ). (2)

The SMS-EMOA [8] is a steady-state, i.e. (µ+ 1), EMOA that aims to max-
imize the population’s dominated hypervolume by incorporating it in the se-
lection operator. The selection starts with non-dominated sorting in order to
determine the worst front. Among these points, the one contributing least to the
dominated hypervolume of the set is discarded. The hypervolume contribution
of a point is defined as the dominated hypervolume that is exclusively dominated
by the point and thus would get lost when the point was discarded. The calcula-
tion of the hypervolume requires the specification of a reference point r. Yet, it is
no exogenous parameter of the SMS-EMOA but chosen automatically. For each
objective function, the maximal value among the µ+1 points is determined. The
reference point is constructed by these maxima plus 1. The decisive properties
that will be utilized to prove the linear convergence rate are: (1) The reference
point is not static throughout the optimization process but dynamically adapted
in each generation. (2) Those points that are the worst ones in the population
regarding an objective function have a distance to the reference point of exactly
1 w.r.t. that worst objective (cf. Fig. 1, left).

The SMS-EMOA does not specify a certain variation operator. It has mainly
been considered using SBX recombination and polynomial mutation (see e.g.
[9]). Here, we consider Gaussian mutation with self-adaptation as detailed in the
following section.

Section 3.3 contains the analysis of IBEAε+ [10] that performs non-dominated
sorting and afterwards selects among the worst points using the additive ε-
indicator Iε+. Section 4 deals with NSGA-II [9] that firstly uses non-dominated
sorting, and afterwards a particular density measure, the crowding distance, as
the secondary selection criterion. SPEA2 [11] as well applies a selection criterion
based on the Pareto dominance relation by counting dominated and dominating
solutions for each point. Among the incomparable ones, again a kind of density
measure comes into play, namely a k-nearest neighbor method.

3 Linear Convergence Rates

3.1 (1+1)-SMS-EMOA on 2-objective problems

If the (µ+ 1)-SMS-EMOA is instantiated with µ = 1 it reduces to the algorithm
described below (see Alg. 2).

Theorem 2. The (1 + 1)-SMS-EMOA with self-adaptation applied to applied
to a bi-objective optimization problem min{f : Rn → R2} is algorithmically
equivalent to a (1 + 1)-EA with self-adaptation applied to the minimization of
the single-objective function fs : Rn → R with fs(x) = 1

2 (f1(x) + f2(x)).



Algorithm 2: (1+1)-SMS-EMOA with Self-Adaptation

1 choose X(0) ∈ Rn and σ(0) > 0, set t = 0 and k = 0
2 repeat
3 draw Z(t) from a multivariate standard normal distribution

4 Y (t) = X(t) + σ(t) Z(t)

5 R(t) = (max{f1(X(t)), f1(Y (t))}+ 1,max{f2(X(t)), f2(Y (t))}+ 1)′

6 if f(Y (t)) ≺ f(X(t)) or(
f(Y (t)) ‖ f(X(t)) and H(f(Y (t));R(t)) > H(f(X(t));R(t))

)
then

7 X(t+1) = Y (t) ; increment k

8 else X(t+1) = X(t)

9 σ(t+1) = adapt(σ(t), t, k ; δ, ps, c)
10 increment t

11 until termination criterion fulfilled

Proof. The (1+1)-SMS-EMOA differs from the (1+1)-EA only in the additional
determination of the reference point R(t) which is required in the seemingly more
complex acceptance criterion. Evidently, it is sufficient to show that the (1 + 1)-
SMS-EMOA accepts/rejects a new point if it would be accepted/rejected by the
(1+1)-EA with the scalarized objective function (cf. Fig. 1 (right) for its regions
of acceptance or rejection).

The mutated individual y is accepted if it dominates its parent x, i.e., f(y) ≺
f(x). This implies fs(y) < fs(x) and the (1 + 1)-EA would accept y:

f(y) ≺ f(x)⇔ f1(y) < f1(x) ∧ f2(y) < f2(x)

⇒ f1(y) + f2(y) < f1(x) + f2(x)

⇔ 1

2
f1(y) +

1

2
f2(y) <

1

2
f1(y) +

1

2
f2(y)

⇔ fs(y) < fs(x)

Moreover, the mutated individual y is also accepted if it is incomparable to
its parent x, i.e., f(y) ‖ f(x), but has a larger dominated hypervolume. This
condition also implies fs(y) < fs(x) which is easily seen as follows: Since f(y) ‖
f(x) we have to distinguish two cases.

1. f1(x) > f1(y) ∧ f2(x) < f2(y)

According to Algorithm 2 the reference point is r = (f1(x) + 1, f2(y) + 1)′,
here. Recall that H(v; r) = (r1 − v1) (r2 − v2) for a single point. It follows:

Hx = H(f(x); r) = [ f1(x)+1−f1(x) ] [ f2(y)+1−f2(x) ] = f2(y)−f2(x)+1

Hy = H(f(y); r) = [ f1(x)+1−f1(y) ] [ f2(y)+1−f2(y) ] = f1(x)−f1(y)+1
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Fig. 1. Left: Dominated hypervolume of the points a and b w.r.t. the reference point
r, whereas the hypervolume contribution is shaded in light gray. Right: Regions of
acceptance or rejection for the substitute weighted sum function.

The new point y is accepted if

Hy

!
> Hx ⇒ f1(x)− f1(y) + 1 > f2(y)− f2(x) + 1

⇔ f1(x)− f1(y) > f2(y)− f2(x)

⇔ f1(x) + f2(x) > f1(y) + f2(y)

⇔ fs(x) > fs(y) .

Thus, in this particular situation the (1 + 1)-SMS-EMOA would accept y
and so would do the (1 + 1)-EA.

2. f1(x) < f1(y) ∧ f2(x) > f2(y)

Now the reference point is r = (f1(y) + 1, f2(x) + 1)′ yielding a dominated
hypervolume of

Hx = H(f(x); r) = [ f1(y)+1−f1(x) ] [ f2(x)+1−f2(x) ] = f1(y)−f1(x)+1

Hy = H(f(y); r) = [ f1(y)+1−f1(y) ] [ f2(x)+1−f2(y) ] = f2(x)−f2(y)+1

The new point y is accepted if

Hy

!
> Hx ⇒ f2(x)− f2(y) + 1 > f1(y)− f1(x) + 1

⇔ f2(x)− f2(y) > f1(y)− f1(x)

⇔ f1(x) + f2(x) > f1(y) + f2(y)

⇔ fs(x) > fs(y)

Again, the (1 + 1)-SMS-EMOA would accept the new point y and so would
do the (1 + 1)-EA.

Putting all together we have shown that whenever the (1 + 1)-SMS-EMOA ac-
cepts a new element so does the (1 + 1)-EA. Finally we have to preclude that



the (1+1)-EA accepts elements that are rejected by the SMS-EMOA. Or equiv-
alently, if the (1 + 1)-SMS-EMOA rejects a new element then so must do the
(1 + 1)-EA. Notice that the proof of this property is analogous to acceptance
case above and therefore omitted here.

The equivalence of (1+1)-SMS-EMOA and the specific (1+1)-EA as formulated
in Th. 2 holds for all bi-objective problems. For a certain class of problems, we
show a linear convergence rate:

Corollary 1. The (1+1)-SMS-EMOA with self-adaptation applied to applied to
a bi-objective optimization problem min{f : Rn → R2} approaches an element
of the Pareto front with linear order of convergence if both objective functions
are quadratically convex and at least one of them strongly convex.

Proof. Since both objective functions are quadratically convex they are of form

f1(x) = 1
2x
′Ax+ b′x+ c and f2(x) = 1

2x
′Ǎx+ b̌′x+ č

with positive semidefinite matrices A and Ǎ. Notice that at least one objective
function is even strongly convex so that its Hessian matrix is positive definite.
Suppose w. l. o. g. that A is positive definite. Since

fs(x) =
1

2
(f1(x) + f2(x)) =

1

2

[
1

2
x′(A+ Ǎ)x+ (b+ b̌)′x+ (c+ č)

]
and x′(A+ Ǎ)x = x′Ax︸ ︷︷ ︸

>0

+x′Ǎx︸ ︷︷ ︸
≥0

> 0

for all x ∈ Rn \ {0}, its Hessian matrix is positive definite ensuring that fs(x)
is a strongly convex quadratic function. Now we can invoke Theorem 1 that
guarantees linear convergence rate of the (1 + 1)-EA with self-adaptation for
fs(x). Owing to Theorem 2 we know that the (1 + 1)-EA with self-adaptation
is algorithmically equivalent to a (1 + 1)-SMS-EMOA for minimizing the bi-
objective function (f1(x), f2(x))′. As a consequence, the (1 + 1)-SMS-EMOA
must have linear convergence rate to an element of the Pareto front under the
conditions of the corollary.

3.2 (1+1)-SMS-EMOA Beyond Two Objectives

Expectedly, the result from the previous section does not generalize to more
than two objectives, which we show by a simple counter-example. First notice
that the reference point for two points f(x) and f(y) in objective space Rd is

r =
(

max{f1(x), f1(y)}+ 1,max{f2(x), f2(y)}+ 1, . . . ,max{fd(x), fd(y)}+ 1
)′

where f : Rn → Rd, d ≥ 2. The dominated hypervolume H(v; r) for a single
point v ∈ Rd and the scalarized objective function fs(x) used by the single-
objective (1 + 1)-EA are, respectively

H(v; r) =

d∏
i=1

[ ri − vi ] and fs(x) =
1

d

d∑
i=1

fi(x) .
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Fig. 2. Left: Values of the additive ε indicator Iε+ correspond to the hypervolume
contributions in the (1+1)-SMS-EMOA. Right: Regions of acceptance, rejection, or
random acceptance in case of incomparable points for (1+1)-NSGA-II, (1+1)-SPEA2,
and the simple (1+1)-EA from [1].

Suppose there are two incomparable points x, y ∈ Rd with values f(x) =
(0, 0, . . . , 0)′ and f(y) = (−1,−1, . . . ,−1, d− 1 + ε)′ where ε ∈ (0, 1) ⊂ R. Inser-
tion yields the reference point r = (1, 1, . . . , 1, d + ε) leading to the dominated
hypervolume Hx = d+ ε and Hy = 2d−1.

The (1+1)-SMS-EMOA would accept y if Hy > Hx. Notice that Hy > Hx ⇔
2d−1 > d+ ε is true for d ≥ 3. But the (1+1)-EA would reject y since

fs(y) =
1

d
[(d− 1) · (−1) + d− 1 + ε] =

ε

d
> 0 = fs(x) .

As a consequence, both algorithms are not algorithmically equivalent for d ≥ 3
in case of a uniformly weighted scalarized objective function.

3.3 (1+1)-IBEA using the Additive ε-Indicator

We show that a (1+1)-IBEA [10] selecting according to the additive ε-indicator
Iε+ [7] performs equal to the (1+1)-SMS-EMOA for two objectives. IBEAε+

prefers non-dominated individuals over dominated ones, so for the case of two
comparable individuals, the behavior of acceptance and rejection is clearly equal
to the one of the SMS-EMOA. For incomparable individuals, the indicator Iε+
comes into play, which is a relative binary indicator, originally defined on two
sets of points. For two points, Iε+(a, b) calculates the minimal distance ε by
which a can be moved in each direction until it is weakly dominated by b.

Iε+(a, b) = min
ε
{∀i ∈ {1, . . . , d} : fi(a) + ε ≥ fi(b)} (3)

Obviously large values correspond to valuable individuals, analogously to the
hypervolume (contribution). The hypervolume contribution has been shown to
reduces to a distance for the (1+1)-SMS-EMOA. This distance is exactly equal
to the value of the Iε+ (cf. Fig. 2, left). Thus it directly follows:



Corollary 2. Theorem 2 and Corollary 1 hold as well for the (1+1)-IBEAε+

which selects according to the additive ε-indicator Iε+.

4 Sub-Linear Convergence Rates

We investigate whether the equivalence of (1+1)-SMS-EMOA and IBEAε+ to
the (1+1)-EA is outstanding. To this end, we consider further popular EMOA
in the version of using a (1+1) selection scheme.

NSGA-II [9] has been developed with a (µ+µ) selection, and is thus consid-
ered for µ = 1. The selection starts by performing non-dominated sorting on the
set of parent and offspring. If the individuals are comparable, the dominating
one is kept and the dominated one discarded. In case of incomparable individuals
the crowding distance is invoked. It rewards individuals with a large distance to
their neighbors, and assigns a value of infinity to points at the boundary of the
non-dominated front, i.e. those not having neighbors in one dimension. Here,
both points are boundary points with equal crowding distance values. Thus, one
is chosen to be discarded uniformly at random, so in case of incomparable points,
each is accepted with probability 1/2 (cf. Fig. 2, right).

The same result holds for the (1+1)-SPEA2 [11]. For incomparable individ-
uals, there are neither dominated nor dominating ones, thus the raw fitness of
both individuals is zero. So, the secondary indicator based on a k-nearest neigh-
bor method is used. The resulting values for the individuals are equal since they
both are their only neighbors and distances are symmetrical.

We declare that both algorithms in their (1+1) version are equal to the
EMOA considered by Rudolph [1]: Recall that this (1+1)-EA chooses uniformly
at random one fitness function for selection. The better individual w.r.t. to the
function is kept, the other one discarded. Two incomparable individuals have
both worst and best values in interchanged functions. So, choosing a function is
equivalent to choosing the preferred individual. Since [1] proves that convergence
is given but only with a sub-linear rate for at least one instance from the problem
class, we immediately get the following result.

Theorem 3. The (1+1)-NSGA-II and the (1+1)-SPEA2 have sub-linear con-
vergence rate under conditions for the step sizes given in [1].

It is still unclear how this step size rule can be realized in practice and, thus,
whether NSGA-II and SPEA2 converge at all for any other known mutation
operator. Nevertheless, our result indicates that sub-linear convergence might
be the best one can hope for.

5 Conclusions

We showed that the (1+1) versions of SMS-EMOA and IBEAε+ have linear
convergence rate on the class of bi-objective problems whose functions all are
quadratically convex with at least one being strongly convex. This is the first time



that a linear convergence rate could be proved for evolutionary multiobjective op-
timization algorithms that do not require an explicit weighting of objectives. The
convergence rate is proved by reduction to an already analyzed single-objective
(1+1)-EA with self-adaptation. The equivalence of the algorithms holds for ar-
bitrary bi-objective problems, and a result regarding the linear convergence rate
on a certain class of functions is transferred to the EMOA. By a counter example
it is shown that the selection behavior of the EMOA is no longer equal to the
single-objective (1+1)-EA for more than two objectives.

(1+1)-NSGA-II and (1+1)-SPEA2 have a sub-linear convergence rate on
the considered class of functions due to the fact that their selection operators
degenerate to random choice among incomparable individuals.

Future research shall consider how population sizes greater than one influence
the convergence properties of different evolutionary multiobjective optimization
algorithms.
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