
Faculty of Computer Science 
Algorithm Engineering (Ls11) 
44221 Dortmund / Germany 
http://ls11-www.cs.uni-dortmund.de/ 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Towards Optimal 

Parameterizations of the S-Metric 
Selection Evolutionary  

Multi-Objective Algorithms 
 
 

Simon Wessing 
 
 
 
 

Algorithm Engineering Report 
TR09-2-006 
Sep. 2009 

ISSN 1864-4503 



 



Diplomarbeit

Towards Optimal Parameterizations of the
S-Metric Selection Evolutionary

Multi-Objective Algorithm

Simon Wessing
24 July 2009

Betreuer:

Prof. Dr. Günter Rudolph

Dipl.-Inf. Nicola Beume

Fakultät für Informatik

Algorithm Engineering (Ls11)

Technische Universität Dortmund

http://ls11-www.cs.uni-dortmund.de



2



Contents

1 Introduction 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Evolutionary Algorithms 7

2.1 Principles of EAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Evolutionary Multi-criteria Optimization . . . . . . . . . . . . . . . . . . . . 8
2.3 SMS-EMOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Simulated Binary Crossover and Polynomial Mutation . . . . . . . . 12
2.4.2 Differential Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Sequential Parameter Optimization 17

3.1 Basics of Computer Experiments . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 General Approach of SPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Preparing SPO for Multi-Objective Optimization . . . . . . . . . . . . . . . 21

4 Experimental Results 27

4.1 Correlation Between Quality Indicators . . . . . . . . . . . . . . . . . . . . . 27
4.1.1 Raw Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Correlation in SPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 SBX Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 SBX on OKA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 SBX on SYM-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Quality Assessment on SYM-PART . . . . . . . . . . . . . . . . . . . 33
4.2.4 SBX on ZDT-based Problems . . . . . . . . . . . . . . . . . . . . . . 35
4.2.5 Variance of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.6 SBX on DTLZ-based Problems . . . . . . . . . . . . . . . . . . . . . 41
4.2.7 SBX on WFG Problems . . . . . . . . . . . . . . . . . . . . . . . . . 42

i



ii CONTENTS

4.2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 DE Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 DE on OKA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Logarithmic Representation . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 DE on SYM-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 DE on ZDT-based Problems . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.5 DE on DTLZ-based Problems . . . . . . . . . . . . . . . . . . . . . . 51

4.3.6 DE on WFG Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Selection Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Summary and Outlook 63

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Test Problems 67

A.1 Individual Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Extended ZDT and DTLZ Problems . . . . . . . . . . . . . . . . . . . . . . 69

A.3 WFG Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B Framework documentation 81

B.1 Package emo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.1.1 Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.1.2 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.1.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.1.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1.5 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.1.6 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.1.7 Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1.8 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.2 Package emo.benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2.1 ZDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2.2 DTLZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2.3 WFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2.4 CEC 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

List of Figures 95

List of Algorithms 97



CONTENTS iii

Bibliography 99

Erklärung 105



iv CONTENTS



Chapter 1

Introduction

1.1 Motivation and Background

Heuristics are often used to approach problems, even if algorithms exist that could find
a globally optimal solution. For difficult problems, e.g. NP-hard ones, an exact solution
often is not computationally feasible, other problems are just not understood. This is where
heuristics come into play: They can provide a tradeoff between runtime or “time to un-
derstand” and solution quality. This compromise is achieved by disregarding some of the
problem’s attributes. In the extreme case the whole problem is treated as a black box,
looking only at the problem’s results and not how they are generated. But this attitude is
not entirely possible. Every algorithm implicitly makes assumptions about problems’ prop-
erties1. These assumptions are inherent in the code structure and can be adjusted through
the algorithm’s parameters, if it has any. So, we can try to optimize the parameter setting.
Note that problem-specific algorithms use not only assumptions, but certain knowledge
and are parameterless. In the 1980s, Goldberg [22] attempted to relate different kinds of
algorithms to each other (see Figure 1.1(a)). At that time, it was a popular belief that some
algorithms would be generally better than others. Wolpert and Macready [59] showed, that
under certain circumstances, the average performance over all problems is the same for all
algorithms. That work became known as the “No free lunch theorem”. So, nowadays we
do not make any general statements about algorithms’ performance, but always regarding
to specific problems. We also see it legitimate to tune black box algorithms to perform
well only on a single problem instance. Figure 1.1(b) illustrates this shift in algorithms’
understanding.

A category of heuristics that has been applied successfully to many different problems
in the last decades are Evolutionary Algorithms (EA). In the case of EAs, an assumption
of strong causality is generally made [44]. Strong causality means the property of a system
that small variations in the cause only provoke small variations in the effect. In this thesis,

1Perhaps except for random and exhaustive search.

1



2 CHAPTER 1. INTRODUCTION

(a) Goldberg’s view in the 1980s (b) Michalewicz’ view in the 1990s [35]

Figure 1.1: The figure shows how the notion of optimization algorithms changed in the course of
time.

EAs are applied to multi-objective optimization problems (MOOP). MOOPs contain at
least two objective functions that are to be optimized. The objective functions usually
are in conflict with each other and are incommensurable. This means that there is no
intuitive way to tell how much improvement in one objective outweighs a decline in another.
Nonetheless, this has often been done in the past by aggregating the objective functions
(e.g. as weighted sum) to obtain a single-objective problem [36]. This approach is known as
a priori method because the tradeoff between the conflicting objectives is defined before the
optimization is started. It is problematic, because for a reasonable tradeoff, information
on the problem is needed which is usually not available before the optimization. The
alternative approach, known as a posteriori method [36], solves this problem by delaying
the tradeoff decision until optimization has finished. But then, the optimization phase has
to produce a set of solution candidates to provide some options to the decision maker.
Because EAs are naturally able to maintain a set of solutions throughout the optimization,
they are predestinated for this task. We will now see an example from everyday life to get
an understanding of multi-objective problems, before we begin with formal definitions.

1.1.1 Example. Many people are confronted with the problem of buying a new car some-
time during their lives. As this is a costly investment, most people carefully weigh the pros
and cons before making a decision. But every person has individual requirements. While
someone needs a lot of transport capacity, another one might prefer comfort and a third
person does not want to spend much money. So, there are different optimal cars for dif-
ferent people. The different needs are the decision maker’s intuitive objective functions.
In this example we will focus on engine power and energy consumption. Both objective
functions are interconnected with each other. Power should be maximized and energy con-
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sumption should be minimized, but each function cannot be optimized without decreasing
quality in the other to some degree. Figure 1.2 shows a plot of energy consumption versus
engine power for more than 800 cars. The data was collected by the german automobile
association ADAC between 2003 and 2008 [1]. It shows that there is indeed a correlation
between power and consumption. The main observation from this example is, regardless
of the different engine types, that not all cars can be compared with each other without
incorporating additional preference information from the decision maker.

Figure 1.2: Fuel consumption versus engine power. Engine types are distinguished with different
markers. Note that engine types using different fuels cannot be compared directly. The cars get
better towards the bottom right corner.

1.2 Multi-Objective Optimization

After the general situation was explained in the last section, we are now providing a
theoretical background to Multi-Objective Optimization (MOO). Sometimes, the term
Multi-criteria Optimization is used synonymously. Introductions to MOO with a focus on
Evolutionary Algorithms are given by Deb [9], Coello Coello et al. [7] or Branke et al. [5].
In the following, we will restrict ourselves to subsets of Rn as search space. So, a vector
x = (x1, . . . , xn)T of decision variables xi ∈ R is called candidate solution. Let us now
define a MOOP formally.
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1.2.1 Definition (MOOP). A Multi-Objective Optimization Problem according to [9,
page 13] is defined as:

Minimize/Maximize fm(x), m = 1, 2, . . . ,M ;

subject to gj(x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . ,K;

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n.

In the following we will only consider minimization problems. Note that maximization can
be achieved by negating the objective functions because min{f(x)} = −max{−f(x)}. In
this general form, the problem contains J inequality and K equality constraints, which will
also not be considered in the rest of the thesis. Only interval constraints for each of the n
variables will be regarded. Every solution x can be assigned a vector of objective values
(f1(x), . . . , fM (x))T . The objective values determine in which relation solutions stand to
each other.

1.2.2 Definition (Dominance relations). Coello Coello et al. define the following re-
lations between solutions [7, page 244]. A solution x weakly dominates another solution y

(x � y) if

∀i ∈ {1, . . . ,M} : fi(x) ≤ fi(y).

A solution x dominates another solution y (x ≺ y) if

∀i ∈ {1, . . . ,M} : fi(x) ≤ fi(y) ∧ ∃j ∈ {1, . . . ,M} : fj(x) < fj(y).

The dominance relation ≺ is a strict partial order [9, page 29]. A solution x strongly
dominates another solution y (x ≺≺ y) if

∀i ∈ {1, . . . ,M} : fi(x) < fi(y).

We write x ‖ y if x and y are incomparable (¬(x � y) ∧ ¬(y � x)).

1.2.3 Definition (Non-domination and Pareto-optimality). A solution x ∈ A is
said to be non-dominated if there is no x′ ∈ A with x′ ≺ x. If A is the entire search
space, x is Pareto-optimal [9, page 31].

1.2.4 Definition (Pareto-set and Pareto-front). The set of Pareto-optimal solutions

P := {x ∈ Ω | @x′ ∈ Ω : x′ ≺ x}

is called the Pareto-optimal set or Pareto-set for short [7, page 11]. The Pareto-front PF
of a Pareto-optimal set P is defined as

PF := {u = (f1(x), . . . , fm(x))T | x ∈ P}.
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In continuous search spaces, P is usually innumerable. In practice, the goal of multi-
objective EAs is to find a finite set of solutions that provides a good approximation of the
unknown P. So, the corresponding points in objective space should be as near as possible
to the Pareto-front and evenly distributed over the whole Pareto-front [9, page 24]. To
illustrate all these definitions, we view another example.

1.2.5 Example. Consider a problem with one decision variable x ∈ R and two objective
functions f1(x) = x2, f2(x) = (x − 2)2. The Pareto-optimal set of this problem is P =

{x|x ∈ [0, 2]}. Figure 1.3 shows how the decision space maps onto the objective space.

Figure 1.3: The one dimensional decision space (left) is mapped to a two dimensional objective
space (right). The circle is Pareto-optimal (because it is ∈ [0, 2]) while the square is not. Nonethe-
less, the two points are incomparable. Note that on the left, plots of the objective functions are
added for clarity. The decision space only corresponds to the x-axis. The Pareto-front is the section
of the orange curve that runs in [0, 4] in both dimensions.

1.3 Thesis Structure

Chapter 2 gives an introduction to Evolutionary Algorithms. The main focus there is on the
S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) by Emmerich
et al. [17], a state-of-the-art algorithm for multi-objective optimization, which is the subject
of this work. The algorithm is described in detail in Section 2.3. The population size is the
only parameter the user needs to specify for it. Depending on which variation operators
are chosen for the optimization task, additional parameters must be adjusted. Altogether,
the thesis deals with the tuning of these parameters. The first goal is to investigate their
impact on the optimization performance. In a second step, constants that were previously
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not considered as parameters are examined as well. The variation concepts (that can be
used in any EA) are also covered in Chapter 2. The parameter optimization is carried
out with a method called Sequential Parameter Optimization (SPO), which was proposed
by Bartz-Beielstein [2]. Its main idea is to treat optimizer runs as experiments, using
methods from Design of Experiments (DoE) [37] and Design and Analysis of Computer
Experiments (DACE) [47, 48]. Chapter 3 explains SPO and how it can be used on multi-
objective problems. The experiments were carried out on a set of test problems. Chapter 4
contains all the experimental results obtained for this work. Chapter 5 then summarizes
the results and gives a short outlook to possible future research. The work also contains
two appendices containing additional information. Appendix A contains definitions of all
the used test problems. The task for this thesis also involves the reimplementation of the
used algorithms and problems in Python [57]. Appendix B documents this work.



Chapter 2

Evolutionary Algorithms

The purpose of this chapter is to give an introduction to the field of EAs, but especially to
multi-objective EAs, because this work exclusively deals with MOOPs. The field of MOO
was already dealt with in Section 1.2. So, after the origins and principles of evolutionary
computation are explained briefly in the next section, the focus is shifted to EMOAs
in Section 2.2. The SMS-EMOA, as subject of all experiments in Chapter 4, is covered
extensively. Finally, two algorithm-independent variation concepts are introduced.

2.1 Principles of EAs

Evolutionary Algorithms are biologically inspired, heuristic optimization algorithms. EAs
are a subarea of Computational Intelligence [18]. They maintain a population of individu-
als that are subject to the principle of natural selection. Candidate solutions are regarded
as the individuals’ genomes. The objective values are used to compute a fitness ranking,
which forms the basis of selection. EAs have several independent origins: On the one hand
there are evolution strategies by Schwefel [50, 51] and Rechenberg [44], on the other hand
genetic algorithms by Holland [24]. Other early contributors were Fogel [20] with evolu-
tionary programming and Koza [31] with genetic programming. Induced by different areas
of application, each group developed slightly different conceptions. Nowadays, the distinc-
tion has become blurred and everything is handled under the generic term evolutionary
algorithms. A general introduction to the field is given by Eiben and Smith [16] or with a
focus on evolution strategies by Beyer and Schwefel [4].

Figure 2.1 shows an outline of an EA. It begins with the initialization, which contains
especially the specification of the initial population. Often, the individuals are generated
uniformly random distributed. The individuals are immediately evaluated. The algorithm
then enters its optimization loop, beginning with parent selection. The selected individuals
produce offspring by means of recombination and mutation. Recombination creates children
by combining genes from at least two parents, while mutation varies just a single individual.

7
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This means that like in natural evolution, there is an undirected and random variation
involved in the process. The population is evaluated again afterwards. The obtained fitness
values are then used to carry out a survivor selection. Depending on the termination
criterion, the process continues with parent selection or terminates. One iteration in this
loop is considered a generation.

Initialization
Evaluation of 

population

Evaluation of 

population

Survivor 

selection

Parent 

selection

Generate 

offspring

Stop

Continue

Termination

Figure 2.1: Abstract flow chart of an EA. Similar stages carry the same colors.

EAs are often descibed by their selection approach. In the following, µ depicts the
population size and λ the number of offspring in each generation. When (µ+ λ) selection
is used, the µ best individuals in each generation are chosen from the parents and the
offspring, while in (µ, λ) the survivors are only chosen from the offspring. In this case,
λ must be greater than µ. The survivors form the population in the next generation.
Assigning each individual a maximal lifetime 0 ≤ κ ≤ ∞ gives a generalization of both
approaches, leading to a (µ, κ, λ)-algorithm. Next, special features of EAs in multi-objective
optimization are outlined.

2.2 Evolutionary Multi-criteria Optimization

The field of Evolutionary Multi-criteria Optimization (EMO) is still quite young. Schaf-
fer’s Vector Evaluated Genetic Algorithm (VEGA) [49] from 1984 is considered the first
EMOA, but it took approximately 10 years more until research again made some signifi-
cant progress. An important discovery in this context was non-dominated sorting (NDS),
proposed by Goldberg [22] in 1989, an algorithm to partition the population into Pareto-set
approximations. A set of solutions A is called Pareto-set approximation if ∀x,y ∈ A : x ‖ y.
NDS works as follows: The set of minimal elements is computed from a population. This
set is called the first non-dominated front. All individuals in it are assigned rank 1. The
process is then repeated with the remaining individuals until each individual is assigned
a front and thus a rank. This algorithm has a worst case runtime of O(n3). Theoretically
faster algorithms are available, e. g. in [11].
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The NSGA by Srinivas and Deb [55] (1994) was the first algorithm that used non-
dominated sorting to evaluate individuals’ fitness. Its successor, the Elitist Non-Dominated
Sorting Genetic Algorithm (NSGA-2), is still in use today. Its main improvement over
NSGA is having an elitist selection, which means that it guarantees to preserve the best
µ individuals (according to the dominance relation in the multi-objective case) in every
generation [4]. Some studies show that elitism is generally favorable in multi-objective
optimization [45, 66] and at least, all state-of-the-art EMOAs nowadays are elitist.

Table 2.1 shows the main differences between NSGA-2 and SMS-EMOA. Both algo-
rithms have drawbacks. The NSGA-2 is known to perform relatively bad on high dimen-
sional objective spaces [58, 40], compared to SMS-EMOA and other algorithms. The SMS-
EMOA, on the other hand, has a high runtime. To alleviate this burden, its selection
pressure is low.

Table 2.1: Comparison of NSGA-2 and SMS-EMOA

NSGA-2 SMS-EMOA

Survivor Selection (µ+ µ) (µ+ 1)

Fitness criteria 1. Non-dominated sorting rank 1. Non-dominated sorting rank
2. Crowding distance 2. Hypervolume contribution

After non-dominated sorting, the NSGA-2 sorts each front with a niching criterion
called crowding distance that helps maintaining diversity in the objective space. “The
crowding distance of the i-th solution in its front [. . . ] is the average side-length of the
cuboid” spanned by its nearest neighbors [11]. The criterion evaluates individuals the
weaker the more crowded their neighborhood is. Boundary points are assigned maximal
fitness. Figure 2.2 illustrates the crowding distance in an example front. The runtime of
crowding distance computation is O(Mn log n) for M objective functions and n individ-
uals [11]. Instead of the crowding distance, the SMS-EMOA uses a hypervolume-based
fitness criterion, which is described in the next section.

The SMS-EMOA also has things in common with other EAs than the NSGA-2. As
the name indicates, the Indicator-based Evolutionary Algorithm (IBEA) by Zitzler and
Künzli [65] also contains a selection that is based on quality indicators. In their case, the
indicator is used to make pairwise comparisons of all individuals with each other. Zitzler
and Künzli even modularized their algorithm, so that the user can employ his own indicator,
expressing his preferences. The IBEA uses a (µ+µ) survivor selection. NSGA-2 and IBEA
both use binary tournament selection as parent selection, in contrast to the SMS-EMOA,
which chooses parents uniformly random distributed. In binary tournament selection, two
individuals are randomly selected and the better one is carried over into the mating pool.
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Figure 2.2: The crowding distance used in the NSGA-2 gives an estimate of the distance of each
solutions neighbors. The extreme solutions are assigned a distance of ∞ and thus highest priority.

The mating pool just stores the individuals scheduled for reproduction. This procedure is
repeated until the mating pool reaches the desired size and reproduction can begin.

2.3 S-Metric Selection Evolutionary Multi-Objective Algo-

rithm

The SMS-EMOA [17] uses a hypervolume-based selection criterion, called S-metric se-
lection, where the NSGA-2 uses the crowding distance measure. To understand how this
selection works, we first have to introduce the S-metric performance measure, also called
hypervolume indicator.

2.3.1 Definition (S-metric). The S-metric of a set M can be defined as Lebesgue mea-
sure Λ of the union of hypercubes ai defined by a non-dominated point mi and a reference
point xref [7, 17]:

S(M) := Λ

({⋃
i

ai | mi ∈M
})

= Λ

( ⋃
m∈M

{x | m � x � xref}

)
.

It was first introduced by Zitzler and Thiele [66] as “the size of the objective value space
which is covered by a set of nondominated solutions”. So, the quality of a population is
determined by the hypervolume that the individuals in the population together dominate
with regard to xref (see Figure 2.3). The SMS-EMOA calculates for each individual how
much hypervolume it exclusively dominates. This information is then used in the selection
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Figure 2.3: In this example we assume a two-dimensional problem where both objective functions
are to be minimized. The reference point is set to (7, 7)T . On the left, you see the dominated
hypervolume of a possible non-dominated front. Obviously, dominated individuals would contribute
nothing to the measure. The same front is plotted on the right, but now only the hypervolume
that is dominated exclusively by each point is marked.

process, when the individual with the minimal contribution is removed. This approach guar-
antees that the hypervolume of the population is monotonically increasing [17]. Thanks
to this feature, it is unneccessary to maintain an archive parallel to the population, like
some other algorithms, e.g. SPEA-2 by Zitzler et al. [62], do. Unfortunately, the calcula-
tion of the S-metric is computationally expensive. The fastest algorithm known to date
has a runtime of O(n log n+ nd/2), as shown by Beume and Rudolph [3]. Bringmann and
Friedrich [6] show that even deciding whether a solution has the least hypervolume con-
tribution is NP-hard. Nonetheless, the SMS-EMOA employs this indicator to benefit from
its favorable properties, namely the ability to reward convergence to the Pareto-front as
well as distribution along the front at the same time [29]. Additionally, the S-metric favors
individuals that achieve a balanced compromise between the objective functions [66].

Algorithm 2.1 shows the outline of the SMS-EMOA. In the selection’s first step, the pop-
ulation is divided into non-dominated fronts {R1, . . . , RI}. The function fast-nondominated-
sort(Q) is described in [11]. Then a reference point p is constructed from the population
Q as shown in Algorithm 2.2. It only affects the hypervolume contribution of the extremal
points. The reference point’s coordinates are chosen as wj +1, where wj is the worst objec-
tive value in the population in the jth dimension. Due to the fact that the SMS-EMOA uses
a (µ+ 1) selection scheme, it only needs to sort the last front by hypervolume contribution
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Algorithm 2.1 SMS-EMOA
1: P0 ← init() // initialize random start population of µ individuals
2: t← 0

3: repeat
4: qt+1 ← generate(Pt) // generate one offspring by variation operators
5: Q← Pt ∪ {qt+1}
6: {R1, . . . , RI} ← fast-nondominated-sort(Q) // all I non-dominated fronts of Q
7: p← constructReferencePoint(Q)

8: r ← argmins∈RI{∆S(s,RI ,p)} // detect element of RI with lowest ∆S(s,RI ,p)

9: Pt+1 ← Q \ {r} // eliminate detected element
10: t← t+ 1

11: until stop criterion reached

to find the least valuable individual. To do this, the selection calculates the exclusively
dominated hypervolume ∆S(s,RI ,p) for each individual s in the last front RI .

Algorithm 2.2 constructReferencePoint(Q)
1: o← (1, 1, . . . , 1)T // set the offset to 1 in every dimension
2: w← first(Q) // set the vector of worst objective values to the first point of Q
3: for all qi ∈ Q do
4: for j = 1 to |qi| do // for every dimension
5: wj ← max{wj , qij} // set wj to the worse value
6: end for
7: end for
8: return w + o // return the reference point

2.4 Variation

Generally, variation operators are problem-dependent and thus belong to the individual.
So, they can be used with any algorithm. This thesis deals with two different variation
concepts for Rn as search space. Both are incorporating information from the current
population into the variation process to obtain an adaptive behavior.

2.4.1 Simulated Binary Crossover and Polynomial Mutation

Simulated Binary Crossover (SBX) was devised by Deb et al. [10] to carry over the behavior
of single-point crossover in binary search spaces to real valued search spaces. In single-
point crossover, the two parents’ bitstrings are cut at the same (random) position. One of
the resulting two pairs is then swapped between the individuals. SBX always creates two
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children from two parents. Polynomial Mutation utilizes the same probability distribution
to vary a single individual. These two variation operators together will simply be called
SBX variation in the remainder of the thesis. Figure 2.4 shows the effects of the respective
operators in an example situation.
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Figure 2.4: Each subfigure shows a sample of 2000 variations. The figure on the left shows the
empirical probability distribution for recombination of parent values x1 = 50 and x2 = 80. On the
right, mutations of parent value x2 = 80 are shown. The boundaries of xmin = 0 and xmax = 100
differently affect the symmetric and asymmetric variants.

SBX variation contains several parameters that may be adjusted by the user. The
variance of the distributions is controlled by the parameters ηc, ηm ∈ R+. pc and pm describe
the probability to vary a single decision variable. This means that the impact of the η
values is directly dependent on the probabilities. Finally, ps is the probability to choose the
symmetric variant of variation. It controls how the variation deals with a problem’s interval
constraints xmin and xmax. The probability ps is included in the experiments because the
variation’s behavior was undocumentedly changed from symmetric to asymmetric in the
authors’ original implementation.

In the following we show how to create two childrens’ decision variables x(1,t+1)
i and

x
(2,t+1)
i from two parent variables x(1,t)

i , x
(2,t)
i ∈ R with SBX in the symmetric case. First, we

define a spread factor βi as the difference of the childrens’ values divided by the difference
of the parents’ values:

βi :=

∣∣∣∣∣x(2,t+1)
i − x(1,t+1)

i

x
(2,t)
i − x(1,t)

i

∣∣∣∣∣ .
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Our goal is to distribute the spread factor βi according to the following polynomial distri-
bution:

P (βi) :=

0.5(ηc + 1)βηci , if βi < 1

0.5(ηc + 1) 1

βηc+2
i

, else.

Using a uniformly random distributed number u ∈ [0, 1[, we can obtain the ordinate βqi
from the probability distribution, so that the integral between zero and βqi is equal to u:

βqi =


(2u)

1
ηc+1 , if u ≤ 0.5(

1
2(1−u)

) 1
ηc+1

, else.

The childrens’ decision variables at position i are then calculated as:

x
(1,t+1)
i = 0.5

[
(1 + βqi)x

(1,t)
i + (1− βqi)x

(2,t)
i

]
x

(2,t+1)
i = 0.5

[
(1 + βqi)x

(1,t)
i + (1 + βqi)x

(2,t)
i

]

Deb and Beyer [12] showed that SBX’ behavior is self-adaptive, i. e. it is able to adapt
its variation strength to an actual problem situation, without employing a fixed adaption
rule. Instead, the adaptive behavior emerges as a byproduct of the optimization. This is
a desireable feature, because it reduces an EA’s dependence on fine-tuned parameters.
Self-adaptation was originally introduced as a feature of gaussian mutation in evolution
strategies [4], which is not dealt with in this work.

2.4.2 Differential Evolution

Another variation method that copes well with (µ + 1) selection is Differential Evolution
(DE), developed by Storn and Price [56]. In DE, variation is carried out by adding the dif-
ference vector of two or more randomly chosen individuals to another one. The authors call
this process mutation. The outcome is then further perturbed by a discrete recombination
with another individual.

The classic DE algorithm also contains a special selection scheme, which lets the off-
spring only compete with its parent (the one recombination was done with), achieving a
crowding effect. However, only the DE variation is picked here to be used with the SMS-
EMOA. Algorithm 2.3 shows the pseudocode for DE variation. It takes a parent x and a
vector p of other individuals as input. The variation contains three user-adjustable param-
eters that remain fixed during the optimization. DIFFS defines the number of difference
vectors that are added to an individual. F is a scaling factor to vary the length of the
difference vector. Finally, CR controls the crossover rate, similar to pc in SBX.

The DE variant used here is the plain version that was originally proposed by the
authors. Although a variety of more sophisticated versions, being self-adaptive [27, 60] or
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Algorithm 2.3 deVariation(x, p)
1: j ← randomChoice({1, . . . , n}) // uniformly distributed
2: for i = 1 to n do
3: if i == j or random() < CR then // random(): uniformly distributed, ∈ [0, 1[

4: yi ← p1,i

5: for k = 1 to DIFFS do
6: `← 2k // index of next parent
7: yi ← yi + F (p`,i − p`+1,i)

8: end for
9: else

10: yi ← xi // discrete recombination part
11: end if
12: end for
13: return y

at least adaptive [61], exists today, they were all disregarded in the experiments for two
reasons. First, unknown effects should be ruled out from the experiments, because only
few experience with SPO for multi-objective algorithms is available. So, the setup should
be held as simple as possible, decreasing the risk of failure. Second, SBX is used in its
original version, too, although a variant with additional parameter control exists from Deb
et al. [13]. However, this variant seems to be seldom used.
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Chapter 3

Sequential Parameter Optimization

After we have now learned about EAs, we are going to provide a basis for their optimization.
So, this chapter first introduces some vocabulary that is needed for describing computer
experiments. The approach of SPO is then generally explained and the special requirements
of multi-objective optimization are addressed. This encompasses the definition of quality
indicators and their usage on test problems. Finally, an example is given how to carry out
an experiment with SPO.

3.1 Basics of Computer Experiments

Experiments in this work either follow standard procedures from Design of Experiments
(DoE) or Design and Analysis of Computer Experiments (DACE). DoE is the classic ap-
proach, that has been originally developed in agricultural applications by Fisher [19] in the
1930s. DACE is of course considerably younger and tries to accomodate the peculiarities
of computer experiments, e.g. determinism of computer programs.

We will now describe the most important terms. The experiment’s input variables are
called factors. A factor’s value is called level. The region of interest (ROI) specifies the lower
and upper bounds of each factor. An experimental design is a procedure to choose sample
points from the region of interest. In this work we will be using two kinds of experimental
designs: The full factorial design and the latin hypercube design. The former has a fixed
number of 2k sample points for k factors with two levels and places the points on the
boundaries of the ROI. Latin hypercube designs are space-filling designs. They divide the
ROI into a grid and place the points randomly distributed in the interior of the ROI, so that
every row and every column contains at least one point. Both designs have an important
advantage compared to a one-factor-at-a-time design: They can detect interaction effects
between factors. Figure 3.1 illustrates the difference between them. The factorial design is
usually used in DoE and a linear model is assumed for the data. DoE also works well with
qualitative factors. DACE uses space-filling designs and gaussian random function models.

17
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A

B

A

B

A

B

Figure 3.1: Different experimental designs for k = 2 factors. On the left is a one-factor-at-a-time
design with k + 1 samples and in the middle a full factorial design with 2k samples. The number
of sample points is predefined by both designs, while the latin hypercube design on the right can
have an arbitrary number of samples.

Santner et al. [48] cover this topic in detail. The model’s purpose is to predict unkown
values of the stochastic process that is investigated in the experiment. In the analysis of
experiments’ results, one distinguishes main and interaction effects. Bartz-Beielstein [2,
page 48] describes the interpretation of effects as follows:

The intuitive definition of a main effect of a factor A is the change in the
response produced by the change in the level of A averaged over the levels of
the other factors. The average difference between the effect of A at the high
level of B and the effect of A at the low level of B is called the interaction
effect AB of factor A and factor B.

3.2 General Approach of SPO

SPO was developed by Bartz-Beielstein [2] for parameter tuning of stochastic optimization
algorithms. It was the first tuning procedure that was specifically targeted at this task.
By now, another procedure, called Relevance Estimation and Value Calibration (REVAC),
has been developed by Nannen and Eiben [39, 38]. Of course, parameter tuning is again an
optimization problem that can also be tackled by arbitrary optimization algorithms. The
aforementioned special approaches additionally try to provide insight into the parameters’
effects, which helps on deciding if any improvement is scientifically meaningful. Recently,
Smit and Eiben began comparing the different tuning approaches empirically [53].

SPO treats optimizer runs as experiments. The algorithm’s parameters that need to be
set before the optimization’s start are considered as the experiment’s design variables, also
called factors. The population size µ of EAs is an example for such a parameter. Parameters
that are adapted during the algorithm run are called endogenous parameters. Those that
remain constant are called exogenous. The experimental design consists of the algorithm
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design and the problem design. An experiment’s factors that are problem specific belong
to the problem design while algorithm specific factors belong to the algorithm design. SPO
deals with improving an algorithm design’s parameter set for one specific problem design.

The workflow can be divided into three phases: Experiment construction, parameter
optimization and reporting. The workflow is sketched in Figure 3.2. In the first phase the
preexperimental planning (S-1) has to be done. This could be for example a preliminary
study to determine which parameters should be considered and what the experiment’s
goal is. A scientific claim (S-2) and a statistical hypothesis (S-3) must be specified next.
Such a hypothesis must be falsifiable by a statistical test. An introduction to statistical
hypothesis testing can be found in [33]. Then the experimental design (S-4) has to be
chosen. This comprises the optimization problem, resource constraints, an initialization
method, a termination method, an algorithm with parameters, an initial experimental
design and a performance measure. In the optimization phase the experiment is carried
out (S-5). Its results are used to learn a prediction model (S-6). Usually, DACE Kriging
by Lophaven et al. [34] is used for this purpose, but other models, e.g. regression trees,
are also possible. The Kriging model is also able to predict the mean squared error (MSE)
on an untried point in the region of interest. We have to mention that DACE Kriging was
originally intended to model deterministic functions. SPO accounts for this requirement by
sampling each design point multiple times and using the mean value. The model is evaluated
and visualized in (S-7). Optimization is carried out in (S-8). In (S-9) the termination
criterion is tested. If it is not fulfilled, a new design point is generated in (S-10), whereupon
the process continues at (S-5). Else, the reporting begins in (S-11). Bartz-Beielstein states
that “an experiment is called sequential if the experimental conduct at any stage depends
on the results obtained so far” [2, page 79]. At this point it becomes clear why the name
Sequential Parameter Optimization was chosen. The third phase contains the rejection or
acceptance of the statistical hypothesis (S-11) and the final discussion and interpretation
of the results (S-12).

3.3 Quality Assessment

To evaluate an optimizer run, a performance measure has to be selected. In single-criterion
optimization, this is usually the mean best fitness value. In the multi-objective case it
gets more complicated, because we need a mapping from the population of solutions to a
scalar value. One possibility of doing this is with the hypervolume indicator, which was
already described in Section 2.3. So, we set IH(A) := −S(A) for a population A, to get
a minimizing indicator. Besides IH , a few other quality indicators exist [64] that provide
the mentioned mapping. First, we define a few prerequisites. A unary quality indicator is
a function I : Ψ→ R that assigns each Pareto-set approximation a real number. A binary
indicator I : Ψ×Ψ→ R does the same for pairs of approximation sets. Here, Ψ denotes the
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Reporting
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Specification

(S-5)

(S-6)

(S-7)
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Evaluation and visualization
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Design update
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(S-11)
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fulfilled

Figure 3.2: Workflow of SPO. You can see the three main phases experiment construction, pa-
rameter optimization and reporting. The “Sequential” in the name SPO comes from the loop in
the optimization phase.

set of all Pareto-set approximations in the search space. In this thesis, we will concentrate
on monotonic indicators, i. e. indicators I that satisfy

∀A,B ∈ Ψ : A � B ⇒ I(A) ≤ I(B). (3.1)

In Equation 3.1, the weak dominance relation � has been generalized to operate on sets
as follows:

A � B ⇔ ∀y ∈ B : ∃x ∈ A : x � y.

To date, IH is the only indicator that is known to be even strictly monotonic. Zitzler et
al. [64] deal with the topic in greater detail. We choose two more indicators, that Knowles
et al. focus on in [30], for a comparison.
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3.3.1 Definition (ε+ indicator). The ε+ indicator is a special case of the ε indicator
proposed by Zitzler et al. [67, 30]. The binary ε+ indicator IBε+ is defined as

IBε+(A,B) = inf
ε∈R
{∀x2 ∈ B : ∃x1 ∈ A : x1 �ε+ x2}

using the additive ε-dominance relation �ε+:

x1 �ε+ x2 ⇐⇒ ∀i ∈ {1, . . . , n} : fi(x1) ≤ ε+ fi(x2).

The indicator measures the minimal distance by which A must be shifted so that it weakly
dominates B. The unary ε+ indicator Iε+(A) can be obtained by simply replacing B with
a fixed reference set R.

3.3.2 Definition (R2 indicator). The R2 indicator is a special case of the R indicator
proposed by Hansen and Jaszkiewicz [23, 30]. It uses utility functions u : Rk → R to map
k-dimensional objective vectors onto a scalar value. The binary R2 indicator IBR2 is defined
as

IBR2(A,B) =
∑

λ∈Λ u
∗(λ, A)− u∗(λ, B)
|Λ|

,

where u∗ is the maximum value reached by the utility function uλ with weight vector λ on
a Pareto-set approximation A [64]. Λ is a set of parameterizations for the utility function.
The actual function used here is the augmented Tschebycheff function:

uλ(z) =

max
j∈1..n

λj |z∗j − zj |+ ρ
∑
j∈1..n

|z∗j − zj |

 .

The function aggregates the non-linear Tschebycheff function and a weighted linear sum [36],
trying to reward solutions in concave as well as convex regions of the Pareto-front approx-
imation. A value of ρ = 0.01 is chosen here. Again, the unary indicator IR2 is obtained by
using a reference set instead of B. All mentioned indicators are to be minimized.

3.4 Preparing SPO for Multi-Objective Optimization

SPO was applied to multi-objective optimization for the first time by Naujoks et al. [41].
They optimized the SMS-EMOA’s population size and varation, using the hypervolume
indicator as utility measure. This work differs from theirs in some points. First, the former
also investigates quality assessment, comparing three quality indicators and several evalua-
tion approaches. Second, every single variation parameter can be optimized, while Naujoks
et al. only differentiate between SBX variation and an evolution strategy variation [41].
Third, this work deals with benchmark problems, while Naujoks et al. investigated an
airfoil design problem. The former problems are artificially created, while the latter is a
real-life problem.
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While real-life problems are probably more relevant to people, artificial problems of-
fer some advantages. They are usually designed to have certain properties that make it
easier for the experimenter to measure an algorithm’s performance. For example, the true
Pareto-front should be known for a test problem. Another plus factor is the problem’s
formal definition, supporting the reproducibility of results. For these reasons, we are us-
ing problems from a competition at the Congress on Evolutionary Computation (CEC)
2007 [26] in the experiments. In this competition, the quality indicators are set up accord-
ing to Algorithm 3.1.

Algorithm 3.1 CEC 2007 Evaluation

1. Set the upper reference point to the worst possible objective values of the problem.
If these values are unknown, estimate them by evaluating a sample of randomly
generated solutions.

2. Set the lower reference point to the ideal point of the Pareto-front. This point
should be easily obtainable because the Pareto-front of the problems is known.

3. Normalize the objective space between these two points, so that the lower point is
mapped to (1, . . . , 1)T and the upper point is mapped to (2, . . . , 2)T .

4. Iε+ and IR2 are initialized with the two reference points and a sample of the
Pareto-front. IH is initialized with (2.1, . . . , 2.1)T as reference point.

To be able to compare results between experiments, this approach is chosen for most
experiments in Chapter 4. The normalization has a few drawbacks, though. First, because
the worst objective values are usually estimated, it still can happen that not all solutions of
the algorithm’s result dominate (2, . . . , 2)T . These points have to be filtered out or repaired.
Second, the Pareto-front can be very small compared to the whole feasible objective space.
This causes that differences between indicator values become very small, which might
lead to numerical problems. Third, the Pareto-front has to be known. A more practical
approach would be Algorithm 3.2. This approach works especially well with SPO, because
you almost always have an initial algorithm design that you want to compare with. So, the
old algorithm has to be run anyway for this comparison. Doing this before SPO, one can
use these runs’ results to obtain a reference point.

Algorithm 3.2 Evaluation for practical problems

1. Run your current optimization algorithm a number of times and save the resulting
populations.

2. Set the upper reference point to the worst obtained objective values and use it
with IH .
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The procedure could be easily extended to obtain the necessary reference sets for Iε+
and IR2. However, it does not fix the first point of criticism. Experiment 4.2.3 compares
the two approaches on a problem where they lead to quite different reference points. To
complete this chapter, an example is given that elaborately describes the application of
SPO.

3.4.1 Example (Performing SPO). This example shows how SPO is applied to an ac-
tual problem. The core of the optimization, (S-5) to (S-10), is executed by the SPO Toolbox,
a Matlab implementation of SPO [2].

(S-1) Preexperimental planning. From our work with EMOAs, we know that on different
problems, parameters may need completely different settings to achieve good performance.
We also have the impression that there are often parameters that are overlooked.

(S-2) Scientific claim. We claim that the SMS-EMOA could achieve a reasonably better
performance if its parameters were specifically adjusted for the current problem.

(S-3) Statistical hypthesis. Our null hypothesis (H0) is that the parameter configuration
found by SPO does not lead to better results than the default configuration in Table 3.1.
The alternative hypothesis is that it does lead to better results. We require a significance
level of 5% to reject H0. The significance level is the probability that the decision of
rejecting H0 is actually wrong. By our choice, we would tolerate being wrong in one of 20
cases.

Table 3.1: The new configuration must succeed in a performance comparison to these default
parameters. The second row shows the region of interest (ROI) for each parameter. This is the
range over which we conduct our search.

Parameter µ ηc ηm pc pm ps

Default Value 100 20.0 15.0 1.0 0.1 0.0
ROI {3, . . . , 200} [0, 40] [0, 40] [0, 1] [0, 1] [0, 1]

(S-4) Specification.We decide to optimize the SMS-EMOA for an application on a problem
called S_ZDT1 (see Definition A.2.1). As S_ZDT1 is a real valued problem, we need an
appropriate individual. We choose one with SBX variation (see Section 2.4.1), which leads
to ηm, ηc, pm, pc and ps as tunable parameters. We also add µ to our investigation. The
performance is measured with the hypervolume indicator. The SMS-EMOA gets a budget
of 10000 problem evaluations, SPO has to get along with 500 algorithm runs.

(S-5) Experimentation. The experimental runs are performed.

(S-6) Statistical modeling and prediction. Kriging is used as surrogate model for the results
of the SMS-EMOA runs.
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(S-7) Evaluation and visualization. The SPO Toolbox plots the interaction of the param-
eters during the optimization process. Figure 3.3 shows such a plot of the model together
with the mean squared error (MSE). Additionally, an overview of the effects is generated
(see Figure 3.4), that is also obtained from the Kriging model.
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Figure 3.3: The Kriging model (left) and mean squared error (right) for SBX variation probabil-
ities on S_ZDT1. The model shows the interaction effect of pm and pc. One can see by the MSE,
that the area of worse function values (in red) has been less explored.

(S-8) Optimization. This step is rather a super-category for (S-9) and (S-10). So, it contains
the check of the termination condition and the design update. Table 3.2 shows the final
configuration that was found by SPO.

Table 3.2: The final configuration that was found by SPO.

Parameter µ ηc ηm pc pm ps

Optimized Value 39 20.21 39.03 0.52 0.02 0.82

(S-9) Termination. If the termination criterion is reached, the process is continued at
(S-11).

(S-10) Design update. In every iteration, two new design points are generated and added
to the algorithm design. The best one is reevaluated. Then we go back to (S-5).

(S-11) Rejection or acceptance. After SPO has finished, the default and the final configu-
ration are run again 50 times. The final configuration achieves a mean IH value of -1.168,
while the default configuration only reaches -1.151. The standard deviation is in both cases
smaller than 0.005. A U-test [25] calculates a probability smaller than 2.2e-16 for the case
that we obtain our actual results under the condition that the null hypothesis is true. This
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Figure 3.4: An overview of the main effects on S_ZDT1 with IH and 10000 problem evaluations.
The errorbars depict 90% confidence intervals.

probability is called p-value. Because it is smaller than the significance level we specified,
we can reject H0.
(S-12) Objective interpretation. Together with Figure 3.4 we can now try to interpret
Table 3.2. The parameters ηc and ps do not seem to have much influence. From the rest,
ηm and pm are most important. Both parameters indicate that mutation should be carried
out seldom and with little perturbation. Also, a smaller population size is slightly better
for this run length and recombination should be applied only with a mediocre frequency,
i.e. with a probability approximately between 0.5 and 0.8.

To judge if we have found a scientifically meaningful result, let us recall the origins
of the variation and the problem. SBX variation is certainly expected to perform well on
ZDT problems, because the same author [10, 63] was involved in both works. Additionally,
the default configuration in Table 3.1 was tested on ZDT problems. Our result is not too
far away from the default, which indicates that S_ZDT1 is still quite similar to ZDT1. So,
we conclude that we have found a slightly improved configuration for S_ZDT1.
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Chapter 4

Experimental Results

The chapter consists of four sections. At first, the correlation and performance of differ-
ent quality indicators is investigated, aggregating results from all problems. The aim of
that section is to justify the indicators’ use. The next section goes into detail about SBX
variation, accompanied by some spot checks of indicators’ behavior in different situations.
Then, DE variation is covered and compared to SBX. At last, some experiments regarding
the SMS-EMOA’s selection are carried out.

All experiments are made with test problems from the CEC 2007 suite [26], which is
described in Appendix A. However, the following results are not directly comparable to
any other that were obtained before in the environment of the CEC 2007 contest, because
a number of bugs in the implementation were fixed by the author (see Appendix B.2).
Additionally, new reference sets are generated for the evaluation. The experiments are
executed on a batch system running Linux as operating system. The used SPO version is the
official Matlab implementation provided by Bartz-Beielstein [2]. All EAs and test problems
are implemented by the author in Python 2.5 [57]. They are described in Appendix B. The
computers’ hardware configuration varies, but execution speed is not measured anyway.
The reporting on experiments is done according to Preuss [43]. This standardized scheme
especially separates statements of varying objectivity, making results more comprehensible.

4.1 Correlation Between Quality Indicators

4.1.1 Raw Correlation

Research Question: Do the ε+ indicator (Iε+), the R2 indicator (IR2) and the hyper-
volume indicator (IH) correlate in their evaluation of randomly generated Pareto set ap-
proximations?

Preexperimental planning: Intentionally, each indicator favors different properties of
Pareto set approximations. Nonetheless, they are all monotonic, which means there must

27
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be some correlation in their judgement. The experiment should give a basic feeling for the
behavior of the quality indicators.
Task: The results are obtained with Pearson’s correlation coefficient [54]. The statistical
null hypothesis (H0) is that no correlation between the indicators exists.
Setup: Random populations are created and their non-dominated fronts evaluated with
the three indicators. Each population consists of random individuals that are uniformly
distributed in the feasible solution space. The population size is randomly drawn from
[5, s], where s is the default reference set size for the problem (see Table A.1). For each
problem, 50 populations are created, leading to a total sample size of 950. Note that we
negate the hypervolume so that all indicators are to be minimized.
Results/Visualization: IH and Iε+ show a correlation of 0.41, Iε+ and IR2 0.54 and
IH and IR2 even 0.76. All correlations have p-values smaller than 2.2e-16 and are thus
statistically significant. So, H0 is rejected. Figure 4.1 shows plots of the data.
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Figure 4.1: Correlation of indicators is shown both visually and in numbers. The main diagonal
specifies which indicators are plotted against each other in each panel. The plots also distinguish
different numbers of objectives. Green color means two, blue three, and orange five objectives. IH
and IR2 show the highest correlation.
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Observations: The plots show that there are several clusters in the data. Some are rather
cloudy while others are almost perfect straight lines. The slope of the correlation between
IH and IR2 seems to be dependent on the number of objectives.

Discussion: The clusters stem from the different problems thrown into the mix. This
suggests that correlations are much higher on some problems if they are treated individu-
ally. However, the case shall not be investigated further here, because the question if SPO
results obtained with different indicators also show similarities is more interesting.

4.1.2 Correlation in SPO

Research Question: Does SPO deliver similar results even when different quality indi-
cators are used as objective? Which indicator is most suitable for SPO?

Preexperimental planning: Experiment 4.1.1 can be seen as preliminary study to this
experiment. Additionally, some SPO runs are carried out to determine the parameters’
region of interest (see Table 3.1), avoiding the production of outliers. Especially µ = 1

seems to irritate the search process. Any performance comparison between configurations
will be based on the mean value of a sample of runs, because this is also what SPO is set
up to optimize.

Task: The different quality indicators should give similar and reasonable results when
used with SPO. It would be especially nice if it could be shown that optimization with IH
also leads to better results for Iε+ and IR2. Spearman’s rank correlation coefficient [25] is
used to compare how the indicators evaluate the results. The indicator’s performance in
optimizing over all problems is tested with a U-Test [25]. The significance level is always
5%.

Setup: SPO is applied to all two- and three-dimensional test problems in the CEC 2007
suite. Five-dimensional problems are excluded from the experiments because of the SMS-
EMOA’s high runtime on them. For every problem, SPO is carried out with each indicator.
Also, two different run lengths of the SMS-EMOA are examined. The short run length
represents a budget that is normally not sufficient to reach the Pareto-front, while the long
run length hopefully is sufficient. So, there are six SPO runs for every problem. Each of the
six SPO results is verified by doing 50 SMS-EMOA runs with the respective configuration.
Again, each SMS-EMOA run is evaluated with all three indicators and the mean value
is computed for each indicator. These mean values are then converted to ranks on every
problem, resulting in a 3× 3 matrix for each run length. Thus, we gain information about
indicator performance and correlation in the same experiment.

The individuals are using simulated binary crossover and polynomial mutation as vari-
ation operators, which were described in Section 2.4.1. Table 4.1 shows an overview of the
specification. The region of interest for the parameters was already mentioned in Table 3.1.
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Table 4.1: The setups for experiments with SBX variation. The different configurations add up
to 78 separate SPO runs.

Problems Two- and three-dimensional CEC 2007 problems
SPO budget 500 algorithm runs
Algorithm initialization Uniform random
Stopping criterion 500 ·M and 5000 ·M problem evaluations
Algorithm SMS-EMOA
Parameters µ, ηc, ηm, pc, pm, ps

Initial experimental design Latin Hypercube (50 points, 3 repeats per point)
Performance measures IH , Iε+, IR2

Results/Visualization: Detailed results and the found configurations for each problem
are presented in the following experiments. Table 4.2 shows a compilation of the perfor-
mance results. The rank correlation between IH and Iε+ is 0.54 for 500 ·M evaluations
and 0.41 for 5000 ·M evaluations. The correlation between IH and IR2 is 0.58 for 500 ·M
evaluations and 0.65 for 5000 ·M . Iε+ and IR2 have correlations of 0.35 and 0.06. Except
for the last value, all correlations are significant.

Table 4.2: The summed-up ranks achieved by the indicators. A lower rank-sum is better. The
main diagonal almost always contains the row- and column-wise minimum.

500 ·M
Evaluated

Total
IH Iε+ IR2

O
pt
im

iz
ed IH 20 24 24 68

Iε+ 26 22 28 76
IR2 32 32 26 90

5000 ·M
Evaluated

Total
IH Iε+ IR2

O
pt
im

iz
ed IH 22 27 25 74
Iε+ 28 18 29 75
IR2 26 31 22 79

Observations: IH is the most successful indicator, attaining the lowest rank-sum over all
indicators and problems. As in Experiment 4.1.1, IH and IR2 have the highest correlation.
Nonetheless, IH achieves a significantly better performance than IR2 (column “Total” in
Table 4.2) with 500 ·M evaluations. All other differences in rank-sums are not statistically
significant. By the way, the found parameters themselves do also correlate between the
indicators (not shown here). The highest correlation can be seen in µ, pc and pm.

Discussion: As expected, it is most efficient to optimize with the indicator that is also
used for evaluation. In other words, the indicators are different enough to separate each
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one from the others. Our expectation for the performance of IH was fulfilled, because
optimization with IH achieves the best overall score.

4.2 SBX Variation

The results that were presented in a summarized form in Experiment 4.1.2 are now ex-
amined in detail for each individual test problem. Every parameter configuration found is
compared to the configuration in Table 3.1. The default value for ps is set to zero because
the reference implementation of SBX variation uses the asymmetric variant. Generally, it
is not expected that ps has much influence, so it will be simply left out from the reporting
unless the contrary is found to be true.

4.2.1 SBX on OKA2

Research Question: Which parameter configurations will be found for the problem
OKA2? Will they improve performance on the respective indicator compared to the default
configuration?

Preexperimental planning: Compared to the other problems in the test collection,
OKA2 is outstanding for its low number of decision variables (see Table A.1). Nonetheless,
it is a relatively new problem and probably not among the easiest ones.

Task:After SPO has finished, the found configuration is run 50 times. Each run is evaluated
with every indicator, so that the configurations can be compared with each other and the
default configuration. Comparisons with the default configuration are done by a statistical
test: The null hypothesis is that there is no difference in means. The alternative hypothesis
is that the optimized configuration produces a lower mean best value than the default
configuration. The results are considered statistically significant if a U-Test [25] rejects
the null hypothesis at a significance level of 5%. The optimized configurations are not
compared with a statistical test, but only ranked by their mean performance. This data
was aggregated in Experiment 4.1.2.

Setup: The setup was already described in Experiment 4.1.2.

Results/Visualization: The parameter configurations found by SPO are shown in Ta-
ble 4.3. Figure 4.2 shows the effects of µ on short runs, as seen by the Kriging model.

Observations: SPO’s effect plots do not indicate much influence of the parameters for Iε+
and IR2 at 1000 evaluations. All six configurations are statistically significant improvements
compared to the default configuration, though. For 10000 evaluations, a high population
size is chosen by the majority.

Discussion: Parameter values seem to differ widely between indicators and run lengths.
This would be consistent with the perceived weak influence of the parameters. On the other
hand, the Kriging model probably failed on Iε+ and IR2 (for 1000 evaluations). Anyway,
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16Figure 4.2: Main effects for µ on OKA2 with 1000 evaluations. It seems that on the short runs, µ

has of all parameters the strongest influence, at least for IH . Neither the overview for Iε+, nor for
IR2 shows any noteworthy effect for any parameter. The errorbars depict 90% confidence intervals.

Table 4.3: SPO results for SBX variation on OKA2. Each row specifies a configuration and the
setting it was found in, i.e. the indicator that was used for optimization. The last three columns
indicate which configuration performs best in the evaluation with each indicator, regarding the
mean best value.

Evalu- Indi- Configuration Rank
ations cator µ ηc ηm pc pm ps IH Iε+ IR2

1000
IH 13 18.51 11.01 0.61 0.49 0.88 1 3 3
Iε+ 23 27.07 22.08 0.42 0.43 0.24 2 1 2
IR2 56 30.86 8.55 0.29 0.66 0.67 3 2 1

10000
IH 107 21.52 27.43 0.45 0.69 0.76 2 2 2
Iε+ 180 22.57 33.14 0.03 0.45 0.23 1 1 3
IR2 57 21.02 3.43 0.49 0.57 0.21 3 3 1

compared to other problems, it is remarkable that OKA2 seems to be one of the few where
the quality indicators’ correlation is low. For this reason, OKA2 is analyzed in greater
detail in Experiment 4.2.5.

4.2.2 SBX on SYM-PART

Research Question:Which parameter configurations will be found for the problem SYM-
PART? Will they improve performance on the respective indicator compared to the default
configuration?
Preexperimental planning: SYM-PART was designed as a testbed for algorithms’ abil-
ity to maintain diversity in the decision space. As this aspect is not considered here,
SYM-PART should not be very difficult for the SMS-EMOA. The feasible objective space
is very large compared to the Pareto-front on this problem (see Figure A.2), which might
be a problem for the performance measurement.
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Task: The task is the same as in Experiment 4.2.1.

Setup: The setup was already described in Experiment 4.1.2.

Results/Visualization: The parameter configurations found by SPO are shown in Ta-
ble 4.4. H0 is rejected for all configurations, which means the improvements are statistically
significant.

Table 4.4: SPO results for SBX variation on SYM-PART.

Evalu- Indi- Configuration Rank
ations cator µ ηc ηm pc pm ps IH Iε+ IR2

1000
IH 4 20.70 18.52 0.59 0.07 0.27 1 1 1
Iε+ 5 38.59 39.15 0.92 0.19 0.66 2 2 2
IR2 5 13.71 13.51 0.56 0.10 0.38 3 3 3

10000
IH 9 5.05 39.48 0.01 0.02 0.03 2 2 2
Iε+ 13 37.16 38.73 0.63 0.15 0.89 3 3 3
IR2 7 4.86 34.25 0.01 0.09 0.86 1 1 1

Observations: The effect plots (not shown here) indicate that ηm has a high influence
and should approximately be greater than 20. While pm is chosen constantly low, pc is only
low on the long runs. Especially IH and IR2 suggest very low variation probabilities for
10000 evaluations. The two show a high correlation in all their parameter results. All the
indicators also perfectly correlate in their evaluation of the configurations. The population
size is continuously low, the most successful configurations actually feature the smallest
population size.

Discussion: The surprisingly low recombination probabilities may stem from the symme-
try in the decision space. SYM-PART allows solutions that are very different in decision
space to be equally fit. The experiment indicates that doing SBX between these solutions
will probably lead to worse offspring. The proposed population sizes are surprisingly small,
which certainly means there is not much diversity maintained here. However, this was not
the task. The question, if normalizing the whole objective space on this problem is a good
idea, still persists and will be tackled again in Experiment 4.2.3.

4.2.3 Quality Assessment on SYM-PART

Research Question: Is the normalization of the objective space a handicap for SPO or
is it harmless? Can the random noise be reduced while keeping normalization?

Preexperimental planning: To investigate the research question, a problem is needed
where normalization has a great impact. The Figures in Appendix A show that this is
the case for SYM-PART. Another idea is to subtract the initial population’s hypervolume
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I0
H from the final indicator value. The assumption is that some noise from the random
initialization could be neutralized. This could be important, because this experiment will
use very short algorithm runs of only 1000 problem evaluations.

Task: We have Algorithms 3.1 and 3.2 as alternatives for our evaluation approach. We
call this factor A. The indicator choice is called factor B. So we have a full factorial design
with two factors A ∈ {3.1, 3.2} and B ∈ {IH , IH − I0

H} that determine the setup. Each
combination is run 20 times. The outcomes of the SPO runs are analyzed regarding their
performance and also their variance. A U-test [25] is used to compare the distributions’
means. Again, we require a significance level of 5%.

Setup: The evaluation is only done with the hypervolume indicator. The part of the setup
that is not fixed by the factors A and B is taken from previous experiments, namely the
ones described in Tables 3.1 and 4.1. Because many repetitions are carried out, only 1000
problem evaluations are given to the SMS-EMOA. The problem’s true nadir point is (2, 2)T .
The reference point obtained with Algorithm 3.2 is (28.71, 30.40)T while the reference point
used in Algorithm 3.1 would correspond to (550, 550)T (cf. Figure A.2). These numbers
show that SYM-PART is indeed easy to optimize: A budget of 1000 problem evaluations
is enough to dominate at least 80% of the objective space.

Results/Visualization: Table 4.5 shows the standard deviations obtained with the two
setups. Figure 4.3 shows the main effects for the two factors.
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Figure 4.3: Main effects for the two factors A (left) and B (right). The black lines connect the
samples’ mean values.

Observations: Factor A yields a significant improvement, but factor B does not. The
standard deviation of almost all parameters is lower when no normalization is used.
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Table 4.5: The parameters’ standard deviation on the 20 runs.

No.
Factors

Mean IH
Standard Deviation

A B IH µ ηc ηm pc pm ps

1 3.1 IH -1.2056 0.00125 1.39 12.85 9.00 0.20 0.13 0.31
2 3.1 IH − I0

H -1.2055 0.00093 1.12 11.31 10.39 0.25 0.13 0.28
3 3.2 IH -1.2063 0.00135 1.04 12.05 4.33 0.17 0.07 0.28
4 3.2 IH − I0

H -1.2065 0.00098 0.60 13.23 4.98 0.23 0.14 0.24

Discussion: Admittedly, the use of Algorithm 3.2 does probably not make such a big
difference on most other CEC 2007 problems. Often the reference points obtained by the
two evaluation algorithms are quite similar. To evaluate if there is really no impact of
factor B, further studies would have to be carried out.

4.2.4 SBX on ZDT-based Problems

Research Question: Which parameter configurations will be found for ZDT-based prob-
lems? Will they improve performance on the respective indicator compared to the default
configuration?
Preexperimental planning: The ZDT problems by Zitzler, Deb and Thiele [63] have
been manipulated for the CEC 2007 contest to overcome some of their drawbacks (see
Appendices A and B). This experiment is again designed for a first exploration of these
problems. R_ZDT4 is based on the same problem as S_ZDT4. Especially they feature the
same Pareto-front. ZDT4, the problem they are based on, is multimodal and considered the
most difficult of the ZDT problem collection [63]. Also, R_ZDT4 could be considered more
difficult than S_ZDT4 because of the rotation it includes. On the other hand, R_ZDT4
only contains ten decision variables, while S_ZDT4 has 30. It will be interesting to see if
any differences can be found between them.

Task: The task is the same as in Experiment 4.2.1.

Setup: The setup was already described in Experiment 4.1.2.

Results/Visualization: The parameter configurations found by SPO are shown in Ta-
ble 4.6. All configurations are significant improvements, except for R_ZDT4, where the
U-test indicates that those for IH and IR2 with 10000 evaluations are not. One interaction
effect and the main effects overview for 10000 evaluations and IH on S_ZDT1 were already
shown in Figures 3.3 and 3.4. Figure 4.4 shows an overview of the main effects on S_ZDT2
with IH and 1000 evaluations.

Observations: pm is quite low in all configurations. The effects on S_ZDT1 with 10000
evaluations and IH were already covered in Example 3.4.1. Additionally, we now see that
the population size for 10000 evaluations on S_ZDT1 and R_ZDT4 is on all indicators
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Table 4.6: SPO results for SBX variation on ZDT-based problems.

Problem
Evalu- Indi- Configuration Rank
ations cator µ ηc ηm pc pm ps IH Iε+ IR2

S_ZDT1

1000
IH 10 13.72 9.55 0.79 0.10 0.03 2 3 3
Iε+ 14 0.89 8.33 0.60 0.04 0.20 1 1 1
IR2 4 28.95 8.03 0.50 0.05 0.59 3 2 2

10000
IH 39 20.21 39.03 0.52 0.02 0.82 3 3 3
Iε+ 86 4.06 8.26 0.64 0.01 0.98 2 1 2
IR2 23 7.51 33.33 0.50 0.04 0.49 1 2 1

S_ZDT2

1000
IH 4 33.87 9.49 0.80 0.02 0.66 2 2 2
Iε+ 33 22.41 38.01 0.74 0.14 0.05 3 3 3
IR2 7 35.12 4.51 0.68 0.03 0.17 1 1 1

10000
IH 18 9.21 17.18 0.35 0.01 0.12 2 2 3
Iε+ 69 1.10 0.09 0.65 0.001 0.52 1 1 1
IR2 5 13.71 13.51 0.56 0.10 0.38 3 3 2

S_ZDT4

1000
IH 4 13.19 17.68 0.75 0.08 0.06 2 2 2
Iε+ 4 33.87 9.49 0.80 0.02 0.66 1 1 1
IR2 23 26.45 28.58 0.56 0.05 0.29 3 3 3

10000
IH 7 35.12 4.51 0.68 0.03 0.17 2 1 2
Iε+ 9 24.52 15.20 0.44 0.06 0.36 3 3 3
IR2 8 35.32 12.21 0.82 0.02 0.82 1 2 1

R_ZDT4

1000
IH 5 17.96 12.12 0.52 0.17 0.19 1 1 2
Iε+ 24 15.33 16.28 0.78 0.13 0.24 2 3 1
IR2 19 3.33 21.20 0.61 0.02 0.49 3 2 3

10000
IH 196 34.96 33.94 0.99 0.04 0.28 2 2 2
Iε+ 151 32.75 8.54 0.86 0.04 0.82 1 1 1
IR2 140 4.82 20.07 0.92 0.04 0.39 3 3 3

S_ZDT6

1000
IH 11 28.53 9.06 0.68 0.13 0.38 2 2 2
Iε+ 7 29.03 8.84 1.00 0.11 0.46 1 1 1
IR2 47 12.81 16.73 0.85 0.06 0.36 3 3 3

10000
IH 16 30.14 31.48 0.97 0.05 0.28 3 3 3
Iε+ 6 19.53 31.60 0.73 0.03 0.003 1 1 1
IR2 7 17.81 16.71 0.97 0.04 0.78 2 2 2
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Figure 4.4: Main effects on S_ZDT2 with IH and 1000 evaluations. ηc and ps show hardly any
influence, µ and pc cause the strongest effects. The errorbars depict 90% confidence intervals. The
overviews for Iε+ and IR2 look quite similar.

at least four times higher than for 1000 evaluations. The difference is not as big on the
other problems. The population size on R_ZDT4 is chosen much higher than on S_ZDT4
for 10000 evaluations. The indicators correlate strongly in their evaluation of the found
configurations. It also stands out that in total five SPO runs perform worst in the evaluation
with the indicator they were optimized for.
Discussion: The used problems have n = 30 decision variables (except for R_ZDT4). It
is interesting to see that the pm values lie around 1

n ≈ 0.03, a value that is often suggested
for mutation probabilty by a rule of thumb [4, page 16]. For a number of parameters, it is
difficult to make out trends between 1000 and 10000 evaluations, because the results are
varying a lot between indicators. It seems strange that very different configurations were
found although the indicators have a strong correlation. Thus, S_ZDT2 is considered again
in Experiment 4.2.5. It is exceptional that in some settings SPO fails to deliver improved
configurations on R_ZDT4. We consider this a floor effect : The problem is so hard that any
configuration fails. As far as can be seen, the higher population size for 10000 evaluations
is the only real difference between the parameters on S_ZDT4 and R_ZDT4.

4.2.5 Variance of Results

Research Question: How robust is SPO with the respective quality indicators?
Preexperimental planning: The previous experiments sometimes produced widely scat-
tered parameter configurations. It is important to know where this variance comes from,
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because it could stem from an ill-designed experimental setup. First, the quality indicator
itself could fail to deliver the desired meaningful feedback. Second, the normalization of
the problems’ objective space (shown in Appendix A) might degenerate the Pareto-front
to such an extent that evaluation becomes impossible. So, the goal is to repeat SPO runs
with all indicators to observe the impact of random noise.

Task: The experiment is designed to give an idea of how robust SPO is at finding parameter
configurations. The results are analyzed graphically with histograms and by computing
the standard deviation for each parameter. Two-sided Kolmogorov-Smirnov (KS) tests [8]
are carried out for each parameter to find out if different indicators come to identical
distributions. H0 is that two compared samples come from the same distribution. We
require a significance level of 5% to reject H0.

Setup: The setup is very limited due to SPO’s high runtime. From the previously examined
problems, OKA2 and S_ZDT2 with 1000 problem evaluations are selected. These two are
chosen because of the different impressions they gave regarding the correlation of the
indicators and the variance of the parameters (see Experiments 4.2.1 and 4.2.4). Each
experiment is repeated 20 times for every quality indicator. The initial latin hypercube
design is always the same, but the SMS-EMOA is run each time with a different random
seed. The remaining variables of the experiments are identical to those of Experiment 4.1.2.

Results/Visualization: Figure 4.5 shows histograms generated from the 20 runs with IH
on S_ZDT2. Accordingly, Figure 4.6 contains some selected parameters for OKA2, now
regarding all indicators. Table 4.7 shows the standard deviations measured for all indicators
in this experiment. By the way, the overall best configurations are presented in Table 4.8.

Table 4.7: Standard deviations of 20 SPO runs on OKA2 and S_ZDT2.

Problem
Indi- Standard Deviation
cator µ ηc ηm pc pm ps

OKA2
IH 10.160 10.630 8.585 0.253 0.172 0.213
Iε+ 11.189 8.801 8.534 0.136 0.206 0.201
IR2 24.090 10.591 12.680 0.104 0.198 0.248

S_ZDT2
IH 11.430 12.484 10.464 0.172 0.046 0.289
Iε+ 13.960 12.889 13.780 0.136 0.035 0.291
IR2 16.620 12.418 11.971 0.108 0.048 0.294

Observations: For S_ZDT2, ηm values of the best configurations are extremely small,
near their minimal possible value of zero. Population size and pm exhibit small variances,
pc at medium level, ηc, ηm and ps have a high variance. This can be observed for all
three indicators. Similarly, no significant differences can be found between the sampling
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Figure 4.5: Histograms of 20 SPO runs with IH on S_ZDT2 (cf. Figure 4.4), showing the densities
of the parameter values. The regions of interest are divided into ten bins. Each bar depicts the
absolute number of values in that bin. The histograms for Iε+ and IR2 look quite similar and are
not shown here.

distributions. OKA2 behaves differently. All three distributions of µ are found to be mu-
tually different and, except for ηc, all other parameters contain different distributions in at
least one combination, too. The ranking of the indicators for both problems is surprisingly
similar to the one found before.

Discussion: The results for S_ZDT2 are largely conform with Experiment 4.2.4 (cf. Fig-
ure 4.4). The similar ηm values of the best configurations are a counterexample to the
idea that a high variance means the parameter is meaningless. But it shows that some
parameters are more easily optimized than others. This is as expected, and caused by
the parameters’ interaction with each other. For example, ηm directly interacts with pm.
Interestingly, OKA2 is, in contrast to S_ZDT2, indeed a problem where the indicators
do not correlate much. So, the correlation of the indicators when used in SPO is indeed
dependent on the problem, but there is no hint for any general problems induced by using
SPO on MOOPs in the proposed fashion. Also, no evidence was found that any of the
three indicators is generally more robust than the others, in terms of variance of the found
parameters. The experiment shows, though, that a multi-start approach is still beneficial
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Figure 4.6: Histograms of µ, ηm and pc on OKA2. Slight differences can be seen between IH (first
row), Iε+ and IR2 (last row). KS tests affirm this impression by testing each sample against the
others in its column.
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Table 4.8: Best-of-20 configurations for SBX variation on OKA2 and S_ZDT2 (1000 problem
evaluations). Like in previous experiments, the configurations are ranked by drawing a sample of
50 runs and comparing the mean best value.

Problem
Indi- Configuration Rank
cator µ ηc ηm pc pm ps IH Iε+ IR2

OKA2
IH 34 4.31 13.41 0.24 0.84 0.96 1 2 2
Iε+ 41 7.64 14.21 0.12 0.54 0.76 2 1 3
IR2 56 30.86 8.55 0.29 0.66 0.67 3 3 1

S_ZDT2
IH 3 24.54 0.62 0.68 0.04 0.59 2 2 2
Iε+ 7 6.79 0.15 0.87 0.04 0.63 3 3 3
IR2 4 28.90 0.88 0.46 0.05 0.37 1 1 1

for SPO in the chosen setup. Another question would be if alternatively increasing the
budget of a single run leads to a similar improvement.

4.2.6 SBX on DTLZ-based Problems

Research Question: Which parameter configurations will be found for the DTLZ-based
problems? Will they improve performance on the respective indicator compared to the
default configuration?

Preexperimental planning: Analogously to the ZDT problems, some DTLZ problems
have been extended for the CEC 2007 competition [26]. The problem instances used here
have three objectives. Although it might not suffice to make up for the increased difficulty
of the problem, the number of problem evaluations is increased by 50%, compared to
two-dimensional problems.

Task: The task is the same as in Experiment 4.2.1.

Setup: The setup was already described in Experiment 4.1.2.

Results/Visualization: The parameter configurations found by SPO are shown in Ta-
ble 4.9. All configurations are significant improvements compared to the default configura-
tion. Figure 4.7 shows two results that were obtained when validating the IH configurations
for 15000 evaluations.

Observations: The mutation probability pm is quite low and again around 1
n on all

problems. Other parameters of the configurations show a lot of variance, e.g. for µ. For
R_DTLZ2, all configurations with rank one contain a low ηc value, and pc is rather low,
too. This means that recombination is done relatively seldom, but with a high perturbation.

Discussion: The indicators often show oppositional evaluations and some configurations
seem to be very different from each other. This makes an interpretation difficult because
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Table 4.9: SPO results for SBX variation on DTLZ-based problems.

Problem
Evalu- Indi- Configuration Rank
ations cator µ ηc ηm pc pm ps IH Iε+ IR2

S_
D
T
LZ

2 1500
IH 9 28.39 10.47 0.42 0.10 0.79 3 2 3
Iε+ 12 29.33 16.38 0.58 0.09 0.36 1 1 2
IR2 30 32.05 31.73 0.65 0.10 0.56 2 3 1

15000
IH 172 36.10 21.86 0.53 0.02 0.02 1 2 1
Iε+ 196 7.17 15.27 0.46 0.01 0.61 2 1 3
IR2 12 36.36 25.86 0.11 0.02 0.81 3 3 2

R
_
D
T
LZ

2 1500
IH 12 16.58 32.50 0.25 0.31 0.86 2 2 2
Iε+ 38 1.01 33.71 0.83 0.05 0.32 1 1 3
IR2 9 3.96 33.11 0.05 0.63 0.55 3 3 1

15000
IH 179 3.72 39.54 0.21 0.17 0.05 1 1 3
Iε+ 71 1.49 29.01 0.14 0.0007 0.34 3 2 1
IR2 15 19.83 15.33 0.06 0.13 0.31 2 3 2

S_
D
T
LZ

3 1500
IH 27 29.91 22.10 0.27 0.01 0.37 1 2 1
Iε+ 11 34.19 35.83 0.90 0.02 0.22 3 3 3
IR2 27 27.46 12.28 0.53 0.0002 0.21 2 1 2

15000
IH 83 13.93 24.37 0.50 0.03 0.15 1 3 1
Iε+ 5 25.20 4.97 0.19 0.04 0.78 3 1 3
IR2 90 13.29 35.93 0.62 0.001 0.35 2 2 2

the results are very inconsistent. Figure 4.7(b) gives a hint why this might be the case, at
least on S_DTLZ3: Similar to SYM-PART, the objective space is large compared to the
Pareto-front (cf. Table A.1). So, the interesting details are not covered in the evaluation.
Additionally, S_DTLZ3 seems to be more difficult than S_DTLZ2. In comparison, 4.7(a)
shows a nice coverage of and convergence to the Pareto-front. It also shows the typical
distribution of points generated by the SMS-EMOA on concave problems [40].

4.2.7 SBX on WFG Problems

Research Question: Which parameter configurations will be found for the WFG prob-
lems? Will they improve performance on the respective indicator compared to the default
configuration?

Preexperimental planning: The WFG problems are from the WFG toolkit [28]. They
have three objectives, like the DTLZ-based problems. Because of the exponential complex-
ity of the hypervolume computation, the SMS-EMOAs runtime is significantly increased
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(a) S_DTLZ2 (b) S_DTLZ3

Figure 4.7: Populations on shifted DTLZ problems. Both have identical Pareto-fronts. (a) shows
a typical result of a validation run for the IH configuration on S_DTLZ2 (15000 evaluations). (b)
shows another IH result on S_DTLZ3, that is still far away from the Pareto-front. This population
achieves a normalized IH value of −1.330990, which is the 22nd best result of 50 runs.

compared to two objectives. For some reason, it is even higher on WFG than on DTLZ-
based problems. For this reason, the Kriging-based optimization phase of SPO is sacrified
on the long runs, to use the computing time for more interesting experiments. So, for ex-
periments with 15000 evaluations, only the initial design was computed, comprising 150 of
the 500 originally planned algorithm runs.

Task: The task is the same as in Experiment 4.2.1.

Setup: The setup was already described in Experiment 4.1.2.

Results/Visualization: The parameter configurations found by SPO are shown in Ta-
ble 4.10. All configurations are significant improvements compared to the default configu-
ration.

Observations: The observed variation probabilities are often opposing the ones seen on
ZDT and DTLZ-based problems. Especially with 1500 evaluations, pm is often higher than
pc. IH and IR2 choose the same configuration on WFG1 and WFG8 with 15000 evaluations.
This is a consequence of omitting the optimization phase. Iε+ favors the highest population
sizes, which is generally not the case on other problems.

Discussion: The fact that IH and IR2 choose the same configurations reinforces the result
of Experiment 4.1.1 that the two have a high correlation. Their evaluations are often
directly opposing those of Iε+.

4.2.8 Summary

For the first time, Iε+ and IR2 were used as performance measures in SPO and compared to
each other and IH . For 5000 ·M problem evaluations, SPO carried out 19.2 optimization
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Table 4.10: SPO results for SBX variation on the WFG problems.

Problem
Evalu- Indi- Configuration Rank
ations cator µ ηc ηm pc pm ps IH Iε+ IR2

WFG1

1500
IH 16 33.43 3.26 0.07 0.99 0.95 1 1 1
Iε+ 21 8.18 7.54 0.18 0.95 0.86 3 2 3
IR2 9 6.78 35.53 0.01 1.00 0.93 2 3 2

15000
IH 30 32.05 31.73 0.65 0.10 0.56 1 2 1
Iε+ 142 31.50 29.30 0.15 0.92 0.79 3 1 3
IR2 30 32.05 31.73 0.65 0.10 0.56 1 2 1

WFG8

1500
IH 7 24.45 34.96 0.13 0.87 0.60 1 2 1
Iε+ 38 35.30 24.31 0.42 0.25 0.02 3 1 3
IR2 6 31.44 36.57 0.30 0.55 0.96 2 3 2

15000
IH 15 19.83 15.33 0.06 0.13 0.31 1 2 1
Iε+ 115 27.76 20.31 0.07 0.12 0.65 3 1 3
IR2 15 19.83 15.33 0.06 0.13 0.31 1 2 1

WFG9

1500
IH 31 24.61 31.54 0.39 0.71 0.95 1 1 1
Iε+ 69 24.83 31.42 0.90 0.41 0.69 3 2 3
IR2 17 37.29 17.03 0.33 0.05 0.57 2 3 2

15000
IH 152 11.98 33.25 0.70 0.14 0.67 1 2 1
Iε+ 193 9.14 39.47 0.71 0.01 0.85 2 1 2
IR2 83 13.93 24.37 0.50 0.03 0.15 3 3 3

steps on average. The final configuration was also the best in 40% of these steps. The
numbers for 500 ·M evaluations are similar (19.4 steps, 36%). This high percentage means
that improved configurations are seldom found and seems to indicate that optimization via
the Kriging model is not very successful.

The population size has the strongest influence throughout the problems. Figure 4.8
shows how the different setups on average influence it. It appears plausible that the popula-
tion size for 500·M evaluations is the lowest for IH , because the Pareto-front is not reached
anyway. So, it is probably sufficient to optimize a single, balanced solution to maximize
the hypervolume. The influence of ps is indeed very weak. Not a single problem was found
where it played a role. The remaining parameters show mixed effects.

The obtained parameter configurations are often very different from each other, even on
the same problem. This seems normal, because Smit and Eiben made the same observation
in their experiments [53]. Considering the stochasticity of the optimization and the different
preferences of the indicators, the configurations are of course not neccessarily all globally
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Figure 4.8: The figure shows the mean population sizes obtained with each indicator on the
different run lengths. The values are averaged over all 13 problems.

optimal (if such optima exist). But, as the statistical tests show, there is some strong
evidence that they are better than the default configuration, and better than at least two
other optimized configurations, on the respective problem. The practitioner may use the
given parameters as a direction for his search for an optimal configuration, regarding his
personal quality preference.

4.3 DE Variation

The focus is now finally shifted from the quality indicators and general effects while using
SPO to the tuned parameters themselves. Due to time constraints, the remaining experi-
ments are only executed with one quality indicator. Because of the slight theoretical (strict
monoticity) and practical (no reference set) advantages mentioned in Chapter 3 and the
positive result of Experiment 4.1.2, hypervolume is chosen now. DE variation is considered
here, because it is a popular choice for variation in MOO. Four of eight contestants in the
CEC 2007 competition used differential evolution [27, 32, 60, 61]. It also has the advan-
tages of being easier to implement than SBX and having a lower runtime in the Python
implementation at hand. The default parameters for DE variation shown in Table 4.11 are
chosen according to [32].
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Table 4.11: Every new configuration must succeed in a performance comparison to the default
parameters. The second row shows the region of interest for each parameter.

Parameter µ DIFFS CR F

Default Value 100 1 0.1 0.5
ROI {6, . . . , 120} {1, 2, 3} [0, 1] [0, 2]

4.3.1 DE on OKA2

Research Question: Which parameter configurations will be found for DE variation on
OKA2? How does DE compare to SBX variation?

Preexperimental planning: The DE experiments should not just repeat the SBX ex-
periments. So, optimization with Iε+ and IR2 is skipped and a comparison with the SBX
results is added.

Task: Again, after SPO has finished, the new DE configuration is run 50 times and eval-
uated with IH . This sample is compared to the outcome of the default configuration and
the optimized SBX configuration. For the latter comparison, a two-sided U-Test [25] is
employed. The null hypothesis is that there is no difference in means, while the alternative
hypothesis is that there is a difference. We require a significance level of 5% to reject the
null hypothesis.

Setup: Tables 4.11 and 4.12 show the regions of interest and setup for the experiments with
DE variation. In comparison to the previous experiments, the upper bound of µ has been
reduced to save some runtime. The high population sizes were only seldom optimal anyway.
The lower bound was increased to ensure the population contains enough individuals to
carry out DE variation.

Table 4.12: The setups for experiments with DE variation.

Problems Two- and three-dimensional CEC 2007 problems
SPO budget 500 algorithm runs
Algorithm initialization Uniform random
Stopping criterion 500 ·M and 5000 ·M problem evaluations
Algorithm SMS-EMOA
Parameters µ, CR, F , DIFFS
Initial experimental design Latin Hypercube (50 points, 3 repeats per point)
Performance measure IH
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Results/Visualization: Table 4.13 shows the performance results of DE and SBX vari-
ation. Table 4.14 contains the newly found DE configurations. Figure 4.9 shows some
surrogate models learned from the sampled points.

Table 4.13: Performance results for the different configurations on OKA2.

Evaluations Configuration Min Max Mean Stddev

1000

Default SBX -0.5318 -0.4738 -0.5053 0.01267
Opt. SBX -0.5694 -0.5160 -0.5438 0.01054
Default DE -0.5313 -0.4762 -0.4976 0.01288
Opt. DE -0.5517 -0.4550 -0.5238 0.02093

10000

Default SBX -0.5765 -0.5462 -0.5610 0.01018
Opt. SBX -0.5839 -0.5442 -0.5725 0.01103
Default DE -0.5671 -0.5357 -0.5480 0.00777
Opt. DE -0.5802 -0.5470 -0.5676 0.00971

Table 4.14: SPO results for DE variation on OKA2.

Evalu- Configuration
ations µ DIFFS CR F

1000 18 1 0.59 0.34

10000 32 1 0.81 0.22

Observations: Tuned SBX variation reaches significantly better mean values than tuned
DE variation. At least the performance of tuned DE is significantly better than of its
default configuration.

Discussion: Figure 4.9 indicates that the Kriging model for 1000 evaluations can be
regarded as failed. Similar difficulties with OKA2 already appeared in Experiment 4.2.1,
so it is unlikely that the problem is variation-specific. Because normalization does not overly
change the problem (cf. Figure A.1), we also rule it out as cause. The remaining hypothesis
is that the problem’s characteristics themself are violating Kriging’s prerequisites to the
modeling of the data. So, Experiment 4.3.2 is scheduled to investigate if a different encoding
of the parameters can aid the surrogate model. Please note that even if Kriging fails to
model the data, SPO still correctly evaluates any configurations, because the model is only
responsible for suggesting new configurations, not evaluating them. Also the whole initial
design, which comprises 150 of the 500 algorithm runs, is unaffected.
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Figure 4.9: The plot on the left shows the Kriging model of F and CR obtained with 1000
evaluations, the right one with 10000. Note that F and CR are only two of the four dimensions of
the parameter search space.

4.3.2 Logarithmic Representation

Research Question: Do more sophisticated representations of input and transformations
of output data aid the surrogate modeling?

Preexperimental planning: Experiment 4.3.1 again showed the problems Kriging has
on OKA2 with short algorithm runs. As the surrogate model is a core component that
guides SPO’s search, a better model would of course greatly benefit the optimization suc-
cess. A first approach would be using a logarithmic representation for µ. Obviously, the
hypervolume is closely coupled with the population size. The preexperimental planning for
Experiment 4.1.2 already reinforced this impression. So, by setting µ = ex and optimizing
x = lnµ with SPO we accomodate the effect that e.g. changing µ from 1 to 2 has a much
greater impact than from 101 to 102. This effect is interrelated with the fact that during
any optimization, the IH value can at best converge to the hypervolume of the true Pareto-
front. Therefore we can also try to make up for this by using − exp(|IH |) as indicator value.
Although the research question from Experiment 4.2.3 could be incorporated into this ex-
periment, too, we do not expect any interesting results here because the reference point
used with normalization is quite similar to the one found with Algorithm 3.2 on OKA2.

Task: The task is to minimize the variance and optimize the mean performance of SPO.
A U-test [25] is employed to test the significance of performance differences.

Setup: We conceive a full factorial experimental design for the factors A ∈ {µ, ln(µ)} and
B ∈ {IH ,− exp(|IH |)}, leading to four different setups. Each setup is run 20 times.

Results/Visualization: Figure 4.10 shows the two main effects for the factors. Table 4.15
shows the standard deviations for all the parameters.
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Table 4.15: The parameters’ standard deviation on the 20 runs.

No.
Factors

Mean IH
Standard Deviation

A B IH µ DIFFS CR F

1 µ IH -0.5326 0.0025 6.1078 0.3663 0.2153 0.1423
2 ln(µ) IH -0.5347 0.0024 2.9784 0.4104 0.2084 0.1624
3 µ − exp(|IH |) -0.5325 0.0029 3.9617 0.3663 0.1749 0.1589
4 ln(µ) − exp(|IH |) -0.5338 0.0037 3.9904 0.4702 0.2031 0.2324
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Figure 4.10: Main effects for the two factors A (left) and B (right). The black lines connect the
samples’ mean values.
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Observations: The effect for factor A is significant at the 5% level, while the effect for
B is not. Table 4.15 shows that especially configuration 2 decreases the variance of µ. It
is also smaller in DE variation than in SBX (cf. Table 4.7). Factor B cannot achieve any
significant improvements, whether alone or in interaction with A. To the human eye, the
Kriging model is in most runs still incapable of adequately modeling the response surface.

Discussion: The insignificance of factor B might be due to the low number of problem
evaluations spent. The described convergence problem does probably not emerge, because
the Pareto-front is not reached anyway. With hindsight, it seems more appropriate to
carry out this experiment over a range of problems, instead of doing 20 repeats on a single
problem. This would rule out effects that are specific to this problem.

4.3.3 DE on SYM-PART

Research Question: Which parameter configurations will be found for DE variation on
SYM-PART? How does DE compare to SBX variation?

Preexperimental planning: The series of experiments is continued without any new
considerations. Because this experiment was run before Experiment 4.3.2, the logarithmic
encoding of the population size is not used.

Task: The task is the same as in Experiment 4.3.1.

Setup: The setup is identical to the one in Experiment 4.3.1.

Results/Visualization: Table 4.16 shows the performance results of DE and SBX vari-
ation. Table 4.17 contains the newly found DE configurations.

Table 4.16: Performance results for the different configurations on SYM-PART.

Evaluations Configuration Min Max Mean Stddev

1000

Default SBX -1.1823 -1.1374 -1.1640 0.00883
Opt. SBX -1.2074 -1.2040 -1.2063 0.00076
Default DE -1.0766 -0.9891 -1.0335 0.02262
Opt. DE -1.2036 -1.1406 -1.1935 0.01093

10000

Default SBX -1.2084 -1.2068 -1.2074 0.00030
Opt. SBX -1.2097 -1.2090 -1.2095 0.00014
Default DE -1.1556 -1.0930 -1.1194 0.01227
Opt. DE -1.2099 -1.2097 -1.2098 0.00004

Observations: Unlike in Experiment 4.2.2, there is a noticeable difference in population
sizes between 1000 and 10000 evaluations. Tuned SBX variation reaches significantly better
mean values than tuned DE variation for 1000 evaluations. The opposite is true for 10000
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Table 4.17: SPO results for DE variation on SYM-PART.

Evalu- Configuration
ations µ DIFFS CR F

1000 16 1 0.65 0.56

10000 38 1 0.66 0.51

evaluations. The performance of tuned DE is also significantly better than of its default
configuration.
Discussion: Generally, the first DE experiments give the impression that DE variation
needs a higher population size than SBX variation to work well.

4.3.4 DE on ZDT-based Problems

Research Question: Which parameter configurations will be found for DE variation on
ZDT-based problems? How does DE compare to SBX variation?
Preexperimental planning: Again, all ZDT-based problems are combined in one exper-
iment.
Task: The task is the same as in Experiment 4.3.1.
Setup: The setup is identical to the one in Experiment 4.3.1.
Results/Visualization: Table 4.18 shows the performance results of DE and SBX vari-
ation. Table 4.19 contains the newly found DE configurations. They are all significant
improvements compared to the default configurations.
Observations: On S_ZDT4, there is no significant difference between DE and SBX vari-
ation for 1000 evaluations, but the latter is better for 10000 evaluations. There are also
no significant performance differences between SBX and DE variation on R_ZDT4. The
found DIFFS values on R_ZDT4 and S_ZDT4 are identical. In half of the configurations
DIFFS = 2 is used. Another observation is that the default SBX configuration performs
much better than the default DE configuration.
Discussion: It is uncertain if the observed performance differences between DE and SBX
are really meaningful because the results are very inconsistent, not only between problems,
but also between run lengths. Although the respective differences are mostly statistically
significant, the question arises whether SPO was able to find the optimal configurations.

4.3.5 DE on DTLZ-based Problems

Research Question: Which parameter configurations will be found for DE variation on
DTLZ-based problems? How does DE compare to SBX variation?
Preexperimental planning: No new considerations were introduced into the experiment.
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Table 4.18: Performance results for the different configurations on ZDT-based problems.

Problem Evaluations Configuration Min Max Mean Stddev

S_ZDT1

1000

Default SBX -1.0618 -0.9840 -1.0189 0.02027
Opt. SBX -1.1268 -1.0583 -1.1024 0.01454
Default DE -0.9326 -0.8351 -0.8706 0.01930
Opt. DE -1.0872 -0.9780 -1.0403 0.02641

10000

Default SBX -1.1571 -1.1367 -1.1508 0.00434
Opt. SBX -1.1709 -1.1504 -1.1684 0.00453
Default DE -0.8985 -0.8540 -0.8755 0.01154
Opt. DE -1.1700 -1.1587 -1.1686 0.00197

S_ZDT2

1000

Default SBX -0.9967 -0.9019 -0.9488 0.02282
Opt. SBX -1.0419 -0.8711 -0.9878 0.04184
Default DE -0.8200 -0.7037 -0.7451 0.02750
Opt. DE -0.9543 -0.7686 -0.9037 0.03321

10000

Default SBX -1.0861 -1.0580 -1.0668 0.00560
Opt. SBX -1.1319 -1.0931 -1.1271 0.00854
Default DE -0.8095 -0.6998 -0.7394 0.02330
Opt. DE -1.1219 -1.0693 -1.0928 0.01842

S_ZDT4

1000

Default SBX -1.0227 -0.8919 -0.9505 0.02662
Opt. SBX -1.1122 -0.8941 -1.0407 0.04307
Default DE -0.9068 -0.8047 -0.8489 0.02526
Opt. DE -1.1219 -0.9936 -1.0546 0.02732

10000

Default SBX -1.1476 -1.0918 -1.1241 0.01532
Opt. SBX -1.2071 -1.1896 -1.2029 0.00303
Default DE -0.8948 -0.7889 -0.8441 0.01951
Opt. DE -1.1860 -1.1376 -1.1654 0.01072

R_ZDT4

1000

Default SBX -1.1298 -1.0617 -1.0994 0.01834
Opt. SBX -1.1876 -1.0232 -1.1214 0.03894
Default DE -1.1210 -1.0179 -1.0605 0.02170
Opt. DE -1.1784 -1.0695 -1.1350 0.02377

10000

Default SBX -1.2037 -1.1477 -1.1908 0.01021
Opt. SBX -1.2040 -1.1741 -1.1939 0.00644
Default DE -1.1166 -1.0594 -1.0845 0.01538
Opt. DE -1.2043 -1.1824 -1.1923 0.00585

S_ZDT6

1000

Default SBX -0.7601 -0.7128 -0.7340 0.01063
Opt. SBX -0.7887 -0.7264 -0.7592 0.01567
Default DE -0.6697 -0.6392 -0.6573 0.00653
Opt. DE -0.7213 -0.6745 -0.7013 0.01074

10000

Default SBX -0.8848 -0.8530 -0.8658 0.00713
Opt. SBX -0.9460 -0.7711 -0.9293 0.02350
Default DE -0.6673 -0.6503 -0.6584 0.00409
Opt. DE -0.9799 -0.9058 -0.9574 0.01577
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Table 4.19: SPO results for DE variation on ZDT-based problems.

Problem
Evalu- Configuration
ations µ DIFFS CR F

S_ZDT1
1000 12 1 0.29 0.54

10000 56 2 0.36 0.25

S_ZDT2
1000 23 1 0.14 1.38

10000 58 1 0.20 0.78

S_ZDT4
1000 19 2 0.47 0.13

10000 53 1 0.20 0.78

R_ZDT4
1000 22 2 0.17 0.49

10000 88 1 0.19 0.31

S_ZDT6
1000 32 2 0.59 0.11

10000 27 2 0.31 0.48

Task: The task is the same as in Experiment 4.3.1.
Setup: The setup is identical to the one in Experiment 4.3.1.
Results/Visualization: Table 4.20 shows the performance results of DE and SBX varia-
tion. Table 4.21 contains the newly found DE configurations. Figure 4.11 gives an example
of typical effects with DE variation.
Observations: All differences between optimized DE and SBX variation and between
the optimized configurations and the respective default configurations are significant. DE
is only better on the rotated problem. Some mean values of configurations with 15000
evaluations on S_DTLZ2 exceed the hypervolume of the reference set. This is possible,
because the reference set is designed to provide a good coverage of the Pareto-front and
not the maximal hypervolume (seed Table A.1 and Figure A.7). Crossover constant CR
and scaling factor F are both extraordinarily small on S_DTLZ3.
Discussion: The three problems seem to be surprisingly easy to optimize, as the obtained
hypervolume values are very near to the values of the reference set. S_DTLZ2 seems to
be an easier problem than R_DTLZ2, because the SMS-EMOA obtains better indicator
values with every variation there.

4.3.6 DE on WFG Problems

Research Question: Which parameter configurations will be found for DE variation on
WFG problems? How does DE compare to SBX variation?
Preexperimental planning: Thanks to the reduced population size and DE variation
being faster than SBX variation, the whole SPO budget of 500 algorithm runs could be
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Table 4.20: Performance results for the different configurations on DTLZ-based problems.

Problem Evaluations Configuration Min Max Mean Stddev

S_
D
T
LZ

2

1500

Default SBX -1.3285 -1.3222 -1.3270 0.00127
Opt. SBX -1.3297 -1.3189 -1.3291 0.00151
Default DE -1.3237 -1.3091 -1.3189 0.00302
Opt. DE -1.3297 -1.3266 -1.3290 0.00051

15000

Default SBX -1.33016 -1.33010 -1.33013 0.011e-3
Opt. SBX -1.33022 -1.33020 -1.33021 0.004e-3
Default DE -1.32391 -1.32104 -1.32235 0.569e-3
Opt. DE -1.33021 -1.33013 -1.33020 0.016e-3

R
_
D
T
LZ

2

1500

Default SBX -1.3240 -1.2894 -1.3100 0.00859
Opt. SBX -1.3271 -1.2891 -1.3204 0.00802
Default DE -1.3103 -1.2040 -1.2531 0.02416
Opt. DE -1.3277 -1.3154 -1.3243 0.00257

15000

Default SBX -1.32982 -1.32776 -1.32960 0.315e-3
Opt. SBX -1.32995 -1.32981 -1.32989 0.031e-3
Default DE -1.29346 -1.22876 -1.26384 13.336e-3
Opt. DE -1.33006 -1.32986 -1.32997 0.042e-3

S_
D
T
LZ

3

1500

Default SBX -1.3228 -1.3113 -1.3165 0.00271
Opt. SBX -1.3309 -1.3273 -1.3304 0.00068
Default DE -1.3131 -1.2961 -1.3054 0.00461
Opt. DE -1.3293 -1.3171 -1.3257 0.00257

15000

Default SBX -1.33084 -1.32975 -1.33057 0.226e-3
Opt. SBX -1.33100 -1.33094 -1.33099 0.014e-3
Default DE -1.30638 -1.29560 -1.30284 2.207e-3
Opt. DE -1.33100 -1.33092 -1.33097 0.021e-3
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Table 4.21: SPO results for DE variation on DTLZ-based problems.

Problem
Evalu- Configuration
ations µ DIFFS CR F

S_DTLZ2
1500 22 1 0.38 0.26
15000 120 1 0.62 0.09

R_DTLZ2
1500 38 1 0.84 0.26
15000 86 1 0.69 0.20

S_DTLZ3
1500 28 3 0.04 0.08
15000 80 1 0.07 0.02
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Figure 4.11: The main effects with 15000 evaluations on S_DTLZ2. The errorbars depict 90%
confidence intervals.

applied to the WFG problems in this experiment. Please recall that this was not possible
in Experiment 4.2.7.

Task: The task is the same as in Experiment 4.3.1.

Setup: The setup is identical to the one in Experiment 4.3.1.

Results/Visualization: Table 4.22 shows the performance results of DE and SBX vari-
ation. Table 4.23 contains the newly found DE configurations.

Observations: Except for WFG1 with 15000 evaluations, SBX is always significantly
better than DE variation. The only DE configuration that wins against its SBX rival
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Table 4.22: Performance results for the different configurations on WFG problems.

Problem Evaluations Configuration Min Max Mean Stddev

WFG1

1500

Default SBX -0.9170 -0.8971 -0.9051 0.00463
Opt. SBX -1.0007 -0.9798 -0.9936 0.00463
Default DE -0.9458 -0.8575 -0.8677 0.01235
Opt. DE -0.9270 -0.8926 -0.9084 0.00762

15000

Default SBX -0.9741 -0.9597 -0.9684 0.00341
Opt. SBX -1.0493 -1.0126 -1.0370 0.00752
Default DE -0.9078 -0.8826 -0.8929 0.00545
Opt. DE -1.1075 -0.9859 -1.0633 0.02513

WFG8

1500

Default SBX -1.1383 -1.0694 -1.1101 0.01352
Opt. SBX -1.2377 -1.2013 -1.2231 0.00870
Default DE -1.1357 -1.0704 -1.1062 0.01512
Opt. DE -1.2204 -1.1748 -1.1985 0.00911

15000

Default SBX -1.2313 -1.2083 -1.2197 0.00493
Opt. SBX -1.2753 -1.2623 -1.2707 0.00258
Default DE -1.2586 -1.1520 -1.2003 0.04597
Opt. DE -1.2689 -1.2536 -1.2615 0.00277

WFG9

1500

Default SBX -1.2126 -1.1204 -1.1651 0.02048
Opt. SBX -1.2358 -1.1667 -1.2147 0.01315
Default DE -1.2075 -1.1062 -1.1474 0.02407
Opt. DE -1.2341 -1.1293 -1.2012 0.01921

15000

Default SBX -1.2596 -1.2250 -1.2459 0.00679
Opt. SBX -1.2663 -1.2477 -1.2614 0.00346
Default DE -1.2048 -1.1684 -1.1894 0.00738
Opt. DE -1.2700 -1.2376 -1.2607 0.00970
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Table 4.23: SPO results for DE variation on WFG problems.

Problem
Evalu- Configuration
ations µ DIFFS CR F

WFG1
1500 26 2 0.38 0.09
15000 24 1 0.28 0.25

WFG8
1500 19 2 0.25 0.25
15000 72 1 0.23 0.20

WFG9
1500 47 2 0.46 0.10
15000 96 2 0.23 0.08

features a rather small population size. The default DE configuration again performs clearly
worse than any other. Like on ZDT-based problems, two vector differences are used in the
majority of cases.

Discussion: Interestingly, SBX variation is more successful although less resources were
spent on optimizing it. This is another hint that SPO’s optimization phase is not very
successful in MOO.

4.3.7 Summary

The experiments show that the decision which variation is chosen is less important than
the decision to tune the chosen variation operator. The differences between the default and
optimized configurations are much bigger than between different optimized configurations.
For 500·M problem evaluations, SBX is better than DE on ten problems, while the opposite
is true on only one problem (there are two ties). For 5000 ·M evaluations, SBX wins seven
times and DE five times (there is one tie). So, SBX is winning more often, but that does not
mean a lot. First, the set of problems is probably biased, because there are many separable
problems and only few rotated ones on which DE proved to be better. Second, the result
is more balanced on the longer runs, so it would be interesting if DE becomes superior if
the run length is extended even furter.

The default DE configuration almost always performs worst. This is surprising, because
the configuration was used by Kukkonen and Lampinen [32] in the CEC 2007 competition.
However, the authors state that they chose a configuration that performs well on average
over all problems, while we tuned it for every problem separately. Additionally, the config-
uration was designed for the GDE 3 algorithm [32], while we used it with the SMS-EMOA.
On the other hand, SBX was challenged in the same way. It is also remarkable that DE
literature seems to be quite focused on parameter setting [32] and benchmark results are
often obtained with a special DE configuration for each problem [56]. In contrast, the SBX
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configurations given by Sharma et al. [52] for the CEC 2007 competition are quite similar
to the default configuration used in our experiments, which was taken from [15]. So, we
suppose that DE variation is less robust than SBX variation. It is probably highly recom-
mended to use a (self-)adaptive variant of DE variation [27, 60, 61], which also entered the
CEC 2007 contest.

The average population size for 500 ·M evaluations with DE is 25, which is slightly
higher than the average for SBX variation. For 5000 ·M evaluations, the average µ is 64,
which is in the middle of the SBX averages (cf. Figure 4.8).

4.4 Selection

Variation is the SMS-EMOA’s component that most obviously lends itself to optimization.
Nonetheless, selection also contains some less well-known parameters. One issue is a selec-
tion variant introduced by Naujoks, Beume and Emmerich [40], which only uses S-metric
selection when the population contains just one non-dominated front. In the other case,
an individual’s fitness is determined by the number of individuals that dominate it. This
selection is called dominating points (DP) selection in the remainder. It assigns every point
a rank which is equal to the number of other points that dominate it. The fitness is the
higher the lower the rank is.

Another parameter hides in the constant offset (1, . . . , 1)T that is used in the reference
point construction. Therefore, we use Algorithm 4.1, which is only a slight variation of
Algorithm 2.2, to make this parameter variable. We can even have a different offset in each
dimension.

Algorithm 4.1 constructReferencePoint(Q, o)
1: w← first(Q) // set the vector of worst objective values to the first point of Q
2: for all qi ∈ Q do
3: for j = 1 to |qi| do // for every dimension
4: wj ← max{wj , qij} // set wj to the worse value
5: end for
6: end for
7: return w + o // return the reference point

4.4.1 Selection Variants

Research Question: Which influence do selection parameters have on the SMS-EMOA’s
performance?

Preexperimental planning: In a first attempt, it was tried to optimize the selection
parameters with SPO. Doing this, two problems arise: First, the decision for or against
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using the number of dominating points for selection is binary and thus not suited for
Kriging. Second, no significant influence of the offsets in the reference point construction
could be found. Figure 4.12 shows the main effects on S_DTLZ3. So, a full factorial
experimental design with two factors is also carried out separately from the SPO runs.
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Figure 4.12: The main effects of selection parameters on S_DTLZ3. The errorbars depict 90%
confidence intervals.

Task: The SPO results are not verified, because the configurations would be probably
evaluated as improvement simply through the optimization of µ. The separate factorial
experiment is expected to provide more information. The main effects are tested with a
two-sided U-Test [25]. The significance level is 5%.
Setup: Table 4.24 shows the default selection parameters and the region of interest for
the configuration in this experiment. Additionally, SBX variation is used here, because it
seemed to be more robust than DE in Section 4.3. The SPO runs are carried out with SBX
default parameters, hoping that selection is fairly independent from variation.

The factorial experiment uses the respective SBX configuration optimized by IH for
each problem (see Section 4.2). Each of those configurations is extended by the new selec-
tion parameters. The boundaries of the ROI are used as low and high levels of the factors.
Factor DP ∈ {0, 1} defines if the number of dominating points is used for selection, factor
~o controls the offset vector for reference point construction. It can be either (1, . . . , 1)T or
(100, . . . , 100)T . Every configuration is run 50 times with 5000 ·M problem evaluations.
Results/Visualization: Using the dominating points for selection leads to a significantly
worse performance on S_ZDT1 and S_DTLZ3, which is shown in Figure 4.13. There is
no effect on the other problems. An offset of (100, . . . , 100)T produces significantly better
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Table 4.24: The default configuration and the parameters’ region of interest. The ln(µ) values
correspond to µ = 100 as default value and a region of interest of {6, . . . , 120}.

Parameter ln(µ) DP o1 o2 o3

Default Value 4.60517 0 1 1 1
ROI [1.79, 4.79] {0, 1} [0, 100] [0, 100] [0, 100]

results than (1, . . . , 1)T on S_ZDT4, S_DTLZ2, WFG1, WFG8 and WFG9, while there
is no difference elsewhere. Figure 4.14 shows the effect on S_ZDT4 and WFG1. For the
sake of completeness, the SPO results are reported in Table 4.25.
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Figure 4.13: The main effects of the two problems where DP yields significantly worse results.
The black lines connect the samples’ mean values.

Observations: The bigger offsets have only positive effects, especially on the three-
dimensional problems. Dominating points selection cannot yield any improvements, but
it also produces worse results on only two of the 13 problems.

The population sizes found by SPO tend to be smaller than the previously obtained
ones in the SBX experiments, but there is a noticeable correlation of 0.90 between the
values (p-value = 2.4e-5). The SPO results for DP seem arbitrary and for S_DTLZ3 also
inconsistent with the result from the factorial experiment.
Discussion: Dominating points selection proves to be a reasonable alternative, reducing
runtime without losing much quality. With hindsight, the SPO runs should have been
carried out with a fixed µ, so that the effects of the remaining parameters stood out more
clearly. On the other hand, it is interesting to see that the resulting population sizes are
quite similar to previously found ones, although the variation was not optimized, the region
of interest was different and the logarithmic encoding was used here. So, we have a nice
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Figure 4.14: The main effects of the two clearest effects of ~o. The remaining three problems with
significant effects are not shown here.

validation of our results of Experiment 4.3.2, showing that the logarithmic encoding works
with SBX and over a range of all problems as well.

The upper bound for the offsets probably should have been higher, perhaps even in
the thousands, because some problems (e.g. S_DTLZ3, see Table A.1) have feasible objec-
tive spaces with such dimensions. Optimizing DP with SPO did not work. Treating each
offset-dimension oi individually did not provide any additional insight yet, either. Further
experiments are required to draw any conclusions here. Using higher offsets seems to be
very promising, though. On some problems, it has a remarkable positive effect. Please note
that the SPO runs are not directly comparable to the factorial experiment, because differ-
ent variation parameters were used. Analogously, it was not expected to obtain population
sizes identical to experiments in Section 4.2 (see Table 4.25).
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Table 4.25: The selection parameters obtained with SPO. In the last column, the µ values from
Section 4.2 are repeated for a comparison.

Problem
Configuration µ in

µ DP o1 o2 o3 Section 4.2

OKA2 50 1 73.3 14.8 – 107
SYM-PART 6 1 86.6 67.0 – 9
S_ZDT1 28 0 76.9 69.2 – 39
S_ZDT2 7 0 38.3 5.6 – 18
S_ZDT4 6 0 66.2 0.03 – 7
R_ZDT4 69 1 15.4 46.2 – 196
S_ZDT6 6 1 9.8 12.5 – 16
S_DTLZ2 118 0 78.6 2.3 84.3 172
R_DTLZ2 68 1 78.1 48.6 78.0 179
S_DTLZ3 28 1 32.3 90.8 28.0 83
WFG1 16 1 10.4 88.4 13.8 30
WFG8 28 0 82.5 46.1 31.9 15
WFG9 77 1 11.1 0.1 74.5 152



Chapter 5

Summary and Outlook

5.1 Summary

This work motivated and demonstrated parameter optimization for evolutionary multi-
objective algorithms, an area which is still in its beginnings. To this end, an introduction
to multi-objective optimization and to evolutionary algorithms was given. Central point
of the work was the SMS-EMOA, an algorithm that has already proven its capabilities in
several applications [17, 40].

This work also contains a very comprehensive part of experimental results, which gives
valuable information for further development of the SMS-EMOA and Sequential Param-
eter Optimization (SPO) itself. The parameter optimization was executed on a range of
13 different problems with two variation operators and two algorithm run lengths. Exper-
iments used statistical hypothesis testing and were executed and structured according to
up-to-date guidelines for experiments in evolutionary computation [43, 2]. The use of SPO
was justified and explained. In total, well over 400 single SPO runs, with durations between
one hour and several weeks, were executed on a batch system. The use of the interpreted
Python programming language emerged as a problem here, because of its inferior execution
speed compared to machine languages. The results obtained in the experiments with the
CEC 2007 benchmark problems can be summarized as follows:

• The population size usually has a great influence on the observed performance and
a great diversity of values could be observed. However, the results are dependent on
the used quality indicator and the algorithm run length. Additionally, the decision
maker may have his own needs, too. So, the results’ value is probably limited.

• The hypervolume indicator IH is more successful than Iε+ and IR2 for optimizing
the SMS-EMOA with Simulated Binary Crossover (SBX) as variation (compare Ex-
periment 4.1.2).

63
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• Over all problems, SBX variation is more successful than Differential Evolution (DE),
but DE variation performs better on rotated problems. It is more important to tune
the chosen variation operator than to choose between SBX and DE. DE seems to be
more sensitive to its parameter setting (compare Section 4.3).

• Experimental setup is not a trivial task. Any reference data for evaluation has to be
chosen carefully, so that differences are measurable. The population size should be
encoded in a logarithmic fashion, to overcome problems in the modeling of results.
The CEC 2007 evaluation approach does not work on SYM-PART and S_DTLZ3,
because the reference point is too far away from the Pareto-front. In this case, the
indicator’s ability to reward a good distribution of the approximation set vanishes.

• The influence of offsets for reference point construction on the performance was
investigated for the first time. Higher offsets are often better, especially on three-
dimensional problems. The effects seem to be difficult to find with SPO, though
(compare Section 4.4).

• Dominating points selection performs slightly worse than S-Metric selection, but of-
ten there is no measurable difference. This is consistent with a previous result [40].
Because of its greatly reduced runtime compared to S-Metric selection, it is a favor-
able option, especially for higher numbers of objectives (compare Section 4.4).

5.2 Outlook

Still, many of the experiments could be extended or improved to obtain more general
results. This encompasses running the experiments on a wider range of problems or with
more repeats. It would also be possible to combine some experimental designs that were
handled separately in this thesis, because the research questions emerged at different times.
There also seems to be some room left for performance improvements in SPO, because of
the problems with Kriging. In the long term, the question comes up if there is a possibility to
develop a tuning procedure that can get along without unary quality indicators. Currently,
the already existing quality indicators are used rather as a workaround to map the resulting
multi-objective populations onto a one-dimensional utility measure. This has the advantage
of modularity, but it seems to be quite prone to misconfigurations. It would be interesting
if there are simpler, integrated approaches possible.

Regarding the variation concepts, the study could be continued with the (self-)adaptive
variants of SBX and DE, investigating if they can be tuned as well and if they yield
any improvements over their basic versions. On the algorithmic side, the experimental
setup could be easily modified to allow multiple starts of the investigated optimization
algorithm. To do this, an integer parameter for the number of runs would be added to the
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algorithm design and the fixed budget of problem evaluations would be split between the
runs. The resulting populations would then be merged and collectively evaluated by the
quality indicator, representing one repeat of the configuration from SPO’s point of view.
So, no modification of SPO is neccessary for this approach.
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Appendix A

Test Problems

In the following the test problems used in the experiments are defined. Table A.1 gives
an overview of the parameters used on the respective problem instances. The objective
space for each objective function is normalized to [1, 2], according to the CEC 2007 contest
rules [26]. For each problem, a reference set of Pareto-optimal points is provided to enable
evaluation of populations with the ε+ indicator and the R2 indicator.

A.1 Individual Problems

A.1.1 Definition (OKA2). The test problem OKA2 [42] is defined as

f1(x) = x1,

f2(x) = 1− 1
4π2

(x1 + π)2 + |x2 − 5 cos(x1)|
1
3 + |x3 − 5 sin(x1)|

1
3 ,

with x1 ∈ [−π, π] and x2, x3 ∈ [−5, 5]. Solutions (x1, x2, x3) = (ξ, 5 cos(ξ), 5 sin(ξ)) are
Pareto-optimal for ξ ∈ [−π, π]. Figure A.1 shows the reference set for the problem. The
Pareto-front is concave. OKA2 is the only problem in this set that has a fixed number of
decision variables.

A.1.2 Definition (SYM-PART). This test problem is a modification of the original
SYM-PART problem [46] to raise the number of decision variables from two to 30. The
definition below differs from the one in the CEC 2007 paper, but is consistent with the
competition’s implementation.

f1(x) =
(

(x′1 + a− t1c2)2 + (x′2 − t2b)2 + · · ·+ (x′D−1 + a− t1c2)2 + (x′D − t2b)2
)
/|x|,

f2(x) =
(

(x′1 − a− t1c2)2 + (x′2 − t2b)2 + · · ·+ (x′D−1 − a− t1c2)2 + (x′D − t2b)2
)
/|x|,

67
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where

x′ =



cosω − sinω 0 0

sinω cosω 0 0

0 0 cosω − sinω . . .

0 0 sinω cosω
...

. . .


x,

t1 = sgn
(

sgn(x′1) ·
⌈
|x′1| − c2/2

c2

⌉)
, t2 = sgn

(
sgn(x′2) ·

⌈
|x′2| − b/2

b

⌉)
,

a = 1, b = 10, c = 8, c2 = c+ 2a = 10.

Figure A.2 shows the reference set for the problem. The Pareto-front is convex. Thanks to
the signum functions in t1 and t2, the problem has nine areas of attraction in the decision
space that yield the same fitness.
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Figure A.1: The reference set for OKA2. The small image in the bottom left corner shows the
reference set after normalization to the interval [1, 2].

A.2 Extended ZDT and DTLZ Problems

Table A.2 shows an overview of vectors and matrices involved in the problems mentioned
in this section. These problems were derived from ZDT [63] and DTLZ [15] problems by
shifting (z = x− o) or rotating (z = Mx) the search space. M and o contain fairly noisy
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Figure A.2: The reference set for SYM-PART. In the upper right corner you can see that after
normalization, all points lie very close to (1, 1) and are therefore not visible.

data to obfuscate the interconnections in the problem. The data (and a C implementation
of all 19 problems) can be obtained from the contest’s website [26]. Moreover, all extended
problems have in common a stretching function S(p) = 2/(1 + e−p), where p =

√∑
i∈I p

2
i

and I ⊆ {1, . . . , D} is the set of indices of all decision variables used in the particular
objective function.

A.2.1 Definition (S_ZDT1). The test problem S_ZDT1 is defined as

f1(x) = S(p1)(z′1 + 1),

f2(x) = S


√√√√ D∑

i=1

p2
i

(g(x)
(

1−
√
z′1/g(x)

)
+ 1
)
,

g(x) = 1 + 9 ·
∑D

i=2 z
′
i

D − 1
,

where z′i =

zi, zi ≥ 0

−λizi, zi < 0
, pi =

0, zi ≥ 0

|zi|/di, zi < 0
, i = 1, . . . , D.

The Pareto-optimal solutions have values of x1 ∈ [o1, 1 + o1] and xi = oi for i = 2, . . . , D.
Figure A.3 shows the reference set for the problem. The convex shape of the Pareto-front is
determined by the term

√
z′1/g(x) in f2. ZDT-based problems always have two objectives.



A.2. EXTENDED ZDT AND DTLZ PROBLEMS 71

Table A.2: Variable names used in all extended problems.

Variable Purpose

x Genome on which the EA operates
o Offsets for shifting the search space
M Rotation matrix for rotating the search space
z, z′ Calculated from the genome
d Extended lengths of the lower bounds
λ Scale factors
p Penalty values
xmin Lower bounds (search space)
xmax Upper bounds (search space)
D Number of decision variables
M Number of objectives
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Figure A.3: The reference set for S_ZDT1.



72 APPENDIX A. TEST PROBLEMS

A.2.2 Definition (S_ZDT2). The test problem S_ZDT2 is defined as

f1(x) = S(p1)(z′1 + 1),

f2(x) = S


√√√√ D∑

i=1

p2
i

(g(x)
(
1− (z′1/g(x))2

)
+ 1
)
,

g(x) = 1 + 9 ·
∑D

i=2 z
′
i

D − 1
,

where z′i =

zi, zi ≥ 0

−λizi, zi < 0
, pi =

0, zi ≥ 0

|zi|/di, zi < 0
, i = 1, . . . , D.

The Pareto-optimal solutions have values of x1 ∈ [o1, 1 + o1] and xi = oi for i = 2, . . . , D.
Figure A.4 shows the reference set for the problem. The Pareto-front is concave.
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Figure A.4: The reference set for S_ZDT2.
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A.2.3 Definition (S_ZDT4). The test problem S_ZDT4 is defined as

f1(x) = S(p1)(z′1 + 1),

f2(x) = S


√√√√ D∑

i=1

p2
i

(g(x)
(

1−
√
z′1/g(x)

)
+ 1
)
,

g(x) = 1 + 10(D − 1) +
D∑
i=2

(
z′i

2 − 10 cos (4πz′i)
)
,

where z′1 =

z1, z1 ≥ 0

−λ1z1, z1 < 0
, p1 =

0, z1 ≥ 0

|z1|/d1, z1 < 0
,

z′i =

zi, zi ≥ −5

−5− λi(zi + 5), zi < −5
, pi =

0, zi ≥ −5

|zi + 5|/di, zi < −5
, i = 2, . . . , D.

The Pareto-optimal solutions have values of x1 ∈ [o1, 1 + o1] and xi = oi for i = 2, . . . , D.
Figure A.5 shows the reference set for the problem. The problem differs from S_ZDT1 in
its function g(x), which is multi-modal here, making the problem more difficult.
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Figure A.5: The reference set for S_ZDT4 and R_ZDT4. The Pareto-front is identical to the one
of S_ZDT1, but the objective space bounds are different. So, normalization has a more problematic
effect, leading to an almost horizontal Pareto-front (invisible on the f1 axis). A new reference set
was generated because the similarity was not recognized at that time.
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A.2.4 Definition (R_ZDT4). The test problem R_ZDT4 is defined as

f1(x) = S(p1)(z′1 + 1),

f2(x) = S


√√√√ D∑

i=1

p2
i

(g(x)
(

1−
√
z′1/g(x)

)
+ 1
)
,

g(x) = 1 + 10(D − 1) +
D∑
i=2

(
z′i

2 − 10 cos (4πz′i)
)
,

where z′1 =


−λ1z1, z1 < 0

z1, 0 ≤ z1 ≤ 1

λ1z1, z1 > 1

, p1 =


−z1, z1 < 0

0, 0 ≤ z1 ≤ 1

z1 − 1, z1 > 1

,

z′i =


−5− λi(zi + 5), zi < −5

zi, −5 ≤ zi ≤ 5

5− λi(zi − 5), zi > 5

, pi =


−5− zi, zi < −5

0, −5 ≤ zi ≤ 5

zi − 5, zi > 5

, i = 2, . . . , D.

The Pareto-front is identical to the one of S_ZDT4. Figure A.5 shows the reference set for
the problem.

A.2.5 Definition (S_ZDT6). The test problem S_ZDT6 is defined as

f1(x) = S(p1)(1− exp(−4z′1) sin6(6πz′1) + 1),

f2(x) = S


√√√√ D∑

i=1

p2
i

(g(x)
(
1− (z′1/g(x))2

)
+ 1
)
,

g(x) = 1 + 9 ·

(∑D
i=2 z

′
i

D − 1

)2

,

where z′i =

zi, zi ≥ 0

−λizi, zi < 0
, pi =

0, zi ≥ 0

|zi|/di, zi < 0
, i = 1, . . . , D.

The Pareto-optimal solutions have values of x1 ∈ [o1, 1 + o1] and xi = oi for i = 2, . . . , D.
Figure A.6 shows the reference set for the problem. The function f1 causes a non-uniform
distribution of solutions along the concave Pareto-front.
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Figure A.6: The reference set for S_ZDT6.

A.2.6 Definition (S_DTLZ2). The test problem S_DTLZ2 is defined as

f1(x) = S(psum1)
(

(1 + g(xM )) cos
(
z′1
π

2

)
cos
(
z′2
π

2

)
. . . cos
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)
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)
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f3(x) = S(psum3)
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(
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(
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)
,

g(xM ) =
∑
xi∈xM

(z′i − 0.5)2,

where z′i =

zi, zi ≥ 0

−λizi, zi < 0
, pi =

0, zi ≥ 0

|zi|/di, zi < 0
, i = 1, . . . , D.

Pareto-optimal solutions satisfy
∑M

m=1(fm − 1)2 = 1. This can be achieved by setting
xi = 0.5 + oi for xi ∈ xM and choosing xi ∈ [oi, 1 + oi] else. Figure A.7 shows the
reference set for the problem. The Pareto-front, a part of a sphere, is identical to the one



76 APPENDIX A. TEST PROBLEMS

of R_DTLZ2 and S_DTLZ3. DTLZ-based problems can principally have an arbitrary
number of objectives.

Figure A.7: The reference set for S_DTLZ2, R_DTLZ2 and S_DTLZ3.

A.2.7 Definition (R_DTLZ2). The test problem R_DTLZ2 is defined as
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, i = 1, . . . , D.

Pareto-optimal solutions satisfy
∑M

m=1(fm − 1)2 = 1. Figure A.7 shows the reference set
for the problem.
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A.2.8 Definition (S_DTLZ3). The test problem S_DTLZ3 is defined as

f1(x) = S(psum1)
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,

where z′i =

zi, zi ≥ 0

−λizi, zi < 0
, pi =

0, zi ≥ 0

|zi|/di, zi < 0
, i = 1, . . . , D.

Pareto-optimal solutions have xi = 0.5+oi for xi ∈ xM and xi ∈ [oi, 1+oi] else. Figure A.7
shows the reference set for the problem.

A.3 WFG Problems

Table A.3: Variable names used in all WFG problems.

Variable Purpose

M Number of objectives
n Number of decision variables
x Vector of M underlying parameters
xM Distance parameter
x1:M−1 Position parameters
z Vector of k + l = n ≥M working parameters
D > 0 Distance scaling constant
A1:M−1 ∈ {0, 1} Degeneracy constants
h1:M Shape functions
S1:M > 0 Scaling constants
t1:p Transition vectors
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Table A.3 shows the meaning of some variables used in WFG problems. The problems
are described in greater detail in [28]. All WFG problems are of the following form.

Given z = (z1, . . . , zk, zk+1, . . . , zn)

Minimize fm=1:M (x) = DxM + Smhm(x1, . . . , xM−1)

Where x = (x1, . . . , xM )

= (max{tpM , A1}(tp1 − 0.5) + 0.5, . . . ,max{tpM , AM−1}(tpM−1 − 0.5) + 0.5, tpM )

tp = (tp1, . . . , t
p
M ) 7→tp−1 7→. . . 7→t1 7→z[0,1]

z[0,1] = (z1,[0,1], . . . , zn,[0,1])

= ( z1
z1,max

, . . . , zn
zn,max

)

The notation ti+1 7→ti means that the output of transformation ti is used as input for
ti+1. In the following, only the shape function hm and transformation functions ti for the
actual problem are shown.

A.3.1 Definition (WFG1). The test problem WFG1 is defined as

Shape hm=1:M−1 = convexm
hM = mixedM (with α = 1 and A = 5)

t1 t1i=1:k = yi

t1i=k+1:n = s_linear(yi, 0.35)

t2 t2i=1:k = yi

t2i=k+1:n = b_flat(yi, 0.8, 0.75, 0.85)

t3 t3i=1:n = b_poly(yi, 0.02)

t4 t4i=1:M−1 = r_sum({y(i−1)k/(M−1)+1, . . . , yik/(M−1)},
{2( (i−1)k

M−1 + 1), . . . , 2ik
M−1})

t4M = r_sum({yk+1, . . . , yn}, {2(k + 1), . . . , 2n}).

Please refer to [28] for a detailed explanation of transformation functions like s_linear,
b_flat, b_poly, r_sum and shape functions like convexm and mixedm. Pareto-optimal
solutions have values of zi=1:k ∈ [0, 2i] and zi=k+1:n = 2i · 0.35. Figure A.8 shows the
reference set for the problem. The Pareto-front has a convex shape with ripples on it.

A.3.2 Definition (WFG8). The test problem WFG8 is defined as

Shape hm=1:M−1 = concavem
t1 t1i=1:k = yi

t1i=k+1:n = b_param(yi, r_sum({y1, . . . , yi−1}, {1, . . . , 1}), 0.98
49.98 , 0.02, 50)

t2 t2i=1:k = yi

t2i=k+1:n = s_linear(yi, 0.35)

t3 t3i=1:M−1 = r_sum({y(i−1)k/(M−1)+1, . . . , yik/(M−1)}, {1, . . . , 1})
t3M = r_sum({yk+1, . . . , yn}, {1, . . . , 1}).
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Figure A.8: The reference set for WFG1.

Pareto-optimal solutions have values of zi=1:k ∈ [0, 2i] and zi=k+1:n =

2i · 0.35(0.02+49.98( 0.98
49.98

−(1−2u)|b0.5−uc+ 0.98
49.98

|))−1
for u = r_sum({z1, . . . , zi−1}, {1, . . . , 1}) re-

spectively. Figure A.9 shows the reference set for the problem. The Pareto-front is concave.

A.3.3 Definition (WFG9). The test problem WFG9 is defined as

Shape hm=1:M−1 = concavem
t1 t1i=1:n−1 = b_param(yi, r_sum({yi+1, . . . , yn}, {1, . . . , 1}), 0.98

49.98 , 0.02, 50)

t1n = yn

t2 t2i=1:k = s_decept(yi, 0.35, 0.001, 0.05)

t2i=k+1:n = s_multi(yi, 30, 95, 0.35)

t3 t3i=1:M−1 = r_nonsep({y(i−1)k/(M−1)+1, . . . , yik/(M−1)}, k
M−1)

t3M = r_nonsep({yk+1, . . . , yn}, l).

Pareto-optimal solutions have zi=1:k ∈ [0, 2i] and zi=k+1:n = 2i·

0.35(0.02+1.96u)−1
, i 6= n

0.35, i = n

for u = r_sum({zi+1, . . . , zn}, {1, . . . , 1}) respectively. Figure A.10 shows the reference set
for the problem. The Pareto-front is concave.
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Figure A.9: The reference set for WFG8.

Figure A.10: The reference set for WFG9. The Pareto-front is identical to WFG8, however this
was not recognized when the reference sets were generated.



Appendix B

Framework documentation

All experiments for this thesis were carried out on a newly implemented framework for
evolutionary multi-objective optimization. Besides the various optimization algorithms, it
contains test problems to evaluate the algorithms’ performance. The whole framework is
written in Python [57], an interpreted, high-level programming language. The design was
guided by the following postulations:

No redundant objective function evaluations should be made. In real world prob-
lems, function evaluations are often highly computationally expensive (e.g. simulator
runs).

The class design should reflect the biological model. Biological evolution is already
the paradigm for the working principle of EAs. So, unneccessary deviations should
be avoided to not confuse the user.

Code reuse should be of high significance. Also known as the design philosophy
“Don’t repeat yourself”, it leaves less space for potential errors. Additionally, existing
errors surface more often and are less easily overlooked. Finally, discovered errors can
be fixed quickly.

To achieve the requirements above, an object-oriented, highly modularized approach
was chosen. As many of an EA’s components as possible were put into separate classes.
Although Python does not support access modifiers to restrict attribute access, information
hiding is introduced as far as possible. For example, the individual’s genome and the
according variation operators are encapsulated by the individual. This makes the EAs
independent of the genome’s encoding.

The following documentation lists the classes structured in packages and modules as
they appear in the source code. UML diagrams illustrate the interesting parts of the frame-
work in each section. The function signatures are not shown in the diagrams to improve
readability. As Python does not support function overloading, the signatures can become
quite complicated, containing optional arguments.
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B.1 Package emo

B.1.1 Individuals

__init__()

mutate()

recombine()

clone()

incrementAge()

__str__()

__iter__()

__getitem__()

__len__()

__le__()

__lt__()

__ge__()

__gt__()

weaklyDominates()

dominates()

stronglyDominates()

isBetterOrEqual()

isBetterThan()

random

age

objectiveValues

Individual

__init__()

recombine()

mutate()

repair()

minLimits

maxLimits

crossoverConstant

weightingFactor

numDifferences

genome

DEIndividual

__init__()

mutate()

calcDeltaQ()

recombine()

calcBetaQ()

minLimits

maxLimits

genome

crossoverDistributionIndex

mutationDistributionIndex

maxPerturbation

mutationProbability

crossoverProbability

probSymmetricVariation

SBXIndividual

Figure B.1: The module individual contains the classes Individual, RGAIndividual and DE-

Individual.

Individual

The Individual class should be used as base class for all individuals that are going to
be used in the framework. It overrides the comparison operators to compare individuals
by their objective values. All of them conform to the dominance relation as described in
Chapter 1. An attribute age allows for tracking of its lifespan. The class designedly has no
attributes that are problem-dependent, especially the genome. So, the variation operators
mutate and recombine are abstract methods and have to be overwritten in the subclasses.
Mutation must meet the following conditions:

• Mutation happens in-place and nothing is returned.

• As mutation renders the current objective values invalid, they should be deleted.

Recombination must meet the following conditions:
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• Recombination takes a sequence of n parents as input. The object whose method is
called is the (n+ 1)th parent. n can be an arbitrary natural number.

• It returns an arbitrary number of children as an iterable object.

• The returned children should be newly-created objects.

The encapsulation of the actual variation in the individual makes it possible not only
to have different strategy parameters in each individual, but also completely different
strategies, as long as the genomes are compatible. As indicated by the method signature,
the parent whose recombine method is called is in an exceptional position. It is not only
contributing its genome to the offspring’s creation, but also decides on the inheritance of
the strategy parameters. This way, self-adaptation is very simple, even for recombination.

SBXIndividual

The class SBXIndividual provides mutation and recombination operators that were orig-
inally invented by Deb and Agrawal [10] for real-coded genetic algorithms. Both opera-
tors use polynomial probability distributions to simulate the variation of binary encoded
genomes. Not surprisingly, this individual’s genome is encoded as a vector of real numbers,
which is the default encoding for most available benchmark problems in the literature
[63, 15, 26]. Usually, every variable in the vector is bounded by an upper and a lower limit.
These are stored in the vectors minLimits and maxLimits.

DEIndividual

The class DEIndividual uses Differential Evolution [56] as variation. It has the three
parameters crossoverConstant ∈ [0, 1], weightingFactor ∈ [0, 2] and numDifferences

∈ N. The whole variation happens in the recombine method. The mutate method is empty.
The genome is a vector of real numbers, just like in SBXIndividual. The repair function
is used after variation to ensure that all interval constraints are satisfied.

B.1.2 Objective Functions

ObjectiveFunction

The class ObjectiveFunction is the building block for most problems. It has an attribute
isMaximizing that indicates if the objective function should be maximized or minimized.
Another attribute counts the evaluations of the function. It is incremented whenever the
__call__ method is run. While this has the drawback that all subclasses have to call the
superclass method or count the evaluations themselves, it provides a way to count evalu-
ations independently from the algorithm that carries out the optimization. The objective
value is returned, the individual should not be modified.
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__init__()

__str__()

__call__()

isMaximizing

evaluations

name

ObjectiveFunction

__init__()

__str__()

__call__()

negatedFunction

NegativeFunction

Figure B.2: The module objective contains the classes ObjectiveFunction and
NegativeFunction.

NegativeFunction

The class NegativeFunction enables an algorithm to change between maximization and
minimization automatically. It holds a reference to the original function in negated-

Function and the isMaximizing attribute is the opposite of negatedFunction’s goal.
Finally, when the negative function is called, it calls the original function and returns that
value multiplied by −1.

B.1.3 Problems

The module problem contains the classes Problem, TestProblem and ProblemSuite.

Problem

__init__()

__str__()

evaluate()

getFunctionEvaluations()

getProblemEvaluations()

minLimits

maxLimits

isMaximizing

name

evaluations

Problem

list

Figure B.3: The class Problem is the base class for all problems used in the framework.

Figure B.3 shows the base class for all problems. It basically represents a list of objective
functions. All contained objective functions must adhere to the problem’s isMaximizing
attribute. An interface that encapsulates them is added by the methods evaluate and
getProblemEvaluations. The encapsulation enables an optimizing algorithm to handle
problems that do not possess distinct objective functions. The evaluate method writes
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the objective values into the individual’s objectiveValues list. getFunctionEvaluations
returns the sum of evaluations of all contained objective functions.

TestProblem

TestProblem is a subclass of Problem that provides some additional functionality like
normalization and sampling of the Pareto-front needed for benchmarks.

ProblemSuite

ProblemSuite is the base class for test case collections. It is derived from the Python list.
Subclasses can overwrite the constructor to fill themselves with problems.

B.1.4 Algorithms

__init__()

__str__()

run()

step()

addEvaluationsToBudget()

addGenerationsToBudget()

getBestSolution()

setBestSolution()

removeOldIndividuals()

stoppingCriterion()

checkForImprovement()

evaluate()

name

population

populationSize

maxAge

numberOffspring

reproduction

selection

problem

bestSolution

maxEvaluations

evalsBeforeRun

generation

maxGenerations

isQuiet

EvolutionaryAlgorithm

__init__()

NSGA2

__init__()

SMSEMOA

__init__()

CommaEA

__init__()

PlusEA

Figure B.4: The module algo contains the classes EvolutionaryAlgorithm, CommaEA, PlusEA,
NSGA2 and SMSEMOA.

EvolutionaryAlgorithm

EvolutionaryAlgorithm is a customizable (µ, κ, λ)-EA. reproduction, selection and
the problem have been outsourced into separate classes, leaving not much more than
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the algorithm’s main loop. Both the number of generations and the number of function
evaluations can be used as a stopping criterion.

CommaEA

This class is intended to provide a convenient constructor to create a standard (µ , λ)

evolution strategy.

PlusEA

This class is intended to provide a convenient constructor to create a standard (µ + λ)

evolution strategy.

NSGA-2

The Non-Dominated Sorting Genetic Algorithm 2 (NSGA-2) by Deb et al. [11] is a fre-
quently used algorithm for multi-objective optimization.

SMS-EMOA

The S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) by Em-
merich et al. [17] uses a hypervolume-indicator-based selection component as a specialty.

B.1.5 Sorting

sort()

SortingComponent

sort()

computeFronts()

computeMinimalElements()

NonDominatedSorting

sort()

DominatingPointsSorting

sort()

crowdingDistanceSort()

NSGA2Sorting

__init__()

setReferencePoint()

sort()

sortFront()

hyperVolumeIndicator

HyperVolumeContributionSorting

Figure B.5: The module sorting contains the classes SortingComponent,
NonDominatedSorting, NSGA2Sorting and HyperVolumeContributionSorting.
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SortingComponent

SortingComponents play an important role for Selection objects. The interface is simple:
Every subclass has to overwrite the sort method that takes a list of individuals as input.
The sorting should be descending in fitness.

NonDominatedSorting

Non-dominated sorting was proposed by Goldberg [22]. Many algorithms use this sorting
as first order selection criterion. The class provides a method computeFronts to compute
the non-dominated fronts in the population. sort returns the concatenation of these fronts
into a flat list. computeMinimalElements only retrieves the first non-dominated front.

NSGA2Sorting

As the name suggests, this sorting is used in the NSGA-2. First, non-dominated sort-
ing is used to obtain the ranking of fronts. Each front is then sorted internally with
crowdingDistanceSort. This niching mechanism helps maintaining diversity in the ob-
jective space.

HyperVolumeContributionSorting

This sorting is used by the SMS-EMOA. In a first step, the poluation is divided into non-
dominated fronts. Then sortFront computes for every individual how much hypervolume
it exclusively contributes to its front.

DominatingPointsSorting

DominatingPointsSorting assigns every point a rank which is equal to the number of
other points that dominate it. The sorting order is then ascending in these ranks.

B.1.6 Selection

Selection

The Selection class is responsible for reducing the number of indviduals in the population.
The select method is abstract. Overwriting methods should return a list of individuals
without modifying the original population. The reduceTo method takes the survivors that
are returned by the select method and replaces the population with them.

UniformSelection

The UniformSelection draws a uniformly distributed random sample from the population.
So, it applies an undirected selection pressure.
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__init__()

select()

reduceTo()

isMaximizing

Selection

__init__()

select()

random

UniformSelection

__init__()

select()

random

sorter

CutSelection

__init__()

select()

selectDP()

selectHV()

constructReferencePoint()

random

isDominatingPointsMode

dominatingPointsSorting

offsets

hvSorting

SMetricSelection

Figure B.6: The module selection contains the classes Selection, UniformSelection,
CutSelection and SMetricSelection.

CutSelection

The CutSelection class uses a SortingComponent to obtain a fitness-based ranking of
the individuals. So, its properties are determined by the actual sorting component. For
example, the selection can only be elitist if the sorting supports it.

SMetricSelection

The S-Metric selection is used by the SMS-EMOA. It uses HyperVolumeContribution-

Sorting to obtain the fittest individuals. Due to the fact that the SMS-EMOA uses a
(µ+ 1) selection scheme, it only needs to sort the last front by hypervolume contribution
to find the least valuable individual. It contains a boolean flag isDominatingPointsMode

that decides if the alternative dominatingPointsSorting is used for selection when there
is more than one non-dominated front. offsets contains a positive offset value for each
objective. These are used in constructReferencePoint.

B.1.7 Reproduction

Reproduction

The Reproduction class works similar to Selection. The breed method is responsible
for producing the offspring. The new individuals are returned as list while the original
population is unmodified. During reproduction, recombination is used with a probability
of recombinationProbability, otherwise an individual is cloned. The extendBy method
appends the output of breed to the population. The numberParents parameter specifies
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__init__()

breed()

extendBy()

random

numberParents

recombinationProbability

Reproduction

__init__()

AsexualReproduction

Figure B.7: The module reproduction contains the classes Reproduction and
AsexualReproduction.

how many parents are involved in each recombination process. AsexualReproduction is a
special case of Reproduction where recombinationProbability is set to zero.

B.1.8 Performance Indicators

QualityIndicator

QualityIndicator is the abstract base class for all quality indicators. It needs information
whether the analysed problem is maximizing or not. The method assess computes the first
non-dominated front of the population and then calls assessNonDominatedFront, which
is abstract.

RIndicator

RIndicator implements a number of R indicator variants, as defined by Hansen and Jasz-
kiewicz [23].

EpsilonIndicator

The EpsilonIndicator class implements the ε+ indicator defined by Zitzler et al. [67].

HyperVolumeIndicator

HyperVolumeIndicator is an abstract base class for implementations of the performance
measure also called S-Metric. It contains the referencePoint that is neccessary for hy-
pervolume computation.

FonsecaHyperVolume

FonsecaHyperVolume is an algorithm by Fonseca et al. [21] for hypervolume computation.
The implementation at hand corrensponds to the algorithm called “Version 3” in the paper.
Its runtime complexity is O(nd−1) where n is the number of points and d the number of
dimensions.
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__init__()
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Figure B.8: The module performance contains the classes QualityIndicator, RIndicator,
EpsilonIndicator, HyperVolumeIndicator and FonsecaHyperVolume.
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B.2 Package emo.benchmark

list

Problem

TestProblem

TwoDimTestProblem ExtendedProblemWFGProblem

ShiftedProblem RotatedProblem

Figure B.9: The inheritance relationships for the base classes in the benchmark package.

The benchmark package contains several modules with multi-objective test problems.
The terms “test problem”, “test case” and “benchmark” are all used synonymously here.

B.2.1 ZDT

The test case collection ZDT by Zitzler et al. [63] contains six two-dimensional test prob-
lems. ZDT5, the only problem which implies a binary parameter space here, seems to be
less frequently used for benchmarks than the others, which are designed for a continuous
parameter space.

B.2.2 DTLZ

The test problem suite DTLZ by Deb et al. is defined differently in two papers. [14] contains
nine problems, while [15] contains only seven. Additionally, the numbering differs from the
fifth problem on. However, the first four problems already satisfy the dependency of the
CEC 2007 test case collection (see section B.2.4), and thus are the only ones implemented
here. DTLZ can generate problems with an arbitrary number of objective functions.

B.2.3 WFG

WFG by Huband et al. [28] is another recent toolkit for test problem generation. It was
designed to enable certain features that previous test problems do not exhibit, e.g. non-
separable objective functions. While it allows the user to create his own problem with
specified properties, it already contains nine example test problems which are referred to
as WFG1–WFG9. These problems are subclasses of WFGProblem.
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B.2.4 CEC 2007

The CEC 2007 test suite [26] was compiled from various selected problems for a competition
at the correspondent conference. The collection contains the following problems:

• OKA2 by Okabe et al. [42].

• SYM-PART by Rudolph et al. [46].

• S_ZDT1, S_ZDT2, S_ZDT4, R_ZDT4 and S_ZDT6 which are ZDT problems modified by
shifting or rotating the parameter vector and extending the problem domain.

• S_DTLZ2, R_DTLZ2, S_DTLZ3 which are rotated or shifted DTLZ problems.

• WFG1, WFG8 and WFG9 from the WFG toolkit (see section B.2.3).

A reference implementation of these problems in C can be obtained at the competi-
tion’s homepage [26]. However, all problems are completely reimplemented in Python for
this framework. During testing, several bugs surfaced in the original implementation. All
bugs mentioned below are fixed in the Python implementation. The problem definitions in
Appendix A also follow the suggestions made in this section.

OKA2

The original implementation contains a bug in f2(x), where fabs should be used instead
of abs. The usage of abs causes a rounding down to the next integer.

Shifted ZDT Problems

TwoDimTestProblem ShiftedProblemRotatedProblem

S_ZDT1 S_ZDT2 S_ZDT4 S_ZDT6R_ZDT4

Figure B.10: The inheritance relationships for extended ZDT problems.

The f2(x) functions of these problems contain a penalty term S(
√∑D

i=1 p
2
i ). However,

the original implementation leaves out p1 and thus only calculates S(
√∑D

i=2 p
2
i ). Note that

in R_ZDT4, which is defined identically in this aspect, all D penalty values are considered.

Rotated problems

Both rotated problems deviate from the definition in the way they calculate the z′ vector.
To date, these deviations also occur in the implementation of the CEC 2009 test suite.
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Additionally, the definition is ambiguous because the rotated problems distinguish three
cases for calculating the penalties pi. For example, R_ZDT4 uses the definition

p1 =


−z1, z1 < 0

0, 0 ≤ z1 ≤ 1

z1 − 1, z1 > 1

for a penalty and as an objective function

f1(x) =

z′1 + 1, z1 ≥ 0

S(p)(z′1 + 1), z1 < 0.

If the user sticks to the definition of f1(x), the penalty in the case z1 > 1 is disregarded.
However, because S(0) = 1 it would be sufficient to write f1(x) = S(p)(z′1+1). This applies
to all extended problems in the test suite and is also how the implementation works. For
z′, the original R_ZDT4 implementation uses

z′1 =


−λ1z1, z1 < 0

z1, 0 ≤ z1 ≤ 1

1− λ1(z1 − 1), z1 > 1

instead of

z′1 =


−λ1z1, z1 < 0

z1, 0 ≤ z1 ≤ 1

λ1z1, z1 > 1

in the definition.

DTLZ-derived problems

The original R_DTLZ2 implementation uses

z′i =


−λizi, zi < 0

zi, 0 ≤ zi ≤ 1

1− λi(zi − 1), zi > 1

instead of

z′i =


−λizi, zi < 0

zi, 0 ≤ zi ≤ 1

λizi, zi > 1

in the definition. Additionally, the used g function is not

g(xM) =
∑

xi∈xM

(z′i − 0.5)2
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as stated, but

g(xM) = 100
(
|xM|+

∑
xi∈xM

(
(z′i − 0.5)2 − cos(20π(zi − 0.5))

))
.

So, the problem is rather based on DTLZ3 than DTLZ2. The two only differ in their g
functions. For all DTLZ-derived problems, Pareto-optimal solutions do not have to satisfy∑M

m=1(fm)2 = 0.5 as stated in [26], but
∑M

m=1(fm − 1)2 = 1. The reference sets provided
with the original implementation contain correct values.
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