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Abstract
Evolution strategies are successful black-box optimization methods. But many prac-
tical numerical problems are constrained. Whenever the optimum lies in the vicinity
of the constraint boundary, the success rates decrease and make successful random
mutations almost impossible. Low success rates result in premature step size reduc-
tion and finally lead to premature convergence. We try to draw a consistent picture of
recent developments of heuristics that try to increase the success rate situation at the
constraint boundary − from simple death penalty of evolution strategies to covariance
matrix adaptation. Meta-models of the constraint functions turn out to be a promising
approach for savings in computation time both in terms of fitness and constraint func-
tion evaluations. We use meta-models to rotate the mutation ellipsoid, to check the
feasibility of candidate solutions, and to repair infeasible mutations at the constraint
boundary.

Keywords
evolution strategies, covariance matrix adaptation, constraint handling, meta-
modeling, repair algorithm

1 Introduction

Many continuous optimization problems in practical applications are subject to con-
straints [7]. Constraints can make an easy problem hard and hard problems even
harder. Surprisingly, in the past only little research efforts have been devoted to the de-
velopment of efficient and effective constraint handling techniques − in contrast to the
energy invested in the development of new methods for unconstrained optimization.
This observation also holds true in the field of natural and evolutionary computation.

This paper summarizes our research results regarding constraint handling within
evolution strategies (ES). In general, the constrained continuous nonlinear program-
ming problem is defined as follows: Find a solution x = (x1, x2, . . . , xN )T in the N -

dimensional solution space N
N that minimizes the objective function f(x); in symbols:

f(x) → min!, x ∈ N
N subject to

inequalities gi(x) ≤ 0, i = 1, . . . , n1, and
equalities hj(x) = 0, j = 1, . . . , n2 .

(1)



A feasible solution x ∈ N
N satisfies all n1 inequality and n2 equality constraints. A

feasible solution that minimizes f(·) is termed an optimal solution. If gi(x
∗) = 0 for

some inequality constraint at an optimal solution x
∗ then the constraint is said to be

active.
In the field of evolutionary computation the constraints typically are not consid-

ered available in their explicit formal form. Rather, the constraints are assumed to be
black boxes: a vector x fed to the black box just returns a numerical or boolean value. If
there is a numerical response then the information about a positive value can be used
to assess the distance to feasible solutions. A number of constraint handling methods
exploit this information. Our contributions to this line of research is summarized in
section 2. If the constraint function only provides information whether the solution is
feasible or not then other constraint handling techniques must be deployed. This sit-
uation is the starting point of our approach described in sections 3 and 4. We assume
that the evaluations of the constraint functions are computationally expensive and that
the return values are boolean. The resulting constraint handling method stems from
the idea of building a meta-model of the constraint functions such that we can make
use of more powerful constraint handling methods only applicable if constraints are
explicitly given. Apart from obtaining more effective constraint handling methods the
meta-model approach also yields savings in computation time, provided the scenario
assumed here holds true.

2 Constraint Handling Methods

A variety of constraint-handling methods for evolutionary algorithms have been de-
veloped in the last decades. Most of them can be classified into five main types of
concepts.

• Penalty functions decrease the fitness of infeasible solutions by taking the number
of infeasible constraints or the distance to feasibility into account [1, 19, 10, 12, 6].

• Repair algorithms either replace infeasible solutions or only use the repaired solu-
tions for evaluation of their infeasible pendants [2, 5].

• Decoder functions map genotypes to phenotypes which are guaranteed to be feasi-
ble. Decoders build up a relationship between the constrained solution space and
an artificial solution space easier to handle [5, 13, 21].

• Feasibility preserving representations and operators force candidate solutions to be fea-
sible [23, 25].

• Multiobjective optimization techniques are based on the idea of handling each con-
straint as an objective [4, 11, 24, 26].

The easiest and most frequently used procedure to handle constraints is discard-
ing infeasible solutions within an iteration loop until λ feasible offspring solutions ex-
ist. This procedure is known as death penalty. Death penalty is no satisfying constraint
handling method. Nevertheless, the analysis of death penalty delivers valuable in-
sights into the situation at the constraint boundary: Stochastic optimization algorithms
on constrained optimization problems suffer from premature step size reduction in case
of active inequality constraints. This results in premature convergence. Broadly speak-
ing, the reason for the premature step size reduction is the fact that the constrained
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region cuts off the mutative success area and decreases the success rate significantly.
Low success rate prevent the production of successful solutions or force self-adaptive
step sizes to decrease.

To get an impression of the situation at the constraint boundary and the behavior
of methods to tackle premature convergence, we repeat their basic principles, state their
experimental behavior on two relevant test problems and summarize their advantages
and disadvantages. The two test functions excellently demonstrate the phenomenon
of premature fitness stagnation. Problem 2.40 − taken from Schwefel’s artificial test
problems [3] − exhibits a linear objective function and an optimum with five active
linear constraints. The problem is to minimize

f2.40(~x) = −
5

∑

i=1

xi (2)

subject to

g2.40,j(~x) =







xj ≥ 0, for j = 1, . . . , 5

−
5
∑

i=1

(9 + i)xi + 50000 ≥ 0, for j = 6
(3)

with minimum ~x∗ = (5000, 0, 0, 0, 0)T and f(~x∗) = −5000. Problem TR (tangent prob-
lem) is based on the sphere model subject to one linear constraint

fTR(~x) =

N
∑

i=1

xi with gTR(~x) =
∑

xi − N > 0 (4)

with ~x∗ = (1, . . . , 1)T and f(~x∗) = N . The success rates on TR get worse when ap-
proximating the optimum.

2.1 Death Penalty

First of all, we will analyze the behavior of death penalty, i.e. simply dis-
carding infeasible offspring solutions. This is the first time we can ob-
serve premature fitness stagnation. Figure 1 shows the corresponding re-
sult of a (15,100)-ES with the following settings on problems 2.40 and TR2.

Experimental settings
Population model (15,100)

Mutation type standard, nσ = N , τ0 = (
√

2n)−1 and τ1 = (
p

2
√

n)−1

Crossover type intermediate, ρ = 2
Selection type comma

Initialization σi = |x(0)−x
∗|

N

Termination fitness stagnation, θ = 10−12

Runs 25

Particularly, we make use of self-adaptive Gaussian mutation within evolution
strategies

~x′ = ~x + (σ1N1(0, 1), . . . , σNNN (0, 1)) (5)

with step sizes σi, 1 ≤ i ≤ N . For a comprehensive introduction to evolution strategies
and their mutation operators, we refer to the introduction of Beyer and Schwefel [3].
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For an introduction to self-adaptation we refer to [15]. All experiments in this article
make use of the same experimental settings unless stated explicitly. The termination
condition is fitness stagnation: the algorithms terminate if the fitness win from gen-
eration t to generation t + 1 falls below θ = 10−12. In this case the magnitude of the
step sizes is too small to effect further improvements. Parameters best, mean, worst and
dev describe the achieved fitness1 of 25 experimental runs while ffe counts the average
number of fitness function evaluations and cfe of constraint function evaluations re-
spectively. The results show that death penalty is not able to approximate the optimum
of the problem satisfactorily. The relatively high standard deviations dev show that the
algorithms produce unsatisfactorily different results. Under simple conditions, i.e. a
linear objective function, linear constraints and a comparably simple mutation opera-
tor, the occurrence of premature convergence due to a premature decrease of step sizes
was proved [14].

Death Penalty best mean worst dev ffe cfe
TR2 4.1 · 10−7 3.1 · 10−4 1.4 · 10−3 3.8 · 10−4 11,720 20,447
2.40 51.9 227.6 390.0 65.2 50,624 96,817

Table 1: Experimental results of the death penalty method.

We can summarize the behavior of death penalty with the advantages:

• Death penalty is easy to implement.

The disadvantages are:

• Death penalty is inefficient as many infeasible tries are wasted,

• it suffers from premature convergence.

The following methods aim at preventing premature convergence.

2.2 Dynamic Penalty Function

The question arises whether dynamic penalty functions also suffer from premature con-
vergence. To answer this question we tested the penalty function by Joines and Houck
[12] that is based on adding a penalty on infeasible solutions

f̃(~x) = f(~x)(C · t)α ·
n1
∑

i=1

Gβ
i . (6)

with parameters C, α, β and the constraint violation Gi. In particular, the penalty de-
pends on the number of iterations t and decreases in the course of time. Table 2 shows
the experimental analysis of the penalty function on 2.40 and TR2 with α = 1.0 and
β = 1.0. Again, the algorithm is based on a (15,100)-ES with the same settings like
in the last paragraph 2.1. The algorithm stops earlier, but the results are even worse
and show that premature fitness stagnation occurs, too. The reason is quite obvious:
the success rate in the vicinity of the infeasible search space remains small because of
the penalty − no matter if caused by discarding or penalizing. Consequently, we can
summarize:

1difference between the optimum and the best solution |f(~x∗) − f(~xbest)|
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• Dynamic penalty functions are easy to implement, and

• no feasible starting point is required.

But the disadvantages are:

• Dynamic penalty functions suffer from premature convergence.

best mean worst dev ffe cfe
TR2 1.2 · 10−6 1.2 · 10−3 6.7 · 10−3 1.5 · 10−3 13,100 13,100
2.40 219.4 440.8 641.5 85.0 31,878 31,878

Table 2: Experimental results of the dynamic penalty function by Joines and Houck [12]
on problems TR2 and 2.40.

2.3 Death Penalty Step Control

The most obvious modification to prevent premature step size reduction is the intro-
duction of a minimum step size ǫ that forces all step sizes σi with 1 ≤ i ≤ N to maintain

σi ≥ ǫ. (7)

This is exactly what the death penalty step control evolution strategy (DSES) is aiming
at [17]. Nevertheless, a lower bound on the step sizes will also prevent an unlimited
approximation of the optimum when reaching the range of ǫ. Consequently, the DSES
makes use of a control mechanism to reduce ǫ during convergence to the optimal solu-
tion. The reduction process depends on the number of infeasible mutations produced
when reaching the area of the optimum at the boundary of the feasible solution space.
The reduction process of ǫ depends on the number z of rejected infeasible solutions:
Every ̟ infeasible trials, ǫ is reduced by a factor 0 < ϑ < 1 according to the equation

ǫ′ := ǫ · ϑ. (8)

The DSES is denoted by [̟; ϑ]-DSES. Again, we show the behavior of the constraint
handling method on problem TR2 and 2.40, see table 3. The method is able to approx-
imate the optimum of problem 2.40 with comparably few fitness function evaluations,
but a waste of constraint function evaluations. Intuitively, the five active linear con-
straints of problem 2.40 cause many infeasible samples, so does the step sizes reduction
mechanism. On harder problems like TR2 the low success rates still prevent an arbitrar-
ily exact approximation of the optimal solution. The success of the DSES depends on a
proper reduction speed, i.e. proper parameter settings for ǫ and ϑ. Too fast reduction re-
sults in premature convergence, too slow reduction is inefficient. Further experiments
on other test functions confirm this picture.

Again, we summarize the results:

• Death penalty step control is easy to implement, and

• shows and improvement of the approximation of optima with active constraints.

But the disadvantages are:
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DSES type best mean dev ffe cfe
TR2 [15; 0.5] 3.7 · 10−9 8.5 · 10−6 2.5 · 10−6 1,253,394 2,315,574
2.40 [100; 0.7] 1.9 · 10−11 2.7 · 10−10 7.9 · 10−10 89,832 1,118,490

Table 3: Experimental results of the DSES.

• Death penalty step control consumes many constraint function evaluations,

• its success depends on proper parameter settings, and

• on some problems it may still suffer from low success rates.

2.4 Biased Mutation

The shape of the standard mutation ellipsoid is Gaussian. The best modification to
improve the success rate situation would be a more flexible mutation distribution func-
tion. Later, we will see that a rotation of the mutation ellipsoid − with reservations −
is a reasonable undertaking. But is a deformation also an adequate solution to low suc-
cess rates? Biased mutation aims at biasing the mean of the Gaussian distribution into

beneficial directions self-adaptively [18]. A self-adaptive bias coefficient vector ~ξ deter-
mines the direction of this bias and augments the degree of freedom of the mutation
operator. This additional degree of freedom improves the success rate of reproducing
superior offspring. The mutation operators adapts the bias direction within the interval
−1 (for left) and 1 (for right) in each of the N dimensions:

~ξ = (ξ1, . . . , ξN ) with − 1 ≤ ξi ≤ 1. (9)

This relative direction must be translated into an absolute bias vector. For this sake the
step sizes σi can be used. For every i ∈ 1, . . . , N the bias vector ~b = (b1, . . . , bN) is
defined by:

bi = ξi · σi (10)

Since the absolute value of bias coefficient ξi is less than or equal to 1, the bias will be
bound to the step sizes σi. This restriction prevents the search from being biased too
far away from the parent. Hence, the biased mutation works as follows:

~x′ = ~x + (σ1N1(0, 1) + b1, . . . , σNNN (0, 1) + bN ) (11)

= ~x + (σ1N1(ξ1, 1), . . . , σNNN (ξN , 1)) (12)

To allow self-adaptation, the bias coefficients are mutated in the following meta-EP way:

ξ′i = ξi + γ · N (0, 1) i = 1, . . . , N. (13)

with parameter γ determining the mutation strength on the bias. The biased mutation
operator (BMO) biases the mean of mutation and enables the evolution strategy to re-
produce offspring outside the standard mutation ellipsoid. To direct the search, the
biased mutation enables the center of the ellipsoid to move within the bounds of the
regular step sizes ~σ. The bias moves the center of the Gaussian distribution within the
bounds of the step sizes and improves the success rate situation as the success area in-
creases. An adaptive variant of the originally self-adaptive biased mutation is the descent
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mutation operator. It estimates the descent direction of two population’s centers ~χt and
~χt+1 of successive generations. Let ~χt be the center of the population at generation t

~χt =

µ
∑

i=1

~xi (14)

The normalized descent direction ~ξ of two successive population centers ~χt and ~χt+1 is

~ξ =
~χt+1 − ~χt

|~χt+1 − ~χt|
(15)

Similar to the BMO, the descent mutation operator (DMO) now becomes

~x′ = ~x + (σ1N1(ξ1, 1), . . . , σNNN (ξN , 1)) (16)

The DMO is reasonable as long as the assumption of locality is true: the estimated di-
rection of the global optimum can be derived from local information, i.e. the descent
direction of two successive populations’ centers. Again, we analyze both biased muta-
tion operators on the test problems 2.40 and TR2 and show the results in table 4. For
the sake of adaptation of the bias an increase of offspring individuals to λ = 300 is
necessary. The bias mutation parameter is set to the standard setting γ = 0.1. Our
experiments show that the BMO and the DMO are both able to improve the results on
problem 2.40. The experiments reveal that the mutation distribution deformation im-
proves the success rate − intuitively by shifting the center of the mutation ellipsoid so
that the latter is not cut off by the infeasible solution space. But the results show that
the harder problem TR2 is still not easy to approximate. We can conclude:

BMO best mean dev ffe cfe
TR2 1.6 · 10−6 9.0 · 10−4 2.9 · 10−4 26,832 25,479
2.40 8.2 · 10−12 2.2 · 10−7 2.4 · 10−8 459,774 508,387

DMO best mean dev ffe cfe
TR2 8.8 · 10−9 4.6 · 10−4 1.4 · 10−4 31,506 29,196
2.40 1.6 · 10−11 1.2 · 10−9 2.8 · 10−10 358,954 359,545

Table 4: Experimental results of the biased mutation variants on TR2 and 2.40.

• Biased mutation improves the approximation of optima with active constraints.

• Descent biased mutation is comparatively efficient, in particular more efficient than
the BMO.

But the disadvantages are:

• Biased muation consumes many fitness and constraint function evaluations, and

• on some problems it may still suffer from low success rates.
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2.5 Two Sexes Evolution Strategy

Allowing infeasible solutions to cross the constraint boundary would improve the suc-
cess rate. But how can we allow the constraint border crossing without penalizing
infeasible mutations? A bio-inspired concept offers an answer to this question: The
two sexes evolution strategy by Kramer and Schwefel [17] allows candidate solutions
to cross the constraint boundary. The mechanism to enforce the approach of the opti-
mum stems from nature. Individuals of different sex are selected by different criteria
and nature allows pairing only between individuals of different sex. Transferring this
principle to constraint handling means: Every individual of the two sexes evolution
strategy (TSES) is assigned to a feature called sex. Similar to nature, individuals with
different sexes are selected according to different criteria. Individuals with sex o are se-
lected by the objective function. Individuals with sex c are selected by the fulfillment of
constraints. The intermediary recombination operator plays a key role. Recombination
is only allowed between parents of different sex. A few modifications are necessary to
prevent an explosion of the step size, i.e. a two-step selection operator for individuals
of sex c similar to the operator by Hoffmeister and Sprave [9]. For a list of TSES variants
and modifications we refer to Kramer and Schwefel [17]. The populations are noted as
(µo + µc, λo + λc) − the index determines the sex, i.e. o for objective function and c for
constraints.

TSES type κ best mean dev ffe / cfe
TR2 (8+8,10+90) 200 5.4 · 10−8 2.9 · 10−7 4.7 · 10−8 521,523
2.40 (8+8,13+87) 50 0.0 0.0 3.7 · 10−11 498,594

Table 5: Experimental results of the two sexes evolution strategy on TR2 and 2.40.

Table 5 shows the experimental results of the TSES on problems TR2 and 2.40. While
death penalty completely fails on problem 2.40 the (8+8,13+87)-TSES reaches the opti-
mum in every run. Now, a better approximation of the harder problem TR2 is possible.
Nevertheless, the approximation quality may still be improved and an analysis on fur-
ther test problems − that can be found in [16] − shows that the TSES is successful on
many constrained problems, but not on all. Fortunately, the TSES is quite robust to the
chosen population ratios. We can summarize that:

• The two sexes evolution strategy improves the approximation of optima with active
constraints,

• allows infeasible starting points,

• saves constraint function evaluations, e.g. in comparison to the DSES, and

• is quite robust to parameter changes.

But the disadvantages are:

• The two sexes evolution strategy still consumes many fitness function evaluations,

• on some problems it may still suffer from low success rates.

No satisfying conclusion can be drawn. No constraint handling method is able to han-
dle a harder problem like TR2 satisfactorily. Furthermore, the methods are still compa-
rably inefficient.
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3 Constraint Boundary Meta-Modeling

To construct more powerful constraint handling methods the idea arises to build a
meta-model of the constraint function. This meta-model can be used in various kinds
of ways. In the following we will use it for

1. Rotation of the mutation ellipsoid,

2. the check for feasibility of mutations, and

3. reparation of infeasible mutations.

The meta-model will be used for correlated mutations and for the covariance matrix
adaptation evolution strategy.

3.1 A Linear Constraint Estimator

In a first step we concentrate on linear constraints. Among various linear classifica-
tion algorithms like support vector machines or neural networks we developed a new
efficient constraint boundary estimator based on fast binary search. We assume that
our constraint handling method starts with the first occurrence of an infeasible indi-
vidual. Our algorithms for the estimation of the linear constraint hyper-plane h works
as follows. In the first step the meta-model estimator has to identify N − 1 points on
the N -dimensional linear constraint hyper-plane h. Our model-estimator makes use
of an N -dimensional hypersphere that cuts the constraint boundary. The connection
between the infeasible points on the hyper-sphere and its origin cuts the constraint
boundary. The approach uses binary search to find the cutting points and works as
follows:

1. Determination of the center point of the model-estimator: When the first infeasible
offspring individual xi is produced, the original feasible parent xf is the center of
the corresponding meta-model estimator.

2. Generation of random points on the surface of a hypersphere: Point xf is the center
of a hypersphere with radius r, such that the constraint boundary is cut. In N

dimensions N −1 infeasible points x
(i)
f 1 ≤ i ≤ N −1 have to be produced. Table

6 shows how many constraint function evaluations cfe are necessary in average
until N − 1 infeasible points are produced. The points on the surface are produced
randomly with uniform distribution using the method of Marsaglia [20]. In the
first step the algorithm produces N Gaussian distributed random numbers and
scales the numbers to length 1. Further scaling and shifting yields N randomly
distributed point on the hyper-sphere surface

xi ∼ N (0, 1) i = 1, . . . , N (17)

x∗ =
1

√

x2
1 + x2

2 + . . . + x2
N

· (x1, x2, . . . , xN )T (18)

3. Identification of N−1 points on the constraint boundary: The line between the fea-
sible point ~xf and the infeasible point ~xi cuts the constraint hyper-plane h in point
hp. We approximate hp with binary search on this segment. The center h′

p of the
last interval is an estimated point on h. Table 6 shows the number of binary search
steps for the angle accuracy φ < 1◦ and the accuracy φ < 0.25◦ of the estimated
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hyperplane h. Each experiment was repeated 100, 000 times, i.e. in each repetition
a new test case with a random hyper-plane and two random points ~xf , ~xi ∈ N

was generated. The error of the angle φ can be estimated by the number of binary
search steps s as follows. Let φk be the average angle error after k binary steps
and η be the accuracy improvement factor we are able to achieve with one binary
search step. The following relation holds:

φi · η
j−i = φj (19)

From our experiments (see table 6) we derive an efficiency factor, i.e. an improve-
ment of angle accuracy, of 0.53 ≤ η ≤ 0.57. Interestingly, the number of binary
search steps grows slower than the number of dimensions of the solution space.

dimension steps (φ < 1◦) mean error steps (φ < 1◦) mean error cfe
2 9 0.85 11 0.24 3.14
5 12 0.97 15 0.16 10.50
10 14 0.68 16 0.21 21.56
20 15 0.76 17 0.25 42.96

Table 6: Number of necessary binary search steps to limit the average angle accuracy.

4. In the last step we calculate the normal vector of h using the N − 1 points on

the constraint boundary. We assume the points h
(i)
p , 1 ≤ i ≤ N − 1, represent

linearly independent vectors as they have been generated by a random procedure.
A successive Gram-Schmidt orthogonalization of the (i + 1)-th vector on the i-th
previously produced vectors delivers the normal vector of h.

Note that we estimate the constraint model h only one time, i.e. when the first infeasible
solutions have been detected. Later update steps only concern the local support point
(hs)t of the hyper-plane ht. We will describe the support point update step later.

3.2 Mutation Ellipsoid Rotation

Correlated mutation by Schwefel [27] rotates the axes of the hyper-ellipsoid to adapt
to local properties of the fitness landscape. Experiments show that self-adaptation of
the angles is to weak to automatically solve this task in many constrained problems
[17]. To solve this problem we make use of the meta-model estimator for the constraint
boundary. This meta-model is used for the rotation of the mutation ellipsoid. Corre-

SA-ES MA-ES MM-ES (10) MM-ES (30)
best 1.6 · 10−8 0 2.9 · 10−11 0.0
mean 2.4 · 10−4 0 1.6 · 10−6 0.0
worst 1.6 · 10−3 0 5.6 · 10−5 0.0
dev 3.5 · 10−4 3.1 · 10−16 5.9 · 10−6 0.0
ffe 22,445 927,372 18,736 11,998
cfe 39,921 1,394,023 32,960 20,183

Table 7: A comparison of correlated mutation, meta-evolution and the meta-model-
based ellipsoid rotation on TR2.
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lated mutations make use of nα = N(N−1)
2 additional strategy parameters, i.e. angles

for the rotation of the hyper-ellipsoid. We use our model-estimator to rotate the hyper-
ellipsoid by the proper angles. The nα rotation angles can be computed knowing the
normal vector ~nh of h and the axes of the mutation ellipsoid. In particular, this is an
easy undertaking in two dimensions.

Table 7 shows the experimental results of self-adaptive correlated mutation (SA-
ES), a meta-evolutionary approach ((3,15(3,15))-MA-ES) [17], and correlated mutation
using our new meta-model estimator (MM-ES) with 10 and 30 binary search steps. The
self-adaptation process of the SA-ES fails to adapt the angles automatically. Obviously,
the parameter space of N step sizes and nα angles is too large to adapt by means of
self-adaptation. The MA-ES is a nested ES, i.e. an outer ES evolves the angles of an
inner ES that optimizes the problem itself. Of course, this approach is rather inefficient
− as one fitness evaluation of the outer ES causes a whole run of the inner ES − but
the results demonstrate that the rotation of the hyper-ellipsoid has a strong impact on
the approximation capabilities on problem TR2. The MM-ES approach is capable of
estimating the proper rotation angle and controlling the mutation ellipsoid to approxi-
mate the optimum. A comparison between the MM-ES approach with 10 and with 30
dimensions shows that it is advantageous to investigate more binary search steps for
a better meta-model estimation. A higher accuracy of the meta-model delivers better
approximation results.

4 Covariance Matrix Adaptation and the Constraint Meta-Model

Past research on constraint handling missed to concentrate on covariance matrix adap-
tation techniques. It is an astonishing fact that no sophisticated constraint handling
techniques for these algorithms have been introduced so far. The idea of covariance
matrix adaptation techniques is to adapt the distribution of the mutation operator such
that the probability to reproduce steps that led to the actual population increases. This
idea is similar to the estimation of distributions approaches. The covariance matrix
adaptation evolution strategy (CMA-ES) was introduced by Ostermeier et al. [22, 8].
All previous CMA-ES implementations make use of death penalty as constraint han-
dling technique. The results of the CMA-ES on problems TR and 2.40 can be found
in table 8. Amazingly, the CMA-ES is able to cope with the low success rates around
the optimum of the TR-problems. On problem TR2 the average number of infeasible
solution during the approximation is 44%. This indicates that a reasonable adaptation
of the mutation ellipsoid takes place − otherwise we would expect a rate of ≈ 50%
infeasible solutions and a decrease of steps sizes. An analysis of the angle between the
main axis of the mutation ellipsoid and the constraint function converges to zero, the
same do the step sizes during approximation of the optimum. On problem 2.40 about
64% of the produced solutions are infeasible.

CMA-ES (DP) best mean dev ffe cfe
TR2 0.0 0.0 5.8 · 10−16 6,754 12,019
2.40 0.0 0.0 1.3 · 10−13 19,019 71,241

Table 8: Experimental analysis of the CMA-ES with death penalty.
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4.1 Checking Feasibility

Although the CMA-ES is able to find the optimum of both problems, we try to im-
prove the search with the constraint meta-model. In our first approach we use the
model to check the feasibility of mutations during the mutation procedure in order to
reduce constraint function evaluations. Nevertheless, potentially feasible solutions are
checked for feasibility with a real constraint function evaluation. For this purpose an
exact estimation of the constraint boundary in necessary. Two errors for the feasibility
prediction of individual ~xt are possible:

1. The model predicts ~xt is feasible, but it is not. Points of this category are examined
for feasibility. This will cause an unnecessary constraint function evaluation.

2. The model predicts ~xt is infeasible, but it is feasible. The individual will be dis-
carded, but may be a very good approximation of the optimum.

We introduce a safety margin s, i.e. a shift of the estimated constraint boundary into the
infeasible direction. This safety margin ensures that errors of type 2 are reduced. We
set s to the distance d of the mutation ellipsoid center cm and the estimated constraint
boundary h. Hence, the distance between cm and the h becomes 2d. As mentioned in
section 3, a regular update of the constraint boundary support point hs is necessary.
Again, we have to distinguish between two conditions in each iteration. Let dt0 be the
distance between the mutation ellipsoid center (cm)t0 and the constraint boundary ht0

at time t0 and let k be the number of binary search steps to achieve the angle accuracy
of δ < 0.25◦.

1. The search (cm)t approaches ht: If distance dt between ht and (cm)t0 becomes
smaller than dt0/2k, a re-estimation of the support point hs is reasonable.

2. The search (cm)t moves parallel to ht: An exceeding of distance

(cm)t0 − (cm)t =

√

1

tan(φ)2
+ 4 · dt0 (20)

with φ = 0.25 · (0.57)3k causes a re-estimation of ht.

We use 4k binary steps on the line between the current infeasible solutions and (cm)t

to find the new support point (hs)t. Table 9 shows the results of the CMA-ES with
feasibility check using the constraint meta-model. We can observe a significant saving
of fitness and constraint evaluations with a high approximation capability.

CMA-ES (Check) best mean dev ffe cfe
TR2 0.0 0.0 6.9 · 10−16 6,780 7,781
2.40 0.0 0.0 1.8 · 10−13 19,386 34,254

Table 9: Results of the CMA-ES with meta-model feasibility checking.
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4.2 Repairing Infeasible Solutions

The repair approach projects infeasible mutations onto the constraint boundary ht. We
assume the angle error φ that can again be estimated by the number of binary search
steps s, see equation 19. In our approach we elongate the projection vector by length s.
Figure 1 illustrates the situation. Let (hs)t be the support point of the hyper-plane and
let xi be the infeasible solution. It holds a2 + b2 = c2 and l/b = tanφ. We get

s =
√

a2 − c2 · tanφ. (21)

The elongation of the projection into the potentially feasible region guarantees

infeasible search space 

feasible search space 

1

h xi

s

xr

cb

φ

a

hs

Figure 1: The elongation of the projection of infeasible solution xi onto the constraint
boundary h by length s results in a repaired feasible point xr.

feasibility of the repaired individuals. Nevertheless, it might prevent fast convergence,
in particular in regions far away from the hyper-plane support point hs as s grows
with increasing length of c. In our approach we update the center of the hyper-plane
for an update of accuracy every t = 10 generations. The results of the CMA-ES repair
algorithm can be found in table 10. We observe a significant decrease of fitness function
evaluations, in particular on problem TR2. The search concentrates on the boundary
of the infeasible search space, in particular on the feasible site. Of course, no saving of
constraint function evaluations could have been expected.

CMA-ES (Repair) best mean dev ffe cfe
TR2 0.0 0.0 5.5 · 10−16 3,432 5,326
2.40 0.0 0.0 9.1 · 10−14 16,067 75,705

Table 10: Results of the CMA-ES with repair mechanism.
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5 Summary and Outlook

Continuous constraint handling frequently suffers from low success rates at the con-
straint boundary and makes optimization in the vicinity of the infeasible solution space
notedly difficult. Among the various constraint handling methods, the use of meta-
models turns out to be the most promising approach. The better the constraints are
known, the more information can be investigated into the search process. We plan to
extend the constraint meta-modeling approach in many kinds of ways. At first, all the
proposed approaches will be tested on further practical and artificial constrained test
problems. Latest experiments show that a combination of the proposed approaches, i.e.
repairing and feasibility checking at the same time is a promising undertaking. In prac-
tice, constraints are frequently far away from being linear. Hence, we plan to extend
the meta-modeling to nonlinear constraints.
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5th Conference on Evolutionary Programming - EP 1996, pages 289–294, Cambridge, February
1996. MIT Press.

[10] A. Homaifar, S. H. Y. Lai, and X. Qi. Constrained Optimization via Genetic Algorithms.
Simulation, 62(4):242–254, 1994.

[11] F. Jimenez and J. L. Verdegay. Evolutionary techniques for constrained optimization prob-
lems. In H.-J. Zimmermann, editor, 7th European Congress on Intelligent Techniques and Soft
Computing (EUFIT 1999), Aachen, 1999. Verlag Mainz.

[12] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with GAs. In D. B. Fogel, editor, Proceedings of the 1st
IEEE Conference on Evolutionary Computation, pages 579–584, Orlando, Florida, 1994. IEEE
Press.

[13] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization. Evolutionary Computation, 7(1):19–44, 1999.

14



[14] O. Kramer. Premature convergence in constrained continuous search spaces. In Proceedings
of the 10th international conference on Parallel Problem Solving from Nature, pages 62–71, Berlin,
Heidelberg, 2008. Springer-Verlag.

[15] O. Kramer. Self-Adaptive Heuristics for Evolutionary Computation. Springer, Berlin, 2008.
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