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1. INTRODUCTION AND PURPOSE 

The capacities of hard drives and mobile devices are growing permanently and accordingly 
the sizes of music collections owned by people. It becomes tougher to keep the overview 
and to browse large music collections intuitively. In the area of music categorization many 
automatic methods and approaches based on user reviews were established in the recent 
years. The drawback of community-driven approach is that classification is done 
subjectively by various people and cannot consider individual preferences. If the user would 
like to create and manage personal music categories (e.g. “nice music” or “summer 
holidays”), automatic feature extraction provides classification independent from media 
reviews. 

AMUSE is a framework for automatic music classification which takes into account the 
music categories created by user. Extensibility of the framework plays a very important 
role. The drawback of many existing applications is that they are almost always perfect only 
for certain tasks. Several tools focus on feature extraction, whereas others deal with many 
different classification methods. Some tools are designed with the focus on high 
computational performance aspects, others are just easy to use. AMUSE provides the 
possibility to use several tools for music classification tasks and provides the advantage of 
distributed computing in a grid. 

The following chapter describes the AMUSE architecture. 

2. AMUSE ARCHITECTURE 

In this chapter, the AMUSE architecture is described. The shapes of diagram nodes on the 
following figures correspond to their meaning: 

• Rectangle: Component, application thread 

• Rectangle with unsharpened edges: Processing step 

• Rectangle with shortened edge: Data file 

• Cylinder: Several files, database 

2.1 Component Diagram 

The global structure of the AMUSE is depicted in Figure            Figure 2-1. The general 
task is to classify the given music files (input data) by algorithms and save the results 
(output data). The components and data flow are described more precisely in Figure Figure 
2-2. 

 

           Figure 2-1: AMUSE components: Global view 
 



 

   
    
    
    
 
 

Management of the classification is done by the user application (client side) and the 
scheduler (server side). The user application is an entry point. Here some music files can 
be selected (not necessarily located on the same machine, so we can speak about a 
distributed music database (DB)) and added to the file list managed on the server by the 
scheduler application. Music categories can be defined by user and their descriptions are 
added to the category list located on the server. Finally, a command to classify a given list 
of files or to show the results of previous classifications can be provided to the scheduler. 
The task of the scheduler is to coordinate the algorithms as well as to manage the file and 
category lists. 

The algorithms needed for automatic music classification can be divided into three types: 
Feature extraction, feature pruning and classification. The way how each tool should be 
started (e.g. path to the tool folder) is described in the configuration database. Every 
algorithm task can be sent to a separate machine and the results are saved in different 
databases: Music features DB (one file for each feature of each music file), feature weights 
DB (they define the importance of different features for classification) and classification 
results DB (fuzzy mapping of music files to categories). 

 

Figure 2-2: AMUSE components and data flow 
 
2.2 File and Database Structure 

2.2.1 File Formats 

Beside the well-known XML format for configuration files, the ARFF format is used for the 
AMUSE databases. ARFF (Attribute-Relation File Format [WITTEN AND FRANK 2005]) is a 
text file format, which was developed at Waikato University, New Zealand. It is in the 
meantime implemented in numerous data mining tools and is easy to read and edit.  

ARFF files generally contain a header and a data part. The header contains a comment 
describing the file, relation and attribute names. An example of an ARFF feature file with 
five MFCC coefficients is depicted in Figure                 Figure 2-3. Here attributes 
correspond to different features. The data part consists of strings with feature values 
delimited by commas; each string corresponds to one time window.  

 



 

   
    
    
    
 
 

 

                Figure 2-3: ARFF file with feature values 
 
2.2.2 Configuration Database 

The information about the music data and its classification must be saved and 
administrated in the configuration database. The first task is to save and edit the 
information from the user application. This information consists of the editable list of music 
files for classification, where the unique file ID is mapped to the path and the name of 
music file. Another user-provided information is the list of music categories, which are also 
described by unique IDs. For learning of classifiers, some music files should be mapped to 
their categories. Additionally the classification management (we can describe it as the 
advanced user configuration) should be recorded in the database. It consists of the 
complete lists of features, feature extractors, pruners and classifiers.  

Figure Figure 2-4 depicts the tables in the configuration database. The fileList table maps 
the unique music file ID to the path and the name of music file. The categoryList maps the 
unique music category ID to its description given by user. The fileToCategory table links 
music files described by their IDs to music categories with a given membership function. 
The featureList maps the unique feature ID to the description of the feature and the tool to 
extract this feature. The extractor tools are listed in extractorList, where the name of the 
XML file is given, which configures the extractor tool, as well as some additional 
configuration data. 

 



 

   
    
    
    
 
 

 

Figure 2-4: Configuration database 
 

The tables are saved in ARFF files which can be manually edited. Examples of ARFF 
configuration tables are given in Figure Figure 2-5. 

 

Figure 2-5: Feature table and file table 
 

The second task of the configuration database considers management of components for 
feature extraction, pruning and classification. Here no interaction with the user application 
is needed, but the scheduler has to know exactly how each tool can be started and what 
scripts should be generated for the tools. An example of a feature extractor configuration is 
given in Figure Figure 2-6. Here the unique ID, the name of the extractor, its folder, the 
folder of the script and the command to start are saved in the XML file. 



 

   
    
    
    
 
 

 

Figure 2-6 Example of XML configuration table 
 
 
2.2.3 Music Database 

The music database is nothing else but a collection of music files in standard formats such 
as MP3 or wave. Since each file is saved with the path to it, files from several machines or 
available from the internet via http links can be classified. 

2.2.4 Feature Database 

Each feature database file contains the values of one feature for exactly one music file. A 
complex feature corresponds to several features which can be described together as one 
feature group, e.g. MFCC coefficients. Some features can be calculated only for the whole 
music file, other features are calculated for sample windows. An example of ARFF feature 
file with five MFCC coefficients was given above in Figure                 Figure 2-3. 

2.2.5 Feature Weights Database 

Feature weights describe the relevance of the individual feature types for a classification 
task: Features with low relevance can be suppressed in the pruning stage. The feature 
weights are saved in ARFF files which contain feature IDs and the corresponding weights 
as attributes. Additionally, the pruner ID is saved. 

2.2.6 Results Database 

The results database maps music files to categories like the table fileToCategory from the 
configuration database does. The first difference between results DB and the 
fileToCategory ARFF table is that results DB contains the output of the classifiers and not 
the training information from the user. The second difference is that the results of several 
classifiers can be saved. Therefore the classifier ID must be saved in the result table as 
well as the music file ID, the category ID and the membership rate (for a fuzzy 
classification). 

 



 

   
    
    
    
 
 
2.3 Client-Server Communication 

The user application controls the classification. The user can initiate several actions: 

• Add/remove files: Adds/removes files from the music file list of the music DB. 

• Add/edit/remove categories: Adds/edits/removes user defined categories (e.g. 
“jazz”, “nice music”, “summer holidays”...). 

• Add/remove relations between music files and categories: Adds/removes 
information about the membership function of music files in music categories. 

• Start classification process: Starts pruning and classification. These classification 
steps should be started after the definition of an adequate number of categories. In 
contrast, feature extraction is launched by the scheduler immediately after the 
update of the music file list. 

• Retrieve classification results: Get the classification results from the results 
database and show and/or print them. 

• Delete classification results: Delete all results in the results database. 

 

2.4 Feature Extraction and Classification 

2.4.1 Feature Extraction Node 

The feature extraction node is depicted in Figure Figure 2-7. From a given music file, 
multiple features should be extracted and saved to the feature database. Since many 
feature extraction tools already exist and different tools compute different and partially 
disjunct feature sets, several tools can be started simultaneously or one after another. The 
purpose of each tool (termed “feature extractor” in the diagram) is to load the data from the 
music file, perform some preprocessing (e.g. reduce the sample frequency, convert stereo 
to mono..) and then extract the features from the sample data. The scheduler forwards to 
each extractor node the path to the music file for feature extraction and the extractor 
scripts. These scripts are generated once by scheduler for the whole feature extraction. 
They configure the features which should be calculated by a certain extractor tool. The 
extractor node scheduler sets the correct music file name for the scripts and the extractor 
tools read the appropriate music files. The decoder is started only once, so that extractors 
do not need to convert e.g. MP3 format to wave files any more. 

The length of music signal windows required for the feature extraction differ significantly 
from feature to feature. For example, harmony analysis is based on tones and their 
relationship to each other. For determination of pitch the number of samples to analyze 
should not correspond to the music recording longer as the shortest available note. That's 
why windowing is applied, e.g. successive windows with 10 – 20 ms duration are taken 
from the music file and the features are calculated for every window. Often the windows 
overlap, e.g. by 50 percent. Other features such as mean energy or loudness can be 
calculated over the whole piece without any windowing. 

Since different features may be calculated within different domains (for example, RMS in 
the time domain and the spectral centroid in the frequency domain), transforms may be 
applied before extraction. It is recommended to save computing time through the usage of 



 

   
    
    
    
 
 

transform results for several features. For example, spectral centroid and spectral 
bandwidth can be calculated together based on a preceeding Fourier transform. 

 

Every feature for each file should be saved in a separate file. In the strict sense several 
feature values can be combined to vectors and saved together if they have the same 
meaning, for example a set of MFCC features. The extracted features are saved in the 
ARFF format described in Chapter 2.2.1 and are fed into the consolidator. Since different 
tools may output the ARFF data in slightly different formats, the consolidator converts it to 
the unique AMUSE ARFF format and saves it in the feature database. 

 

Figure 2-7: Data flow during feature extraction 
 

As mentioned above, the extraction of different features is distributed between several 
extractors. Currently the extraction is done by Matlab and also two free Java tools – jAudio 
[MCENNIS ET AL 2005] and Yale [MIERSWA ET AL 2006], see also [VATOLKIN AND THEIMER 
2006]. An example of the basic extraction script for Yale is given in Figure Figure 2-8. The 
scheduler creates scripts for different tools due to the ARFF configuration table which maps 
features to extractors. In the shown Yale example script, transform and feature calculation 
operators can be enabled or removed using “AMUSE EnableTransform” and “AMUSE 
EnableFeature” operators, so that the original complete scripts for each tool can be easy 
modified to extract or not extract the given features. 
 



 

   
    
    
    
 
 

 

Figure 2-8: Yale script 
 

2.4.2 Learning from Data 

After the process of feature extraction is finished, the classification process can be started. 
Obviously one can extract a very large amount of features and it can be very difficult if not 
impossible to predict the importance of each feature for the upcoming classification tasks. 
The “brute force”' method just to include all possible features into the calculation implies 
huge classification time. But leaving out features without justification is also problematic. 
Both situations – using too many or too few features – can lead to suboptimal classification 
results. So the task of pruning is to pick out the optimal subset from the feature set for the 
given classification task and use it for the classification algorithms.  

The classification algorithms must be trained on the basis of user information, which maps 
given music pieces to their categories. After the training the classification algorithms are 
ready to classify and can be validated on the test set which may be the part of training set, 
for example using the cross-validation explained in Chapter 2.4.4. 



 

   
    
    
    
 
 

The steps after feature extraction are depicted in Figure Figure 2-9 and are described in 
detail in the following subsections. 

 

 

Figure 2-9: Data flow during classification steps 
 

2.4.3 Feature Pruning 

The task of feature pruning is to reduce the number of features used by classification 
algorithms without decreasing the correct classification rate. The best solution ever is the 
minimal set of features which allows the best classification, so that any other added feature 
does not influence the classification results (significantly) any more. For a given set of 
music files belonging to a certain category, a feature pruning node processes all previously 
extracted features and tries to determine the most important ones. The output is the weight 
vector which declares the importance of each feature. Basically it can be distinguished 
between “important”' and “not important” (weights equal to one resp. zero), or each feature 
is assigned a real value between 0 and 1 representing its importance. The ways how 
pruning tools work can be very different and three possible strategies are described here. 

Principal Component Analysis 
The first example of feature pruning system shown in Figure              Figure 2-10 does not 
require any information about music categories and applies PCA (Principal Component 
Analysis [SMITH 2002]). The features are arranged as a multidimensional vector, with the 
reduction of dimension number as a goal. Eigenvectors correspond to the new coordinate 
axes, and the importance of these new axes (more important axis responds to the greater 
variance of data along the axis) is measured with eigenvalues, so that the new axes can be 
sorted by their importance. The axes with the smallest data variance along them can be 
discarted and the number of dimensions is reduced. 



 

   
    
    
    
 
 

 

             Figure 2-10: Pruning with PCA (data flow) 
 

Evolutionary Algorithms 
Another possibility to search for important features are EAs (Evolutionary Algorithms 
[HOLLAND 1975]). This pruning strategy interacts with a given classification algorithm and 
can not be clearly separated from it as PCA pruner. Initially, a solution (or a set of initial 
solutions) with certain feature weights (e.g. randomly set) is generated. Now the classifier is 
run and the results are evaluated. The classification success rate is used as the fitness 
function for the EA solutions (individuals of the population) representing the weight vector. 
The important design step is the choice of crossover and mutation operators for 
construction of new individuals. It is thinkable to let mutation set the certain group of 
features on/off with a given probability, for example switching between “use/do not use all 
tempo features”. 

The process of generation of new solutions and their evaluation is repeated until the exit 
condition is fulfilled. The exit condition may be the number of generations (i.e. repetition 
steps) or the achievement of a certain success rate. 

 

Figure 2-11: Pruning with EA (data flow) 
 

Pareto Density Estimations 
The last example introduced here is taken from MusicMiner [MÖRCHEN ET AL 2005]. Here 
PDEs (Pareto Density Estimations) are used to measure the likelihood of music pieces to 
the certain categories. Several quality measures are discussed, which are used to imply the 
feature weights. A specialist score considers the separation distance between a certain 
category and the other categories in the feature domain. An allrounder score measures the 
overall performance of the feature in separating all categories from each other. 
 



 

   
    
    
    
 
 

 

                   Figure 2-12: Pruning with PDEs (data flow) 
 
 
2.4.4 Classification 

After the pruning step, classification algorithms deal with the reduced feature set. XML files 
from the configuration database describe exactly the cooperation between pruners and 
classifiers, so that each classifier can be configured to use the results from a given pruner. 

The goal of a training is to set up the classification algorithms for the certain tasks and 
classify correctly the given music pieces. The learning is based on the given music data 
described as belonging to one certain class. Several classifiers can be trained 
simultaneously. It is possible to run different strategies or to use the same classifier for 
different feature sets [FLEXER ET AL 2006]. The evaluator measures the success rate of the 
classifiers. A common evaluation technique is m-fold cross validation, where the data set is 
divided in m partitions. m -1 are used for training and the last one for validation. The whole 
process is repeated m times, so that every partition is used for validation once. After the 
training process, the joint classifier combines the results from the different classifiers. 
But it is also possible to separate test and training sets to avoid overfitting. 
 
Now classification can be started. The reduced set of features serves as input for 
classification strategies, and the results are summed up to fuzzy similarity vector which 
contains the information about the membership rate of each music file in the defined 
categories. 

2.5 Logging 

Logging plays a very important role. Apart from debug and error logs it is always 
reasonable to save the information about the (recent) steps applied by different framework 
components. 

Since AMUSE uses several tools, it should be distinguished between tool logs and the own 
AMUSE loggin messages. As depicted in Figure                             Figure 2-13 for the 
feature extraction node, the node logger collects the logs from each extractor and 
consolidates them with the node logs. The combined log file is available for the scheduler. 
For the pruner and classifier nodes, the logging works similarly. If the tools do not support 
logging, only AMUSE logs are created. 

 



 

   
    
    
    
 
 

 

                            Figure 2-13: Logging steps (data flow) 
 

Log4J [GÜLCÜ 2004] is a standard logging library for Java frameworks and is also used in 
the AMUSE. It enables to distinguish between several logging categories: 

• Debug: Important only during the debugging and testing 

• Info: Standard information output e.g. about initialization of components 

• Warn: Warning indicates the occurrence of some error, which does not have any 
influence on the results of AMUSE work 

• Error: Indicates the occurrence of some error, which has influence on the results of 
AMUSE work 

• Fatal: Fatal error indicates the occurrence of critical error which causes AMUSE to 
exit 
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