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Abstract. Two solutions that occupy (almost) the same space in the
objective space may have pre-images in the decision space that are essen-
tially different. For a decision maker it can be interesting to know both
pre-images in such cases. However, most Pareto optimization algorithms
focus on diversity in the objective space only and thus will likely obtain
only one solution. In this paper we propose a method aiming for ap-
proximation sets that possess a high diversity in objective space as well
as decision space. The method integrates aggregation of the two spaces
into an existing CMA-niching framework to yield a multi-objective algo-
rithm. Based on a study on synthetic multimodal problems we discuss
the aggregation and niching concept and assess the performance of the
new approach. We conclude that considering the aggregated space by
itself is not sufficient for attaining high diversity in the decision space,
but it is rather a bridge for niching to multi-objective optimization.

1 Introduction

In multi-objective optimization we are interested in solving problems with many,
possibly conflicting objectives. A common approach to solve these problems is
to generate a diverse set of non-dominated solutions in the objective space and
let the decision maker choose one of the solutions from it. Various algorithms
have been proposed for this task, including many evolutionary algorithms [1].

It has been pointed out recently that not only high diversity of solutions in
the objective space but also high diversity of solutions in the efficient set can
be of interest for a decision maker [2, 3]. For instance, if decision makers select
a favorite point on the Pareto front, it might be interesting for them to find
different possibilities to realize this solution. Hence, if there are two different
pre-images of the selected point on the Pareto front in the efficient set (cf. Fig.
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Decision Space Objective Space

Fig. 1: Diversity for decision making: Illustrative example for a scenario where two
adjacent points on the Pareto front are mapped onto two points in two completely
different regions in the decision space. Units and scalability are arbitrary.

1), both of them are of potential interest for the decision maker.
The proposed approach can be modeled as a ranking criterion as follows: Let A
denote an approximation set on which we would like to establish a ranking, xA

and xB two solutions in A. Normally, a solution xA is preferred to a solution
xB if xA has a better dominance rank than xB in A, e.g. with respect to non-
dominated sorting. Given that xA and xB share the same dominance rank in A,
xA is preferred to xB, if and only if (iff) it contributes more to the diversity of
the approximation set in the objective space. In the proposed selection principle,
xA remains preferable to xB, if xA has a better dominance rank than xB in A.
However, given that xA and xB share the same dominance rank in A, then xA

is preferred to xB, iff it contributes more to the diversity in the aggregated

space, i.e. the combined objective and decision space. This principle can be
instantiated in different ways, depending on the diversity measure defined on
the aggregated space.

Based on related studies in multi-modal optimization, the modification of
the selection criteria alone is not sufficient to boost diversity in the decision
space. This is due to the fact that Evolutionary Algorithms (EAs) tend to lose
their population diversity for several reasons [4]. This problem is addressed by
Niching methods, an extension of EAs to multimodal optimization [5, 6] These
methods allow for parallel convergence into multiple good solutions. Niching has
been traditionally investigated within Genetic Algorithms (GA) [5]. Recently,
it became popular in Evolution Strategies (ES), especially as combined with
the Covariance Matrix Adaptation (CMA) ES as the state-of-the-art ES [7, 6].
Moreover, Igel et al. proposed a multi-criterion (MC) version of the CMA ES
[8]. In this work, we suggest to employ the aggregation of spaces and niching
within this algorithm.
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The paper is organized as follows: In section 2 we discuss related work. The
algorithmic approach is outlined in section 3. Then, in section 4 the approach is
evaluated on test problems. Finally, in section 5 we summarize our findings and
suggest directions for future research.

2 Related Work

We review here several related studies to our work. Due to the crossing-branches
nature of our work, these treat the topics of niching and multi-objective opti-
mization.

Niching techniques have been already used in the multi-objective optimiza-
tion arena, earlier. Horn et al. introduced a niching technique for multi-objective
optimization, known as the niched-Pareto GA (NPGA) [9]. The algorithm was
a variant of the fitness sharing niching method, whereas the niching distance
metric was set to consider the objective space only. Selection was based on so-
called Pareto domination tournaments or on the minimal niche count, otherwise.
The NPGA was a classical example of using an existing single-objective niching
technique, in a straightforward manner, for multi-objective optimization - only
by redefining the niching distance metric and the selection mechanism. However,
its kernel was the simple GA and it lacked any self-adaptation mechanism.

A Multi-Objective approach aiming for a good diversity in decision as well
as in objective space was the GDEA, as introduced by Toffolo and Benini [10].
GDEA invoked two selection criteria, non-dominated sorting as the primary one
and a metric for decision space diversity as the secondary one.

Another approach, the so-called Omni-optimizer [2], extended the classical
NSGA-II [11] by considering the diversity in the decision space additionally. Its
selection is performed with a changing secondary selection criterion, targeting
either the decision or the objective space diversity in each generation.

An EMOA approach designed for maintaining diversity in both spaces is
the KP1, as proposed by Chan and Ray [12]. Here, two criteria to measure
the diversity of solutions in the corresponding spaces are defined and applied in
each generation. These are the dominated hypervolume of each individual for the
objective space and a neighborhood counting approach for the decision space.

A more structural analysis of the correlation between decision and objective
space in multi-objective optimization has been introduced lately [3, 13], while fo-
cusing on defining different test functions and analyzing the algorithmic behavior
on them.

3 The Algorithmic Approach

Before introducing the new algorithm we would like to review some of its compo-
nents, and in particular the extension of the CMA-ES into multimodal domains
by means of a specific niching technique.

The CMA-ES [14], is a derandomized ES variant that has been successful
in treating correlations among object variables by efficiently learning matching
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Algorithm 1 (µw, λ)-CMA-ES Niching with Fixed Niche Radius

1: for i = 1...q search points do

2: Generate λ samples based on the CMA-Set of individual i
3: end for

4: Evaluate fitness of the population
5: Compute the Dynamic Peak Set (DPS) with the DPI Routine
6: for j = 1..q elements of DPS do

7: Identify at most µ = ⌊λ

2
⌋ fittest individuals of niche j with Parent(peak(j))

8: Apply weighted recombination on xw and zw w.r.t. those individuals
9: Inherit the CMA-Set of peak(j) and update it w.r.t. xw and zw

10: end for

11: if NDPS=size of DPS < q then

12: Generate q − Ndps new search points, reset CMA-Sets
13: end if

mutation distributions. Explicitly, given an initial search point x(0), λ offspring
are generated by means of Gaussian variations:

x(g+1) ∼ N
(

〈x〉
(g)
W , σ(g)2C(g)

)

(1)

Here, N (m,C) denotes a normally distributed random vector with mean m and
a covariance matrix C. The best µ search points out of these λ offspring undergo
weighted recombination and become the parent of the next generation, denoted
by 〈x〉W . The covariance matrix C is initialized as the unity matrix and is learned
during the course of evolution, based on cumulative information of successful past
mutations (the so-called evolution path). The global step-size, σ(g), is updated
based on information extracted from Principal Component Analysis of C(g) (the
so-called conjugate evolution path). For more details we refer the reader to [14].

A niching framework for
(

1 +, λ
)

derandomized-ES kernels subject to a fixed
niche radius has been introduced recently (see, e.g., [7]). This framework consid-
ers q search points, which carry their defining strategy parameters (referred to as
CMA-Sets or D-Sets), and correspond to sub-populations operating in different
parts of the search space (niches). The niches and their representatives are re-
formed in each generation using the dynamic peak identification (DPI) routine
[7]. It takes into account both the ranked fitness of the individuals as well as
the spatial distance between them. For the spatial selection a niche radius needs
to be defined a-priori [7]. In contrast to previous CMA-Niching ES, this study
will introduce multiple parents in each niche. We choose to define the additional
selected offspring as the set of at most ⌊λ

2 ⌋− 1 individuals that are within niche
radius from the peak individual and share its same parent. This way, it is guar-
anteed that the ES mutation distribution evolves continuously. Since the value of
µ may vary over time, other auxiliary coefficients must be updated accordingly,
such as the recombination weights. As for the value of λ, we propose to set it to
its recommended default value: λ = 4 + ⌊3 · ln (n)⌋, with n as the search space
dimensionality. Algorithm 1 summarizes the niching with CMA-ES routine.
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The proposed routine uses the CMA-niching as it is, with the following mod-
ifications:

– ranking of individuals is based upon non-dominated sorting.
– distance between niches is calculated in the aggregated space.
– the estimation of the niche radius is adjusted.

Given the n-dimensional decision vector of individual k, xk = (xk,1, ..., xk,n),
with its assigned objective d-dimensional vector, fk = (fk,1, ..., fk,d), and given
the equivalent decision and objective vectors of individual l, (xl, f l), the dis-
tance between individuals k, l is defined as follows:

dk,l =

√

√

√

√

1

n

n
∑

i=1

(xk,i − xl,i)2 +
1

d

d
∑

j=1

(fk,j − fl,j)2 (2)

In order to select individuals based on multiple objectives, the selection mecha-
nism was modified. As outlined before, the niches are identified based on their
ranked quality, which is implemented here by means of non-dominated sorting.
Following this, the routine will proceed as usual: starting with rank 0, a greedy
identification of the niches will be carried out, considering the distance with
respect to the aggregated objective and decision spaces. If not all q niches are
populated, the routine will proceed to rank 1, and so on.

3.1 Estimation of the Niche Radius

Since our method aims to approximate the Pareto front by populating it with a
uniform distribution of q niches, we can estimate the niche radius ρ for specific
cases. The following derivations are strictly limited to 2D decision or objective
spaces, but we believe that they could be generalized to n-dimensional spaces.

Consider a connected Pareto front, and assume that we can define its length,
denoted by lFRONT . Also, let the diameter of the Pareto set be denoted by lSET .
Upon considering the aggregated space, and demanding a uniform distribution
of niches, one may write:

2 · ρ · q =
√

l2FRONT + l2SET (3)

Simplified Model One can consider a simplified model for providing an upper
and a lower bounds for ρ, by taking into account only the objective space. For
this purpose let us consider the Nadir objective vector, denoted here as ζ(N ) =
(f1,N , f2,N )

T
. In the general d-dimensional objective space, the Nadir objective

vector is defined as the vector with the worst objective values of all Pareto
optimal solutions (as opposed to the worst objective values of the entire space):

ζ
(N )
i = max

{

fi

∣

∣

∣
(f1, . . . , fi, . . . , fd)

T ∈ FN

}

. (4)
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The Nadir objective vector can be computed for d = 2 by employing single-
objective optimization. For d > 2, heuristics are available, but the problem is
considered to be computationally hard [15].

Without loss of generality, assume that the objectives {f1, f2} are assigned
with values in the intervals {[f1,min, f1,N ] , [f2,min, f2,N ]}, respectively. The
length of the assumably-connected Pareto front has a lower bound of

lFRONT,min =

√

(

(f1,N − f1,min)
2

+ (f2,N − f2,min)
2
)

, (5)

and an upper bound of

lFRONT,max = |f1,N − f1,min| + |f2,N − f2,min| . (6)

Hence, upon assuming a uniformly spaced population of the q niches along the
front, one can derive

√

(

(f1,N − f1,min)
2

+ (f2,N − f2,min)
2
)

2 · q
≤ ρ ≤

|f1,N − f1,min| + |f2,N − f2,min|

2 · q
(7)

The General Case For the general case, we choose to define the default values
as the diameters of the decision or the objective spaces, respectively:

rSET =

√

√

√

√

n
∑

i=1

(xi,max − xi,min)
2

(8)

rFRONT =

√

√

√

√

m
∑

j=1

(fj,max − fj,min)
2

(9)

And thus

ρ =

√

∑n
i=1 (xi,max − xi,min)

2
+
∑m

j=1 (fj,max − fj,min)
2

2 · q
(10)

The niche radius is essentially a crucial parameter of this method, and its esti-
mation or tuning is critical for the algorithmic success.

4 Numerical Simulations

Our aim is to provide a proof of concept for the proposed approach. We therefore
focus our experimental procedure on landscapes with interesting decision space
characteristics.
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4.1 Test Functions: Artificial Landscapes

The following set of bi-objective functions is considered in order to test the
algorithmic performance:

1. Omni-Test by Deb et al. As mentioned earlier, Deb constructed a bi-
criteria multi-global landscape for testing his Omni-Optimizer [2]. Explicitly,
it reads:

f1(x) =
n
∑

i=1

sin (πxi) −→ min f2(x) =
n
∑

i=1

cos (πxi) −→ min (11)

where ∀i xi ∈ [0, 6].
2. EBN The EBN family of functions [16] introduced a very basic set of test-

problems for multi-objective algorithms. Explicitly, it reads:

f
(γ)
1 (x) =

(

n
∑

i=1

|xi|

)γ

· n−γ −→ min

f
(γ)
2 (x) =

(

n
∑

i=1

|xi − 1|

)γ

· n−γ −→ min

(12)

The EBN problems are attractive in the context of efficient set approxima-
tion, as the pre-images of points in the objective space are not single points,
but rather line segments on the diagonals of [0, 1]n, excepting the extremal
points (0, 1)T and (1, 0)T (for the proof see [17]).
In our study we shall consider the case of γ = 1.

3. ”Two-on-One” This test-case was originally introduced in an interesting
study of the Pareto-optimal set [13]. It is a two-dimensional function, with
a 4th-degree polynomial with two minima as f1 versus the sphere function
as f2:

f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − cx1x2 + dx1 + 20 −→ min

f2(x1, x2) = (x1 − k)2 + (x2 − l)2 −→ min
. (13)

We consider the asymmetric case, with c = 10, d = 0.25, k = 0, and l = 0
(case number 3 as reported in [13]).

4. Lamé Superspheres We consider a multi-global instantiation of a family of
test problems introduced by Emmerich and Deutz [18], the Pareto fronts of
which have a spherical or super-spherical geometry. In contrast to the EBN
problem, the set of pre-images of a point on the Pareto front for this instance
is finite, and solutions are placed on equidistant parallel line-segments, each
of them being a pre-image of a local Pareto front.
Let d = 1

n−1

∑n
i=2 xi, and r = sin2(π · d),

f1 = (1 + r) · cos(x1) −→ min f2 = (1 + r) · sin(x1) −→ min (14)

with x1 ∈
[

0, π
2

]

, and xi ∈ [1, 5] for i = 2 . . . n.
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Table 1: Hypervolume of the resulting Pareto fronts of the 4 different algorithms on
the 4 test-cases: average and standard-deviation over 20 runs.

Hypervolume Niching-CMA NSGA-II NSGA-II-Agg Omni-Opt.

Omni-Test 30.27 ± 0.05 30.17 ± 0.034 29.80 ± 0.23 29.75 ± 0.18

EBN 3.283 ± 0.042 3.289 ± 0.088 2.87 ± 0.182 2.064 ± 0.057

Two-on-One 173.4 ± 0.26 173.7 ± 1.56 172.7 ± 1.78 150.2 ± 28.6

Superspheres 3.176 ± 0.038 3.203 ± 0.001 3.117 ± 0.080 2.457 ± 0.372

4.2 Modus Operandi

We carried out numerical simulations on the bi-criteria landscapes introduced in
the previous section in order to test the algorithmic performance of the proposed
method. We chose to apply three additional algorithms as reference methods:
the NSGA-II [11], the Omni-Optimizer [2], and a variant of the NSGA-II which
considers an aggregated space in the crowding calculations (referred to in our
notation as NSGA-II-Agg). The latter routine is meant to assess the importance
of the aggregation concept for attaining decision space diversity. The idea was
to approximate the Pareto front by means of q = 50 points, and allocate a
fixed number of NumEvalmax = 50, 000 function evaluations per run. We are
aware that these are not the optimal settings for the reference methods; The
Omni-Optimizer, for instance, was reported in [2] to employ a population of
1, 000 individuals. However, our goal here is also to exploit the advent of mod-
ern derandomized Evolution Strategies, which offer optimization with minimal
settings.

In order to assess the boost of diversity in the decision space, we introduce a
corresponding quantifier. Given the population size µN , we define the population

diversity of the Pareto set as the mean value of the µN (µN−1)
2 Euclidean distances

between all individuals, normalized by the diameter d of the decision space:

D =
2

d · µN (µN − 1)
·
∑

A 6=B

‖xA − xB‖ (15)

4.3 Numerical Observation

We present the numerical results by means of plots of typical runs of the re-
sulting approximated Pareto-set and Pareto-front (i.e., all the non-dominated
individuals of the last generation; cf. Fig. 2 to 5). The plots present the outcome
of the different algorithms both in the decision and the objective spaces for each
landscape. Note that the decision space is represented by plotting x1 versus x2,
except for the Superspheres test-case where x1 is plotted versus 1

(n−1) ·
∑n

i=2 xi.

Table 1 presents the calculations of the S-metric, as a performance criterion
in the objective space, averaged over 20 runs. Moreover, Table 2 presents the
calculations of the decision space diversity, as defined in Eq. 15, averaged over
20 runs.
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Fig. 2: 5D Omni-Test landscape (Eq. 11): Final populations of the four routines (see
legend). Left: Decision space; Right: Objective space.

Generally speaking, the proposed algorithm performs in a satisfying man-
ner, obtaining good Pareto-sets with high diversity in the decision space, which
are mapped to a well-approximated Pareto-fronts. In terms of the performance
criterion in the objective space, the S-metric (hypervolume), Niching-CMA and
the NSGA-II performed equally well, while the NSGA-II with aggregation and
the Omni-Optimizer typically performed slightly worse. Regarding the diversity
in the decision space, the proposed algorithm accomplished its goal: it attained
higher decision space diversity in comparison to the other methods on all land-
scapes. This result can also be clearly observed in the decision space plots. In the
Omni-Test landscape, Niching-CMA performed very well, while typically obtain-
ing 4 Pareto subsets, in comparison to one or two subsets for each of the other
routines. In the EBN landscape, Niching-CMA attained a quasi-uniform dis-
tribution in the decision space. In the ”Two-on-One” landscape, the proposed
algorithm managed to explore both branches of the so-called propeller-shaped
Pareto-set (see [13]), while the other algorithms typically explored either one
of the two branches. In the Super-Spheres landscape, Niching-CMA performed
extremely well, while obtaining a good distribution of typically 3 Pareto subsets.
The other methods, nevertheless, usually obtained a single Pareto subset. This is

Table 2: Decision-space diversity, as defined in Eq. 15, of the 4 different algorithms
on the 4 test-cases: average and standard-deviation over 20 runs.

Diversity Niching-CMA NSGA-II NSGA-II-Agg Omni-Opt.

Omni-Test 0.256 ± 0.060 0.205 ± 0.079 0.222 ± 0.070 0.030 ± 0.002

EBN 0.483 ± 0.008 0.410 ± 0.023 0.356 ± 0.028 0.011 ± 0.010

Two-on-One 0.295 ± 0.01 0.136 ± 0.036 0.116 ± 0.031 0.106 ± 0.054

Superspheres 0.413 ± 0.024 0.239 ± 0.049 0.307 ± 0.046 0.062 ± 0.056
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Fig. 3: 10D EBN landscape (Eq. 12): Final populations of the four routines (see leg-
end). Left: Decision space; Right: Objective space.

clearly observed in Figure 5, where the final population of the these algorithms is
mostly concentrated along a single line, corresponding to a single Pareto subset.
Hence, in multi-globality terms, Niching-CMA clearly outperformed the other
methods on these landscapes.

It should be noted that introducing the aggregation component into the
NSGA-II did improve the attained decision space diversity to some extent on
two landscapes, but did not have a considerable contribution. We conclude that
considering the aggregated space by itself does not seem to be sufficient for at-
taining high diversity in the decision space. We rather consider it as a bridge for
niching to multi-objective domains. The Omni-Optimizer performed comparably
poor in terms of the attained decision space diversity This is likely due to being
hampered by the small population size.

Fig. 4: 2D Two-on-One landscape (Eq. 13): Final populations of the four routines (see
legend). Left: Decision space; Right: Objective space.
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Fig. 5: 4D Super-Spheres landscape (Eq. 14): Final populations of the four routines
(see legend). Left: Decision space; Right: Objective space.

5 Summary and Outlook

The constructed algorithm required adjustments in the selection scheme and
the diversity measure. Due to the fact that it is niche-radius based, we pro-
posed a way to approximate this parameter. The algorithm was applied to a
test-bed of conventional artificial bi-criteria landscapes, of various dimensions,
and compared to the classical GA-based EMOAs: the NSGA-II as well as the
Omni-Optimizer algorithms. The observed numerical results were satisfying, and
provided us with the desired proof of concept for the proposed method. It should
be noted that the GA-based methods performed poorly, likely due to the small
population sizes that are typically employed by ES-based algorithmic kernels. Fu-
ture research will be needed to test the approach on higher dimensional objective
spaces and to explore various possibilities for parameterization and instantiation
of the proposed approach.
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