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Abstract. Much of the biological data generated and analyzed in the life sciences
can be interpreted and represented by graphs. Many general and special-purpose
tools and libraries are available for laying out and drawing graphs, but they are
either not adequate for handling large graphs or do not adhere to the special drawing
conventions and recognized layouts of biological networks. In this paper, we describe
some representative use cases that demonstrate the need for advanced algorithms for
presenting, exploring, evaluating, and comparing biological network data.

1 Introduction

In recent years, the development of high-throughput experimental techniques has led to
the generation of huge data sets in the life sciences. Since manual analysis of this data
is costly and time-consuming, biologists are now turning towards computational methods
that support data analysis. The information in many experimental data sets can be either
represented as networks or interpreted in the context of networks that serve as models of
the biological system under investigation. These models are used, for example, to predict
the behavior of the system and to guide further experiments.

The visualization of biological networks is one of the key analysis techniques to cope with
the enormous amount of data. In particular, the layout of networks should be in agreement
with biological drawing conventions and draw attention to relevant system properties that
might remain hidden otherwise. While the approaches and expertise of the graph-drawing
community may be ideally suited for solving these problems, very little research has previ-
ously been done to solve the special layout and visualization problems arising in this area.
So far, most of the available software systems for the visual analysis of biological networks
(e.g., Cytoscape [4], VisAnt [7], etc.) only provide implementations of standard graph draw-
ing algorithms like force-directed or hierarchical approaches. Nevertheless, there also some
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tools that offer specialist and drawing algorithms which are more suitable for application in
the life sciences [8, 13].

In general, graph-drawing methods for applications in the life sciences should allow for
the layout and navigation of biological networks for both their static presentation as well
as their interactive exploration. Such drawing methods need to adhere to constraints that
originate from recognized textbook layouts and from generally accepted drawing conventions
within the life-science community.

In this paper, we aim to make graph-drawing problems originating in bioinformatics
accessible to the graph drawing community. We start by presenting a characterization of
common biological networks, describing their structure and semantics (Section 2.1) as well
as discussing the mapping of data onto network elements (Section 2.2). In Section 3, we
present a selection of use cases describing typical uses of biological networks. Section 4 will
present some conclusions.

2 The nature of biological network data

Biological networks are used to communicate many different types of data. This data can
be encoded in the structure of the network, the network layout, or as graphical or textual
annotations. The data itself may be primary data (i.e., directly measured), secondary data
(i.e., derived, inferred, or predicted), or a mixture of both. In this section, we discuss some
common biological networks and the types of attributes used to annotate them.

2.1 Types of biological networks

Gene-regulatory and signal-transduction networks both use sets of directed edges to
convey a flow of information. While gene regulation (regulation of the expression of genes)
occurs exclusively within a cell and represents a regulatory mechanism for the creation of
gene products (RNA or proteins), signal transduction refers to any process that transports
external or internal stimuli via so-called signal cascades to specific cellular parts where a
cell response (e.g., gene regulation) is triggered. While nodes in these networks represent
molecular entities (genes, gene products, or other molecules), edges represent a flow of
information (regulation or passing of a chemically encoded signal). Figure 1 gives an example
for a graph representing a part of a gene regulatory network.

Protein interaction networks represent physical interactions of proteins with each other
or with other binding partners like DNA/RNA. The nodes in such networks represent pro-
teins or sets of proteins. The time scale of protein interactions ranges from very short,
transient processes (for instance, pairwise protein interactions and phosphorylation or gly-
cosylation events) to very long lasting, permanent formation of protein assemblies (protein
complexes) working as molecular machines. The interaction edges are normally undirected,
but may be directed in case of heterogeneous networks (for example, protein-protein and
protein-DNA/RNA interactions), resulting in mixed graphs. Each node and edge may be
annotated with additional biological attributes like expression level, cellular localization,
and the number of interaction partners. For an example of a protein interaction network,
see Figure 2.
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Fig. 1. A regulatory network describing yeast’s cell cycle. The picture is taken from the CADLIVE
homepage (http://www.cadlive.jp/) and was originally published in [14]. Li and Kurata used
their implementation of a grid-layout algorithm.

Metabolic networks describe how metabolites (chemical compounds) are converted into
other metabolites. Such a network is a hypergraph that is usually represented as a bipartite
graph G = (V1∪V2, E). The node set is partitioned into the set V1 of metabolite and enzyme
nodes (enzymes catalyze the chemical reactions converting metabolites) and V2 the set of
reaction nodes. There are large posters (e.g., Nicholson’s [17] and Michal’s [15] pathway
maps) and several projects that have created graphical representations of metabolic net-
works and offer access to these graphs via web pages (e.g., Kyoto Encyclopedia of Genes
and Genomes (KEGG) [18] or the BioCyc collection [10]). The availability of these repre-
sentations has established a de facto standard for metabolic network drawings that features
near-orthogonal drawings where important paths are aligned, relevant subgraphs are placed
close to the center of the drawing, substances and products of a reaction are clearly sepa-
rated, and co-substances are placed out of the main path close to the reaction. There are
also layout algorithms that obey established drawing styles of these networks (e.g., [11, 19,
20]). Figure 3 shows an example of a metabolic network.

Ontologies have become widely used in the life-science community. Collaborative efforts
such as the Gene Ontology (GO) [1] or the KEGG Ontology (KO) [9] have developed
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Fig. 2. Part of a human protein interaction network. The protein nodes are given a shade gradient
according to their expression value; light grey represents the lowest, dark grey the highest value. The
node size corresponds to the number of interactions. The shades and styles of the edges represent
different interaction types; solid lines indicate protein-protein, and dashed lines protein-DNA inter-
actions. The graph was drawn with Cytoscape [4] using its implementation of the spring-embedder
algorithm.

controlled vocabularies to describe biological processes on different levels (e.g., participation
of a gene product in signaling networks) and help biologists to identify available knowledge
concerning a specific area of research. The network structure of such ontologies is best
described through directed acyclic graphs in which nodes represent specific terms from the
predefined controlled vocabularies and relationships between different terms (e.g., “is part
of” or “is a type of”) are represented by edges. Gene Ontology categories have also been
used to convey functional aspects in gene regulatory networks [21].

Phylogenetic networks originally started out as rooted phylogenetic trees, but have
recently received a great deal of attention [12]. They represent models for the evolutionary
development of and the relationships between existing and extinct species. The structure of
these networks is best described by graphs in which nodes represent different species and
hereditary relationships between two species are represented by edges. The evolutionary
time axis (and hence the direction of the edges) is usually implied through the layout of the
graphs.

2.2 The attributes of network elements

The representation of primary and secondary data that has been mapped onto the elements
of a molecular network is an important research field. This is mainly due to the fact that
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Fig. 3. Part of the glycolysis/gluconeogenesis pathway with additional data mapped onto some
nodes. Circles encode metabolites, rectangles represent enzymes catalyzing the reaction, and rect-
angles with rounded corners denote other pathways. Solid and dashed lines represent reactions and
connections to other pathways, respectively. The pathway data was derived from KEGG [18], and
the graph was drawn with VANTED [8] in a style similar to the KEGG pathway picture.

primary and secondary data are quite complex in nature. The various types of primary data
are defined by the various types of biochemical entities and experiments (e.g., time-series
experiments, differential studies, etc.) and entities that are the subjects of analysis, namely,
gene sequences, transcripts, expression levels, proteins, protein concentrations, metabolites,
metabolite concentrations, or fluxes (of mass or information). The structure of the class of
secondary data is, however, even more complex, and different categories of inferred, derived,
or predicted information can be distinguished such as results of correlation analysis or
comparisons of different biological states (e.g., healthy vs. diseased, before vs. after treatment
with a drug, different organisms). The data belongs to different data types, namely:

– nominal data: sequence names, categories, etc.
– ordinal data: ontologies, rankings, partly ordered information, etc.
– scalar data: comparisons, ratios, etc.
– categorized spatial data: data points that refer to biological entities from various parts

or substructures of a cell, etc.

The list of secondary data is not necessarily complete and the distinction between the
categories may not always be clear. It should also be mentioned that primary as well as
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secondary data are subject to uncertainties (measurement errors, prediction confidences,
etc.). This is a general problem that has to be taken into account when trying to draw
biological networks, and often the visualization of this uncertainty is also desired.

3 Use cases and related graph-drawing problems

This section contains a list of typical use cases that arise in constructing and viewing net-
works representing life-science data. Along with each use case we present a formalized de-
scription of the graph-drawing, information-visualization, or visual-analytics problem be-
hind the use case. The list should not be interpreted as a complete collection of all use
cases relevant to the graph drawing community. Rather, it should stimulate research and
demonstrate that there are many interesting and important graph drawing problems within
the life sciences.

3.1 Visual analysis of data correlation

Biologists frequently use correlation graphs as a means for visually expressing and exploring
complex forms of correlation within their data. Normally, the information contained in the
data is mapped as annotation onto a graph that represents the pathways characterized by
experimental data. Biologists are then interested in a graphical representation that highlights
the interrelation between the connectivity structure of pairs/subsets of nodes in the original
network and their correlation. An example for an interesting correlation pattern would be
a set of nodes that is closely connected within the underlying graph but exhibits only weak
correlation in the data or vice versa. The represented connectivity structure should include
only statistically significant correlations, for instance, significant up- or down-regulation
of co-expressed genes or proteins. In particular, two or more nodes representing biological
entities with multiple annotations may be considered correlated if a minimum number of
node annotations corresponds with each other, for example, regarding genotype, time value,
number of the biological replicates, etc.

One possible way to attack this problem would be to model the correlation data as
a weighted graph. Then we have a given graph G1 = (V,E1) (called network in order
to distinguish it from the correlation graph) with correlation data that induces a second
graph G2 = (V,E2) with edge weights on the same set of vertices V . This possibly dense
correlation graph may, for example, contain two types of edges representing positive and
negative correlation. This gives us a simultaneous embedding problem [6] in which the two
given graphs typically do not have too many edges in common. We search either a layout
of the union graph G = (V,E1 ∪ E2), in which the given network G1 and the correlations
are clearly displayed, or two disjoint layouts, in which the coordinates of the vertices in
both layouts are identical. In the first case, a challenging task is to provide a layout which
clearly emphasizes the two different edge sets E1 and E2. Often, a layout π1 of the graph
G1 is given, which has to be preserved as closely as possible. In this case, there is a trade-
off between mental map preservation and emphasizing the correlation structure. Possible
solutions may either fix the layout given in π1, or try to preserve the mental map by keeping
the orthogonal relations, the topological embedding, or the layout of a backbone.

3.2 Visual comparison of biological networks

Conservation of biochemical function during evolution results in structurally similar molecu-
lar subnetworks across different organisms and species. Uncovering relevant similarities and
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differences or comparing networks in different states (e.g., diseased vs. healthy), at different
time points, or under various environmental conditions (temperature, pressure, substrate
concentrations, etc.) supports the biologists’ knowledge-discovery process, for example, by
identifying disease-specific patterns (biomarker discovery).

Given a set of graphs G1, . . . , Gk with a high degree of similarity between each other, the
task is to layout them in a way so that the differences (or the similarities) are highlighted.
This problem can be attacked via simultaneous embedding, which requires to obtain either
one layout of the union graph G = G1 ∪ . . . ∪Gk or k disjoint layouts of the graphs Gi

(i = 1, . . . , k) such that the coordinates of all vertices common to two or more subgraphs
are the same. An alternative presentation has been given in [3] where the third dimension
has been used to stack the k layouts above each other. In the layouts, crossings between
edges belonging to different graphs Gi 6= Gj are either completely ignored or counted as
less important than “real” crossings. In the biological context, the stronger simultaneous
embedding problem with fixed edges occurs, which forces not only the vertices but also
the edges occurring in two or more graphs to be drawn identically. This guarantees that
identical subnetworks have an identical layout. Sometimes, it may be important to keep
a mental map of already given layouts of some of the graphs or their backbone structure.
In any case, the layouts must obey the given biological constraints concerning the specific
network type. Sometimes, the networks may be large, and then it would be desirable to
hide some parts of the network and to highlight only the specific points of interest. Points
of interest may be differences between the networks, but could also be important network
structures such as the main pathways in a metabolic network. Here, one possibility would
be to generate layouts in which the differences are all concentrated within only a few layout
areas.

3.3 Integrated representation of multiple overlapping networks

The different types of biological networks describe different functional aspects of the whole
cell, tissue, or organism in question. To get a deeper, system-wide understanding, these
networks need to be combined. The enzymes acting in metabolic networks for example are
regulated and this regulation is described by a regulatory network. It is thus becoming
increasingly common to integrate these different types of networks into joint networks. Fig-
ure 4 shows an example of integrating a gene-regulatory network and a metabolic network
(see [23]). A good joint layout of these networks should reveal the interaction between these
networks, for example, how specific nodes of the gene regulatory network activate or inacti-
vate whole subnetworks of the metabolic network. In order to simplify the identification of
these subnetworks, mental map preservation on the level of the metabolic network is helpful.

We need a representation of combined networks in which the conventional layouts (there
may be several different ones) of each of these networks need to be respected. Moreover,
some groups of vertices in one network may belong to groups of vertices in another network.
This mapping (which may be a 1 : 1, 1 : n, or n : m mapping) needs to be displayed in the
layout. We consider the case of integrating two networks, in which the involved mapping
partners can be viewed as a cluster in a cluster graph C = (G,T ) of cluster depth 2. Then
the problem may be attacked via the following formalized graph drawing problem. We are
given two cluster graphs C1 = (G1, T1) and C2 = (G2, T2) with Gi = (Vi, Ei) (i = 1, 2)
and cluster depth 2, and a mapping function Φ : C1 → C2, where Ci denote the clusters in
Gi. Generate a layout π(G) of the union graph G = G1 ∪G2 ∪G[F ], where F denotes the
edges induced by the mapping, respecting the clusters as well as the conventional layouts of

7



!"#$!%&%'(&)*+,%-.!"##$%!!&''" ())*&++,,,-./0123425)678-401+9:;9<"9#=+;+''"

>7?2!;!0@!"'

/0+12$'3*42)$'&,$(&)$-%,+,%&'$03)0&.2.5

Active paths explaining glucose limitation, expression data, model of inferred linksFigure 4
Active paths explaining glucose limitation, expression data, model of inferred links. Metabolites (triangles) connect 
to the fluxes (squares) of the reactions they participate in. Arrows are from the reactants of a reaction to its flux and from the 
flux of a reaction to its products. The preferred direction of each reaction is specified in EcoCyc. Enzymes (circles) connect to 
the fluxes they catalyze. Regulators (octagons) connect to operons (diamonds) they regulate, and operons connect to their 
member genes (circles). Metabolites connect to regulators via the feedback links. Perturbation sources and responses are 
colored by red (increase) or green (decrease). Enlarged colored nodes denote perturbation sources (glucose in this figure), 
colored nodes slightly larger than uncolored ones denote the significant responses explained by the model, and small colored 
nodes denote the unexplained responses. Solid edges are positive (activating), and dash edges are negative (inhibitory). Active 
paths are marked by blue edges connecting source to responses. For instance, the path glucose ! ArcA ! aceBAK 
(operon) ! aceA explains the up regulation of aceA in glucose limitation.
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Fig. 4. An example of an integrated network consisting of a part of the glycolysis network and a
gene regulatory network. The picture is taken from [23].

each of these networks. In the simpler case when the graph G2 is highly disconnected (e.g.,
E2 = ∅), we may prefer a solution in which the connected components of G2 are integrated
into a layout of G1 (see, e.g., Figure 4). In this case, we do not require to respect the root
clusters in the graph drawing problem mentioned above. Sometimes, the layout of G1 may
be given. If this is the case, there is a trade-off between sticking to the given layout as closely
as possible (or mental map, backbone, etc.) and ignoring it.

3.4 Visualization of sub-cellular localization

Cells consist of distinct compartments, subcellular locations, separated from each other by
membranes. Examples for these are the cytosol (the inner space of cell), the nucleus, the
mitochondria, or chloroplasts in plants. The membranes enclosing a compartment separate
parts of the biological networks as well. Different partitions of the network will be localized
in different subcellular locations and hence cannot interact with each other directly. It is thus
essential for an understanding of the network’s function to integrate that spatial information
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into the layout of the network. The required localization data is either already contained
in data sets derived from experiments, can be extracted from external sources, or can be
predicted.

Given a network G = (V,E) and additional localization annotation for the nodes in V ,
we search for a layout that reflects the topographical information of G and that conforms to
the drawing conventions for that type of network. It should, of course, be at the same time
aesthetically pleasing. Note that the subcellular localization does not just give a clustering
of the nodes, because, for example, a specific relative position of the cellular compartments
may be implicitly given by the biological morphology. If G reflects a flow of mass or infor-
mation, the direction of the flow also needs to be displayed, e.g., by hierarchical layering
of the nodes. A simple representation of a cross-sectional cut through a cell would be a
stacking of layers as in [2]. In a layout that is inspired by biological morphology, subgraphs
of the network should be arranged according to their subcellular localization in such a fash-
ion that the physical structure of the compartments delimiting these subgraphs becomes
evident (e.g., [5, 16]). In order to increase the acceptance of such layouts by biologists, it
may be necessary to resemble the (manually generated) layouts from established projects
like BioCarta (http://www.biocarta.com/).

3.5 Visualization of multiple attributes

Often multiple attributes have to be considered when analyzing biological data. One ex-
ample is time-series data which is frequently collected in order to better understand the
dynamic behavior of a biological system. The combined representation of such time-series
data and a corresponding network should allow biologists to gain new insights concerning
the underlying system, for example, co-regulated sets and their connection within the net-
work. Such a combination can, for example, be achieved by mapping the data onto the
nodes of a network, see Figure 3 where time series data (20 days) from two series (day: red,
night: blue) were mapped on some nodes which have been enlarged. A complex use case of
multiple attributes occurs in cancer treatment, when antibody data and class labels (clinical
data) of up to 200 patients should be mapped to a protein interaction network. In addition
to standard statistical clustering methods the underlying network is essential in order to
identify structural patterns that are significant among groups of patients with the same or
similar class labels.

Mapping the given data onto nodes and/or edges is one possibility of solving the problem.
In this case, we have to solve information-visualization problems so that the information
can be quickly perceived. This is a challenging task because we must find an efficient inter-
active visualization for these attributes. The simple use of small visualizations that replace,
for example, the node representations is most of the time not sufficient, because a visual
comparison of such small graphics in a large graph is impossible. To address such problems,
we must develop new interaction metaphors that support the user to filter out uninteresting
attributes, to use so-called preattentive features [22] for discovering patterns or correlations
between the attributes, etc.

Sometimes, it may be helpful to generate a drawing of the network in which the co-
regulated subgraphs (e.g., maximal connected subgraphs of up- and down-regulated sets or
sets having the same dynamic behavior) are grouped together, which will lead to cluster
drawing problems. In the case that patterns have been identified in the network, we search
a layout in which these patterns are displayed prominently (see, e.g. the following use case).
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3.6 Visualization of flows and paths in networks

The qualitative and quantitative distribution of mass and signal flows (fluxes) within a net-
work has to be analyzed under uncertainties of the data. The flow of certain paths may
change over time (time-series of measurements) and the number of paths through the net-
work is so big that not all of them can be displayed. Biologists are therefore only interested
in the main paths through the network, i.e., those paths which possess a statistically signifi-
cant flow and that transport a considerable percentage of the overall flow through the entire
network. The scientist is then interested in the metabolites and reactions that are involved
in these paths.

Here, a potentially large network is given together with quantitative and qualitative
information about the flow of mass or information given as edge weights. For directed graphs
like metabolic networks the layout must reflect the hierarchical nature of the flow, preserve
layouts for subnetworks from textbook representations as closely as possibly, adhere to
drawing conventions and at the same time focus on relevant parts of the network, e.g.,
paths that at a certain point in time transport a large part of the flow. These main paths
therefore have to be visually emphasized (e.g., placed at the center of the layout and drawn
as straight lines) and the distribution of the flow within the network has to be depicted,
e.g., by using edge width or color. If the dynamic change of the flow over time also needs to
be visualized, smooth animations are required to preserve the users’ mental map.

3.7 Exploration of hierarchical networks

Biological networks often comprise several thousand nodes and edges. To help exploring
such large and complex structures the entire network is usually broken down in a hierarchi-
cal manner into pathways and subpathways. Biologists commonly focus on (sub)pathways
in a region of interest and explore their relation to other pathways. However, due to the
many connections between different pathways often an abstract overview-like picture of all
pathways and their connections as well as an interactive navigation from a set of pathways
to other connected or related pathways is desired. An example of some pathways and the
derived overview graph is shown in Figure 5.

Given a huge biological network, methods for the biologically meaningful visualization of
selected subsets G1, . . . , Gk (e.g., pathways) and their interrelations, as well as techniques
for the navigation within the network are needed. In order to allow the user to keep his
orientation during exploration of the network, the layout changes resulting from a user
interaction (e.g., selection of an additional pathway) should be small and also context in-
formation needs to be represented in an appropriate way. Expand-and-collapse mechanisms
therefore need to be incorporated into layout algorithms such that drawing conventions and
the mental map are preserved. These operations could be restricted to certain levels of ab-
straction, for example by only collapsing/expanding semantically meaningful substructures
like pathways. One of the main challenges is that layouts for such subnetworks as well as
their relative position to each other, may be given. This layout information needs to be
preserved as closely as possible. As these networks are too large to be laid out nicely as a
whole, some overview graph or backbone could be defined by reduction or abstraction that
covers the topologically or semantically relevant features of the network, thus helping the
biologist in navigating through the network (see Figure 5 for an example). The subsets Gi

do not need to be disjoint but may partially overlap. This poses an additional challenge for
the visualization problem: Either the duplicates are merged, which complicates the task of
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Fig. 5. The combination of a specific overview graph of five pathways (here done with a circular
layout method, left part of the figure) and subsequent replacement of graph nodes with complete
pathways (right part). The graph was drawn with KGML-ED [13].

mental map preservation, or it has to be clearly emphasized somehow that they represent
the same biological entity.

4 Conclusions

In this paper, we have presented some common use cases describing the visualization of
biological networks and their applications. These examples have revealed graph-drawing
and information-visualization problems, predominantly tackled in the past by experts from
the life sciences. Developing improved solutions to these problems will require custom state-
of-the-art graph-drawing approaches, and more importantly, collaboration between graph
drawing, information visualization, visual analytics, and the life-sciences.
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