
Fakultät für Informatik 
Algorithm Engineering (LS 11) 
44221 Dortmund / Germany 
http://ls11-www.cs.uni-dortmund.de/ 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Inserting a Vertex into 

a Planar Graph 
 
 

Christian Wolf 
 
 
 

Algorithm Engineering Report 
TR08-1-002 
April 2008 

ISSN 1864-4503 



 



UNIVERSITÄT DORTMUND
FACHBEREICH INFORMATIK

Diplomarbeit

Inserting a Vertex into
a Planar Graph

Christian Wolf

Januar 2008

I N T E R N E   B E R I C H T E
I N T E R N A L  R E P O R T S

GERMANY · D-44221 DORTMUND

Gutachter:
Prof. Dr. Petra Mutzel
Dipl.-Inform. Carsten Gutwenger

Lehrstuhl für Algorithm Engineering (LS11)
Otto-Hahn-Str. 14
44227 Dortmund





Acknowledgement

True to Albert Schweitzer1

”Vergiß den Anfang nicht, den Dank!”

I want to thank all who have supported and affirmed me during the prepara-
tion of this thesis. I thank Prof. Dr. Petra Mutzel for the selection of topics.
Especially, I thank my supervisors Dipl.-Ing. Markus Chimani and Dipl.-Inform.
Carsten Gutwenger for answering my numerous questions, their helpful ideas and
the constructive discussion rounds. Moreover I thank Christina Paßgang for her
mental affirmation and encouragement. Particularly, I thank my parents for mak-
ing my studies generally possible and for any kind of support in the meantime.

1Theologian, musician, philosopher, and physician (1875-1965).

i



Short Abstract

This diploma thesis presents a first algorithm for the optimization problem to
compute a combinatorial embedding among all combinatorial embeddings of a
planar graph wherein a new vertex and edges between it and vertices of the graph
can be inserted into with the minimum number of crossings. The algorithm uses
the dynamic programming paradigm and profits from the data structures SPQR-
and BC-tree substantially. The solution of this problem and therewith the al-
gorithm are of interest within a modified planarization method for drawing a
non-planar graph. Thereby in contrast to the common planarization method a
planar representation of the non-planar graph to be drawn is obtained by deleting
vertices including their incident edges and reinserting them in a certain way. Al-
though many optimization problems over the set of all combinatorial embeddings
of a planar graph have emerged as NP-hard, the algorithm succeeds in solving
the problem investigated here in polynomial worst-case running time.

ii



Kurzfassung

Diese Diplomarbeit stellt einen ersten Algorithmus für das Optimierungsproblem
vor, eine kombinatorische Einbettung unter allen kombinatorischen Einbettung-
en eines planaren Graphen zu berechnen, in die ein neuer Knoten und Kanten
zwischen diesem und den Knoten des Graphen kreuzungsminimal eingefügt wer-
den können. Der Algorithmus benutzt das Paradigma der dynamischen Pro-
grammierung und profitiert wesentlich von den Datenstrukturen SPQR- und
BC-Baum. Die Lösung dieses Problem und damit der Algorithmus sind im
Rahmen einer modifizierten Planarisierungsmethode zum Zeichnen eines nicht-
planaren Graphen von Interesse. Bei dieser wird im Gegensatz zur üblichen Pla-
narisierungsmethode eine planare Repräsentation des nicht-planaren zu zeichnen-
den Graphen erhalten, indem Knoten inklusive ihrer inzidenten Kanten gelöscht
und auf gewisse Weise wiedereingefügt werden. Obwohl sich viele Optimierungs-
probleme über der Menge aller kombinatorischen Einbettungen eines planaren
Graphen alsNP-schwierig erwiesen haben, gelingt dem Algorithmus die optimale
Lösung des hier untersuchten Problems in polynomieller worst-case Rechenzeit.

iii



Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Diplomarbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, sowie Zitate
kenntlich gemacht habe.

(Christian Wolf)

iv



Contents

1 Introduction 1

2 Preliminaries 7
2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Definition of the SPQR-tree Data Structure . . . . . . . . . . . . 12

2.2.1 Example Decomposition . . . . . . . . . . . . . . . . . . . 16
2.2.2 Properties of an SPQR-tree . . . . . . . . . . . . . . . . . 16

3 The Planarization Heuristic 21
3.1 The Two Major Steps . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 First Step - Planarization . . . . . . . . . . . . . . . . . . 22
3.1.2 Second Step - Edge Reinsertion . . . . . . . . . . . . . . . 22

3.2 Heuristics for CCMP . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 The Basic Heuristic . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Refinements of the Basic Heuristic . . . . . . . . . . . . . 26

4 VIP - The Vertex Insertion Problem 29
4.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . 29
4.2 VIP with Fixed Embedding . . . . . . . . . . . . . . . . . . . . . 31
4.3 VIP with Variable Embedding . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Upper and Lower Bound . . . . . . . . . . . . . . . . . . . 36
4.3.2 The Core Problem . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Solving VIP-VAR for Biconnected Graphs . . . . . . . . . 57
4.3.4 Solving VIP-VAR for Connected Graphs . . . . . . . . . . 65

5 Summary and Outlook 73

Bibliography 75

v





List of Figures

1.1 Typical subway map, here a detail of the subway map of New York
City. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Different drawings of the same graph with different number of
crossings. Drawing (a) has 6, drawing (b) has none and drawing
(c) has 2 crossings. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Example of a connected graph and its BC-tree. Cut-vertices are 4, 5. 9

2.2 Graph with different embeddings. . . . . . . . . . . . . . . . . . . 10

2.3 Example of a simple planar graph with two distinct combinatorial
embeddings and their dual graphs. . . . . . . . . . . . . . . . . . 11

2.4 Biconnected graph (a), split components with respect to the split
pair {1, 7} (b) and {1, 6} (as separation pair) (c). . . . . . . . . . 13

2.5 Pertinent graphs and their skeletons of an S- (a), P- (b) and R-node
(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Illustration of certain notions concerning an SPQR-tree. . . . . . 15

2.7 Graph and its SPQR-tree. . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Embedding Π of a graph (a) into which the edge {u, v} has to be
reinserted. (b) and (c) show each a resulting embedding with 5
and 2 crossings while the planarity of Π is one time preserved and
the other time disregarded. . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Example of a graph (a) and its augmented dual graph (b) with
additional vertices 2, 5 and 7. . . . . . . . . . . . . . . . . . . . . 25

3.3 The minimum number of crossings needed when inserting an edge
depends on the chosen embedding. . . . . . . . . . . . . . . . . . 27

4.1 Biconnected graph with affected vertices 4, 5, 8, 11, 14, 17. The em-
bedding (a) allows to insert ϑ and its incident edges with 10 cross-
ings whereas these elements can be inserted into the embedding
(b) with only 4 crossings. . . . . . . . . . . . . . . . . . . . . . . . 31

vii



List of Figures

4.2 Example illustrating the approach of Algorithm 4.2. (a) shows
a graph with its augmented dual graph with respect to affected
vertices 4, 5 and 11, (b) possible BFS trees outgoing from these
vertices and (c) a distance matrix for each affected vertex. As can
be seen the new vertex would be inserted into face a. . . . . . . . 34

4.3 Biconnected graph (a) with the tree (b) induced by all shortest dual
edge insertion paths and a labelling of the tree edges indicating the
tree’s traversing order. . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 A counterexample that shows a graph for which the computed
lower bound is not sharp. . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Biconnected graph (a), its SPQR-tree with root (b) and two em-
beddings of pert(µ2) (c),(d) representing optimal subsolutions of
Problem 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Schematic illustration concerning Equation 4.1. . . . . . . . . . . 42
4.7 Pertinent graphs with inserted elements visualizing the computa-

tion of a subsolution of the core problem with respect to a P-node. 50
4.8 Distinct subgraphs H̄1, H̄2 and H̄3 sharing the common cut-vertex

ck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



List of Algorithms

3.1 Basic heuristic for CCMP. . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Computes shortest dual edge insertion paths naively. . . . . . . . 32
4.2 Computes shortest dual edge insertion paths by processing several

breadth-first searches. . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Computes the value of a solution of the core problem with respect

to µ as S- or R-node. . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Computes the value of a solution of the core problem with respect

to µ as P-node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Computes an embedding Π(j) of pert(µ) belonging to C̄(j). . . . 56
4.6 Computes an optimal solution of VIP-VAR for a biconnected pla-

nar graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Computes an optimal solution of VIP-VAR for connected planar

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix





1 Introduction

In many real-life situations graphical representations are used to illustrate in-
formation. The goal of information illustration is to clarify relations between
single information objects, to make structures visible and to get a more holistic
view on the information. Mind and concept maps are well known examples for
information illustration. In [15] Fleischer and Hirsch choose another profane
example to point out the importance for displaying information. They ask for
an adequate representation of a subway map. Imagine, a subway map would be
represented in textual form like ”Train 1 runs from station A to station B via
stations C, D, and E. At station D you can change to trains 3 and 11, etc.”. This
form of representation would be very confusing and information search would be
rather difficult. Instead, a better way is to draw a nice ”picture” which easily
shows, e.g., where an interchange facility exists or which stations a train visits
(cf. Figure 1).

In a more abstract mathematical way, mind, concept and subway maps are
graphical representations of graphs. A graph is a structure consisting of a set of
objects, called vertices, and a set of pairwise relations between vertices, called
edges. In a mind or concept map the vertices are the individual information
objects and the edges the connections between them. In a subway map the
vertices are the stations and the edges are the rail links between the stations. The
graphical representation of a graph is called a graph drawing or simply drawing.
Usually, a graph is drawn into the plane by drawing a point, circle or any other
geometric figure for each vertex and a curve between two geometric figures for
each edge (cf. Figure 1.2).

Nowadays the spectrum of applications for graphs and especially graph draw-
ings is wide. The following list gives an overview of important application fields:

• Hard- and software development and specification: In particular if huge soft-
ware systems are developed, graphs and diagrams visualize relationships or
data flows between objects. Examples are UML (Unified Modeling Lan-
guage) diagrams like class, inheritance, activity or flow diagrams as well as
finite state machines.

• Database design: (S)ER ((Structured) Entity Relationship) diagrams model
the connection between tables of relational databases and how many records
interact with others.

1



Chapter 1. Introduction

Figure 1.1: Typical subway map, here a detail of the subway map of New York
City.

• Computer science in general: Petri nets as a representation of distributed
systems, network design and visualization of networks, binary decision di-
agrams as a data structure for Boolean functions, model checking and rea-
soning.

• Social sciences: Here, graphs model genealogy trees and social networks for
example.

• VLSI (Very Large Scale Integration) Design: Chip designer use graphs as
wired schemes between electronic components.

With a growing complexity of graphs besides the additional demand for cer-
tain constraints on their drawings, it is desirable to generate such drawings au-
tomatically with the aid of computers and special graph drawing software. The
relatively modern research field of automatic graph drawing addresses this task.
It is concerned with the design, analysis, implementation and evaluation of ap-
propriate graph drawing algorithms. Thereto automatic graph drawing combines
graph theoretic, algorithmic and combinatorial aspects. Introductory information
about automatic graph drawing can be found in, e.g., [6, 15, 27], further reading
is given, e.g., in [24].

Depending on its purpose a drawing must fulfill certain criteria. There exists a
range of commonly accepted criteria characterizing a ”good” graph drawing, see
the list below. Usually, these criteria are known under the term aesthetic criteria.
But these criteria are also important from a technical view, for example, in VLSI
design.

2



• Minimum number of (edge) crossings: Edges that cross each other make
it difficult for the reader to follow a connection between two objects (cf.
Figure 1.2(a), 1.2(b)). Increasing the number of edge crossings in a drawing
decreases the understandability [29].

In wired schemes an edge crossing represents a wire crossing. On a chip
such wire crossings are resolved by routing one of the wires to a second
layer immediately before the crossing. After the wire has passed the crossing
point it can be routed back to the primary layer. Layer changes are realized
with contact cuts that need a large area and thus increase the overall size
of the layout.

• Orthogonality: Vertices and edges can be thought of as fixed on a grid.
Edges consist only of vertical and horizontal segments (cf. Figure 1.2(c)).
Orthogonal drawings usually look much tidier than drawings with arbitrar-
ily curved edges. A plausible example for the application of orthogonal
drawings is architectural floor plan design [15].

• Minimum number of bends: This criterion is particularly desirable in or-
thogonal drawings. The reader can follow an edge with few bends much
more easier than an edge with an arbitrary number of bends.

Moreover bend minimization is a technical criterion. In VLSI design bends
in wires can cause technical problems [15].

• Angle maximization: If edges incident to one vertex lie very closely and
even parallel to each other, the reader cannot distinguish between single
edges.

• Symmetry: The abstract graph itself can hide symmetries. So it is a task
to make symmetries visible in a drawing. Otherwise they might be undis-
covered.

• Length minimization: This criterion concerns the length of edges and dis-
tances between vertices. It is also another technical criterion. In VLSI
design short edges are required to guarantee short circuit times and an
overall small size of the chip.

• Area minimization: A drawing is more concise if the drawn vertices and
edges fill the drawing area with homogeneous density.

• Layered and hierarchical drawings: Activity, flow or SER diagrams have a
reading direction and therefore are typically visualized in hierarchies, i.e.,
vertices are restricted to distinct layers.

3



Chapter 1. Introduction

1

2

3

4

5

6

(a)

1

2

3

4

56

(b)

1

2

3

4

5

6

(c)

Figure 1.2: Different drawings of the same graph with different number of cross-
ings. Drawing (a) has 6, drawing (b) has none and drawing (c) has 2
crossings.

The criterion of a minimum number of crossings in a drawing takes on a special
position among the mentioned criteria. From the perspective of human cognition
Purchase has verified the importance of this criterion with experimental studies
[29, 30]. She has investigated the influence on the readability and interpretability
of graph drawings with subjects and concludes that edge crossings affect the
human reader at most [29]. In VLSI design, there is no doubt about the relevance
of wired scheme layouts with a minimum number of crossings since nowadays
thousands of transistor-based circuits have to be integrated into a single chip.

The class of graphs that can be drawn with no crossings at all, and therefore
fulfill the crossing minimization criterion entirely, is the class of planar graphs. In
graph theory as well as in the area of automatic graph drawing, scientists have
spent a lot of research on planar graphs. Various algorithms for drawing planar
graphs exist, for example, such ones that produce grid, straight line or orthogonal
drawings of planar graphs. An overview about concepts of algorithms for drawing
planar graphs is given by Weiskircher in [34].

Unfortunately, most graphs are non-planar and cannot be drawn without cross-
ings. But the problem to compute a drawing with the minimum number of cross-
ings, the so-called crossing minimization problem, is NP-hard in general. This
result goes back to Garey and Johnson. They have proved that the problem
to compute the crossing number, that is the minimum number of crossings over
all possible drawings of a graph, is NP-complete [17]. Though several NP-hard
problems arising in automatic graph drawing have been solved in practice, the
crossing minimization problem is extremely hard [7]. However, a first branch-
and-cut approach that is able to compute the crossing number of sparse graphs
on up to 40 nodes within a time limit of five minutes has been presented in [8].
An extended approach using the column generation technique is suggested in [10]
and can compute the crossing number of larger graphs on up to ≈ 70 nodes within

4



the same time limit.
Nevertheless, in practice there is a need to tackle this problem and heuristics are

employed. The most promising and frequently used heuristic is the planarization
method introduced firstly by Batini et al. [1]. The planarization method
performs two major steps and can be roughly described as follows. In the first
step a set of edges in the non-planar graph which has to be drawn is deleted
and a planar subgraph is obtained. In the second step, the deleted edges are
reinserted one-by-one into this planar subgraph while trying to produce only few
crossings. Crossings that appear in each edge reinsertion step are replaced by
artificial vertices to maintain a planar subgraph for the next edge reinsertion
step. Having added all edges in this way, the result is a planar graph which is
also referred to as planar representation of the original graph. Then a drawing
algorithm for planar graphs is applied to this planar representation. Finally, the
artificial vertices are replaced by edge crossings and a drawing of the original
graph with hopefully few crossings is obtained. Each these steps can be seen as
a separate optimization problem, and there exist various solutions to solve them.

But the two steps of the planarization method are also realizable in another
more drastic way. A planar subgraph of the non-planar graph to be drawn can
be obtained by deleting a set of vertices together with their incident edges. Then
the deleted vertices are reinserted one-by-one together with their incident edges
at once. This thesis deals with one such vertex reinsertion step in two possible
variants. The more interesting and more difficult one takes a possibly exponential
number of drawings of the given planar (sub)graph in a certain topological sense
into account. As will be shown both problem variants can be solved optimally in
polynomial time. Vertex deletion and reinsertion can also be applied as a post-
processing step after the usual planarization heuristic for improving the quality
of the drawing.

In Chapter 2 we will introduce the formal fundamentals which are needed
throughout the thesis. Important terms like graph, k-connectivity and embedding
are defined as well as a crucial data structure, the SPQR-tree data structure.
Chapter 3 throws light on the planarization heuristic in more detail with an
emphasis on the edge reinsertion phase. Chapter 4 represents the main part of
this thesis defining what we understand under the problem of Inserting a Vertex
into a Planar Graph and especially presenting polynomial time algorithms for its
two problem variants. Chapter 5 concludes this thesis by giving a summary of
the results and an outlook of future work.

5





2 Preliminaries

This chapter introduces the formal fundamentals and notations which are essen-
tial throughout this thesis. Firstly, basic terms and a few statements of graph
theory are given followed by some definitions around the term embedding. Fur-
ther, the central data structure of this thesis, the SPQR-tree data structure, is
defined and an exemplary generation of an SPQR-tree is given. Finally, some of
its properties are discussed. Further definitions and notations are introduced in
corresponding chapters.

2.1 Graph Theory

The following definitions are based on [20] unless stated otherwise. They might
be slightly modified, merged or listed in an order that fits our purposes.

Definition 2.1 ((Multi)Graph) Let V be a finite set and E ⊆ {{v, w} | v, w ∈
V, v 6= w} be a (multi)set. Then G = (V,E) is a (multi)graph.

Let us consider a (multi)graph G = (V,E). The elements v ∈ V are called vertices
and the elements e ∈ E are called edges of G. Two vertices are adjacent if there
exists an edge between them and two edges are adjacent if they share a common
vertex. An edge e = {v, w} connects the vertices v, w, also called endpoints of e,
and v, w are said to be incident to e as well as e is said to be incident to v, w.
The number of edges incident to vertex v is its degree, denoted with d(v).
G is called directed if all e ∈ E are directed and e = {v, w} is said to be

directed if v, w are ordered. Otherwise G is undirected. Note, the definition of
a (multi)graph prohibits self-loops, that is a vertex must not relate to itself. A
subgraph of G is another graph G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E. We
denote the subgraph relation with G′ ⊆ G. G′ is a proper subgraph of G if
G′ 6= G. If G′ is a (proper) subgraph of G, then G is a (proper) supergraph of G′.
G′ is a maximal (minimal) subgraph of G with a property Φ if G′ satisfies

Φ and if no other subgraph G′′ ⊆ G exists that is a proper supergraph of G′

and satisfies Φ. A subset V ′ ⊆ V induces a subgraph G′ = (V ′, E ′) of G with
E ′ := {e = {v, w} ∈ E | v, w ∈ V ′} and a subset E ′′ ⊆ E induces a subgraph
G′′ := (V ′′, E ′′) with V ′′ := {v ∈ V | v is endpoint of an edge e ∈ E ′′}. G is a
weighted graph, if vertices or edges in G are weighted with any numbers.

7



Chapter 2. Preliminaries

A walk W = v0, e1, v1, . . . , vk−1, ek, vk of G is an alternating series of vertices
vi ∈ V (i = 0, . . . , k) and edges ej = {vj−1, vj} ∈ E (j = 1, . . . , k) connecting v0

with vk. W can also be described by listing only its vertices or edges. W is closed
if v0 = vk, otherwise it is open. W is a trail if all edges in it are distinct and a
path if additionally all vertices in it are distinct. The length of a path is defined
as the number of edges in it. A closed path is called a cycle for k ≥ 3.

Definition 2.2 (k-Connectivity) A graph G = (V,E) is k-connected for k > 0
if for any pair of vertices v, w ∈ V there exist k different paths connecting v and
w that are pairwise vertex disjoint except in their endpoints.

An equivalent definition of a k-connected graph G is that no set of k−1 elements
exists, each a vertex or an edge, whose removal disconnects G. Such a set is
called separating (k − 1)-set. 1-connected, 2-connected, and 3-connected graphs
are usually called connected, biconnected, and triconnected, respectively.

We denote by G − x and G − Y the deletion of either a vertex or an edge x
in G and the deletion of either a set of vertices or edges Y in G, respectively.
If a vertex is deleted also all its incident edges are deleted. Separating 1-sets
and 2-sets of vertices are called cut-vertices and separation pairs, respectively.
A maximal connected subgraph of a graph is called connected component and a
maximal biconnected subgraph of a graph is called biconnected component, bicomp
or block.

Note, a k-connected component for k > 2 is not just a maximal subgraph
that is k-connected. Since we will deal at most with triconnected components
(shortly tricomps), we now give their definition taken from [11]. The reader can
find a generally recursive definition that creates the k-connected components of
a graph for any k > 2 in [4]. Let G be a biconnected graph. If G is triconnected,
then G itself is the unique tricomp of G. Otherwise, let the vertices u, v build a
separation pair {u, v} of G. We partition E into two disjoint sets E1 and E2 with
|E1|, |E2| ≥ 2 such that the subgraphs G1 and G2 induced by them have only
vertices u and v in common. This decomposition process is continued recursively
on G1 +e and G2 +e with edge e = {u, v} until no decomposition is possible. The
resulting graphs are each either a triconnected graph, or a multigraph consisting
of two vertices with three multiple edges between them (triple bond), or a cycle
of length three (triangle). The tricomps of G are obtained from such graphs by
merging the triple bonds into maximal sets of multiple edges (bonds), and the
triangles into maximal cycles (polygons).

Definition 2.3 (Tree) A graph T is a tree if T is connected and cycle-free.

Vertices of T are referred to as nodes. T can have a designated node called the
root of T . Then T is called a rooted tree and has an orientation towards or

8



2.1. Graph Theory

  

1 3

4

2

6

5

7

B3

B2

B1 B1

4

5

8
B4 B2

B3 B4

Figure 2.1: Example of a connected graph and its BC-tree. Cut-vertices are 4, 5.

away from the root. The orientation can be represented by directed edges. If
{v, w} is a directed edge in a tree, then w is called a child (node) of v and v is
called the parent (node) of w. A node v with d(v) = 1 is a so-called leaf. The
tree representing the relationship between blocks and cut-vertices of a connected
graph is the block-cut-vertex-tree or shortly BC-tree (cf. Figure 2.1).

Definition 2.4 (BC-tree) Let G = (V,E) be a connected graph. A BC-tree of
G contains a B-node for each block in G and a C-node for each cut-vertex v in
G. A B-node b and a C-node c are connected by an edge if and only if c belongs
to the corresponding block of b in G.

So far we considered graphs as an abstract mathematical structure. As we
already know from Chapter 1 graphs can have a graphical representation. Below
we give a formal definition of a drawing and a few definitions concerning com-
binatorial aspects of drawings. The following four definitions are based on [35].

Definition 2.5 ((Planar) Drawing) A drawing Γ of a graph G = (V,E) is a
function that maps each v ∈ V to a point and each {v, w} ∈ E to a curve Γ(v, w)
with endpoints Γ(v) and Γ(w) in the plane R2. Γ is planar, if all pairs of disjoint
vertices are mapped to different points and curves does not cross each other except
in their endpoints.

Definition 2.6 (Planar graph) A graph G is planar if there exists a planar
drawing Γ of G.

Deleting a planar drawing of G induces regions in the plane. They are called faces
and a distinction is made between bounded internal faces and one unbounded
external face. We say edges and vertices defining a face lie on the boundary of it
or border it. A face can be described by giving an anti-clockwise ordered list of
the edges bordering that face.

9



Chapter 2. Preliminaries

1

2 3 4

5

(a)

1

2 3 4

5

(b)

1

4 3 2

5

(c)

Figure 2.2: Graph with different embeddings.

A planar drawing of G is also called a planar geometric embedding of G. G can
have an infinite number of drawings because the plane is infinite. But different
drawings can equal in a combinatorial sense. We call two planar drawings Γ and
Γ′ of G weakly equivalent, if for every v ∈ V , the circular order of the incident
edges around v in clockwise order is the same in Γ and Γ′. If, additionally, the
external faces of Γ and Γ′ are equal, the two drawings are strongly equivalent.

Definition 2.7 (Combinatorial embedding) A combinatorial embedding Π of
a planar graph G is an equivalence class of its weakly equivalent planar drawings.

Definition 2.8 (Planar embedding) A planar embedding Π of a planar graph
G is an equivalence class of its strongly equivalent planar drawings.

Drawings with the same combinatorial embeddings can look very different and
drawings with different combinatorial embeddings can look similar. This is illus-
trated by Figure 2.2. The drawings in Figure 2.2(a) and 2.2(b) have the same
combinatorial, but not the same planar embedding. The drawings in Figure 2.2(a)
and 2.2(c) seem to have the same combinatorial embedding, in fact they have not.

The specification of a combinatorial or planar embedding as cyclic adjacency
lists does not make any statements about geometric attributes like the position
of vertices or the length of edges. From now on, we will not talk about a specific
drawing of a graph. It suffices to give a combinatorial or planar embedding Π
and to think of any planar drawing that realizes it, i.e., the drawing belongs to
Π. We use the term embedding both for a combinatorial and planar embedding,
if it is clear from context.

Definition 2.9 (Dual graph) Let G = (V,E) be a planar graph and Π be a
combinatorial embedding of G inducing a face set F . Let F ∗ = {f ∗ | f ∗ represents f ∈ F}

10



2.1. Graph Theory

1

2

3

4

5

(a)

1

2

3

4

5

(b)

Figure 2.3: Example of a simple planar graph with two distinct combinatorial
embeddings and their dual graphs.

and E∗ = {{f, f ′} | f, f ′ ∈ F ∗ join the same edge e ∈ E} be. Then Π∗ = (F ∗, E∗)
is the (geometric) dual graph of G with respect to Π.

Different combinatorial embeddings can have different dual graphs. Further-
more a dual graph is usually a multigraph and can contain self-loops (cf. Figure
2.3).

Planar graphs can also be characterized by Kuratowski’s prominent theo-
rem. A subdivision of an edge {v, w} is the replacement of e by two new edges
{v, v′}, {v′, w} and a new vertex v′. Two graphs G1, G2 are homeomorphic if
both arise from a graph G = (V,E) by a series of subdivisions of edges e ∈ E,
for example two cycles are homeomorphic. A graph G = (V,E) is bipartite if
V can be partitioned into disjoint sets V1, V2 such that only edges {v, w} with
v ∈ Vi, w ∈ Vj, i 6= j exist. Kn denotes the complete graph on n vertices and
Kn,m denotes the complete bipartite graph G = (V1∪̇V2, E), |V1| = n, |V2| = m.

Theorem 2.1 A graph G is planar if and only if G does not contain a subgraph
that is homeomorphic to K5 or K3,3.

The size of a planar graph is linear in the number of its vertices. This can be
concluded from the two following statements adopted from [13].

Theorem 2.2 (Euler’s polyhedron formula for the plane) Let G = (V,E)
be a planar connected graph with |V | ≥ 1, F be the face set of any embedding of
G. Then the following equation is true

|V | − |E|+ |F | = 2

11



Chapter 2. Preliminaries

Corollary 2.1 A planar graph G = (V,E) with |V | ≥ 3 vertices has at most
3 · |V | − 6 edges.

Corollary 2.2 The size of a planar graph is O(|V |+ |E|) = O(|V |).

2.2 Definition of the SPQR-tree Data Structure

An SPQR-tree is a data structure for decomposing a biconnected graph G with
respect to its tricomps. For the first time, SPQR-trees were introduced by Di
Battista and Tamassia based on ideas by Bienstock and Monma in 1989.
Di Battista and Tamassia used SPQR-trees originally for incremental pla-
narity testing [2]. Since then, the SPQR-tree data structure established itself as
a crucial instrument for various problems mainly in the fields of planarity testing
and graph drawing.

In [11] Di Battista and Tamassia use SPQR-trees for another on-line prob-
lem, the maintenance of tricomps. Their algorithm provides a couple of opera-
tions on a graph like vertex- and edge-insertion plus one operation, determining
whether three vertex-disjoint paths between two vertices exist. Bertolazzi and
Di Battista use the data structure in a branch-and-bound algorithm for com-
puting an orthogonal drawing with the minimum number of bends of a bicon-
nected graph. Gutwenger, Mutzel and Weiskircher utilize SPQR-trees
for the problem of computing a crossing minimum drawing of a planar graph
augmented by an additional edge such that all crossings involve this edge [19].
An overview about the applications of SPQR-trees in graph drawing is given by
Mutzel in [28].

We will give a detailed definition below which is adopted from [11]. A slightly
modified variant of this definition is given by Weiskircher in [35]. His definition
is especially advisable for the reader who is inexperienced with SPQR-trees. But
before we start with the main definition, a few more terms are necessary.

Let G = (V,E) be a biconnected graph. A split pair of G is either a separation
pair or a pair of adjacent vertices. A split component of a split pair {v, w} is
either an edge {v, w} or a maximal subgraph G′ ⊆ G such that {v, w} is not
a split pair of G′ (cf. Figure 2.4). Let {s, t} be a split pair of G. A maximal
split pair {v, w} of G with respect to {s, t} is such that, for any other split pair
{v′, w′}, vertices s, t, v and w are in the same split component. Let e = {s, t} ∈ E
be an edge, called the reference edge. The SPQR-tree T of G with respect to e
describes a recursive decomposition of G induced by its split pairs:

Definition 2.10 (SPQR-tree) T is a rooted ordered tree whose nodes µ are of
four types: S, P,Q,R. Each node µ of T has an associated biconnected multi-

12



2.2. Definition of the SPQR-tree Data Structure

  

5

6

1

7

2

3

4

(a)

  

1

7

2

1

7

5

6

1

7

3

4

(b)

  

5

6

1

3

4

6

1

7

2

(c)

Figure 2.4: Biconnected graph (a), split components with respect to the split pair
{1, 7} (b) and {1, 6} (as separation pair) (c).

graph, called the skeleton of µ and denoted by skeleton(µ). T is recursively
defined as follows:

Trivial Case: If G consists of exactly two parallel edges between s and t, then T
consists of a single Q-node whose skeleton is G itself.

Parallel Case: If the split pair {s, t} has at least three split components G1, . . . , Gk

(k ≥ 3), the root of T is a P-node µ. Skeleton skeleton(µ) consists of k
parallel edges between s and t, denoted e1, . . . , ek, with e1 = e.

Series Case: Otherwise, the split pair {s, t} has exactly two split components, one
of them is the reference edge e, and we denote the other split component by
G′. If G′ has cut-vertices c1, . . . , ck (k ≥ 2) that partition G′ into its blocks
G1, . . . , Gk, in this order from s to t, the root of T is an S-node µ. Skeleton
skeleton(µ) is the cycle e0, e1, . . . , ek, where e0 = e, c0 = s, ck = t, and ei
connects ci−1 with ci (i = 1, . . . , k).

Rigid Case: If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the
maximal split pairs of G with respect to {s, t} (k ≥ 1), and, for i = 1, . . . , k,
let Gi be the union of all the split components of {si, ti} but the one contain-
ing the reference edge e. The root of T is an R-node µ. Skeleton skeleton(µ)
is obtained from G by replacing each subgraph Gi with the edge ei between
si and ti.

Except for the trivial case, µ has children µ1, . . . , µk in this order, such that µi
is the root of the SPQR-tree of the (multi)graph Gi + ei with respect to reference
edge ei (i = 1, . . . , k). The endpoints of edge ei are called the poles of node µi.
Edge ei is said to be the virtual edge of node µi in the skeleton of µi and of node
µ in the skeleton of µi. We call node µ the pertinent node of ei in the skeleton of

13



Chapter 2. Preliminaries

  

s

t

c2

c1

s

t

c2

c1

G1

G2

G3

e1

e2

e3

e e

(a)

  

s

t

G1 G2 G3 e

s

t

e1
e2 e3 e

(b)

  

s

t

G1
G2

G3 e

G4 G5

s

t

e1
e2

e3
e

e4
e5

(c)

Figure 2.5: Pertinent graphs and their skeletons of an S- (a), P- (b) and R-node
(c).

µi, and µi the pertinent node of ei in the skeleton of µ. The virtual edge of µ in
the skeleton of µi is called the reference edge of µi.

The tree so obtained has a Q-node associated with each edge of G, except the
reference edge e. We complete the SPQR-tree by adding another Q-node, repre-
senting e, and making it the parent of µ so that it becomes the root.

We need some more handy notations according to an SPQR-tree T . Let µ be a
node in T and e be an edge in the skeleton skeleton(µ) and let ν be the pertinent
node of e. Deleting edge {µ, ν} in T splits T into two connected components. Let
Tν be the connected component containing ν, also called subtree of T with root
ν. The expansion graph of e, denoted with expansion(e), is the graph induced
by the edges of G contained in the skeletons of the Q-nodes in Tν . expansion+(e)
denotes expansion(e) + e. The pertinent graph of µ, denoted by pert(µ), is
obtained from skeleton(µ) by replacing each edge in skeleton(µ) except for the
reference edge with its expansion graph. Note, the expansion graph of e is the
same graph as the pertinent graph of ν without its reference edge. A node in T
whose skeleton contains the vertex v is called an allocation node of v. Schematic
views of pertinent graphs and skeletons of the relevant node types are shown in
Figure 2.5.

For simplicity reasons, if we deal with an SPQR-tree we will omit Q-nodes and
thus will distinguish between virtual and proper edges in a skeleton which are
edges contained in the underlying graph. Therewith all leaves and the root of
an SPQR-tree are nodes of type S, P or R. According to this definition we have
to adjust the definition of an expansion graph slightly. The expansion graph of
the virtual edge e with pertinent node ν is the graph induced by the edges of G
contained as proper edges in the skeletons of all nodes in Tν . Figure 2.6 shows
an SPQR-tree and clarifies important terms once again.

14



2.2. Definition of the SPQR-tree Data Structure

1

2

3 4

5

6

7

8

9 1 0 1 1

1 2

(a) Biconnected graph G.

  

P

S R

R S

1

2

4

3

5

(b) SPQR-tree T of
G without Q-nodes.

1

7

1

2

5

6

7

2

3 4

5

8

9 1 1

1 2

9 1 0 1 1e

(c) From left to right: skeleton graphs skeleton(µ4), skeleton(µ2),
skeleton(µ1), skeleton(µ3) and skeleton(µ5) associated with the nodes
of T . The coloured edges represent virtual edges. E.g., µ4 and µ2 are
both allocation nodes for vertices 2 and 5.

1

2

3 4

5

6

7

(d) expansion+(e) =
pert(µ2).

Figure 2.6: Illustration of certain notions concerning an SPQR-tree.

15



Chapter 2. Preliminaries

2.2.1 Example Decomposition

Now, we perform an example decomposition of a biconnected graph G shown
in Figure 2.7(a) to illustrate the complex construction of an SPQR-tree. As
reference edge for the first decomposition step, we choose the edge e0 := {1, 2}.
G has three split components with respect to e0. Let C1 be the left, C2 := e0 be the
middle and C3 be the right component in Figure 2.7(b). Hence, the parallel case
applies and a P-node becomes the root of the current SPQR-tree with a skeleton
consisting of three parallel edges between vertices 1 and 2 (cf. Figure 2.7(c)).
Therewith the first decomposition step is completed. Now, the decomposition
proceeds recursively for the graphs G1 = C1 +e1, G2 = C2 +e2, G3 = C3 +e3 with
e1 := e2 := e3 := e0 illustrated from left to right in Figure 2.7(d).

Let us now decompose G3 with respect to e3. G3 has two split components. Let
C31 := e3 denote the left and C32 denote the right component in Figure 2.7(e).
C32 owns a cut-vertex 5 and thus the series case applies. The skeleton of G3 is
G3 itself. The blocks of C32 are the proper edges {1, 5} and {2, 5}. Therefore the
recursive decomposition of G3 is completed and the SPQR-tree is extended by
one S-node (cf. Figure 2.7(f)).

Decomposing G1 with respect to e1 generates again two split components. We
denote by C11 the left and by C12 the right component in Figure 2.7(g). C11

is biconnected and so the rigid case applies. Now, the maximal split pairs with
respect to e1 have to be determined. The split pairs of G1 are all edges in G1

plus the separation pair {1, 3}. None of the split components of G1 with respect
to {1, 3} contains the vertices 1, 2 and one of the vertices 6, 7 or 8 (cf. Figure
2.7(h)). Hence all edges with endpoints 6, 7 or 8 are not maximal split pairs.
{1, 3}, {2, 3}, {1, 4} and {2, 4} are the maximal split pairs. For each such pair
π we have to compute a graph Gπ that is the union of the split components of
G1 with respect to π but the one containing e1. G{2,3}, G{1,4} and G{2,4} are the
graphs induced by edges {2, 3}, {1, 4} and {2, 4}, respectively. G{1,3} is the graph
induced by vertex set {1, 3, 6, 7, 8}. We replace all these graphs by edges and
obtain the skeleton of G1 (cf. Figure 2.7(i)). The current SPQR-tree is extended
by one R-node.

Finally, it remains to decompose G{1,3} + e with edge e = {1, 3} recursively.
In this decomposition one time the parallel case and three times the serial case
applies. Figure 2.7(j) presents the final SPQR-tree.

2.2.2 Properties of an SPQR-tree

An important property of an SPQR-tree is that it represents all combinatorial
embeddings of its underlying graph implicitly. In fact, this means that the SPQR-
tree can be used to enumerate all combinatorial embeddings of its underlying

16



2.2. Definition of the SPQR-tree Data Structure

1

3 4 5

2

6

7

8

(a)

1

3 4

2

6

7

8

1

2

1

5

2

(b)

1

2

P

(c)

1

3 4

2

6

7

8

1

2

1

5

2

(d)

1

5

2

1

2

(e)

P

S

(f)

1

3 4

2

6

7

8

1

2

(g)

1

3 4

2

1

3

6

1

3

7

1

3

8

(h)

1

3 4

2

(i)

P

R

P

S S S

S

(j)

Figure 2.7: Graph and its SPQR-tree.

17



Chapter 2. Preliminaries

graph. This relies on the following theorem taken from [35].

Theorem 2.3 Let G be a biconnected planar graph and let T be its SPQR-tree.
A combinatorial embedding Π for G uniquely defines a combinatorial embedding
of the skeleton of each node in T . On the other hand, fixing the combinatorial
embedding of the skeleton of each node in T uniquely defines a combinatorial
embedding of G.

Intuitively, each skeleton of an SPQR-tree T can be constructed from T ’s un-
derlying graph G by replacing subgraphs of G with single edges. Hence, a com-
binatorial embedding of G defines a combinatorial embedding of each skeleton.
From this also follows that each skeleton is a simplified view of G. Conversely,
G can be constructed from T ’s skeletons by merging all skeletons together. This
can be done by merging any two skeletons with the same reference edge until
one skeleton is left. This skeleton is then isomorphic to G, i.e., there exists a
one-to-one mapping between the vertices in the skeleton and G such that the ad-
jacency in both graphs are the same. With this merging operation it is possible
to construct a combinatorial embedding of G.

SPQR-trees are closely related to the classical decomposition of biconnected
graphs into tricomps described by Hopcroft and Tarjan in [23]. Namely,
the tricomps of a biconnected graph G are in one-to-one correspondence with
the skeletons associated with the internal nodes of G’s SPQR-tree. That is, R-
skeletons correspond to triconnected graphs, S-skeletons to polygons (cycles) and
P-skeletons to bonds [11].

Furthermore two S-nodes cannot be adjacent and the same is true for two P-
nodes [11]. Since an S-node is a cycle, its skeleton has only one combinatorial
embedding whereas the skeleton of an R-node has two combinatorial embeddings.
In a skeleton of a P-node every permutation of its edges except the reference
edge defines a combinatorial embedding. So, if an SPQR-tree has r R-nodes
and l P-nodes whose skeletons own p1, . . . , pl edges, then the total number of
combinatorial embeddings of its underlying graph is

2r
∏

1≤i≤l

(pi − 1)!

Therefore the number of combinatorial embeddings of a graph can be exponential.
If we think of an SPQR-tree as an acyclic connected graph instead of a rooted

tree, then there is just one SPQR-tree for any biconnected graph. Hence, what-
ever edge is chosen as the reference edge for the decomposition, the result will
always be the same [35].

According to its original definition an SPQR-tree of a biconnected graph G =
(V,E) has O(|V |) S-, P- and R-nodes and O(|E|) Q-nodes. It can be shown that

18



2.2. Definition of the SPQR-tree Data Structure

the number of edges and vertices in all skeletons grows linearly with the number of
edges in the graph [35]. Therefore, the total size of an SPQR-tree is O(|V |+ |E|).
For planar graphs its size is even O(|V |) since a planar graph has at most 3·|V |−6
edges. An SPQR-tree can also be computed in time O(|V | + |E|). Again, for
planar graphs the runtime is O(|V |). Gutwenger and Mutzel present in [19]
a corrected linear time implementation based on the algorithm given in [23].

19





3 The Planarization Heuristic

We have already motivated in Chapter 1 that in automatic graph drawing it
is essential to generate drawings with a minimum number of crossings. But
unfortunately the problem to compute a drawing with the minimum number of
crossings is NP-hard in general. Basically, there are three heuristics that can be
employed to tackle this problem. Thereto belong force-directed and Sugiyama-
like methods [24] as well as the more promising and widespread planarization
heuristic.

In this chapter we present the planarization method in more detail with an
emphasis on its second major step, the edge reinsertion phase. Note, that the
planarization method cannot be regarded as a self-contained graph drawing al-
gorithm. It is rather a method which generates a planar representation of the
non-planar graph to be drawn which then can be drawn by any planar graph
drawing algorithm. Therewith the planarization approach can take advantage of
many popular algorithms for drawing planar graphs that provide a great variety
of styles of representations. The planarization technique goes back to ideas by
Batini, Talamo and Tamassia [1, 31]. It is also part of the so-called Topology-
Shape-Metrics model, a generic paradigm for computing orthogonal graph draw-
ings [31].

3.1 The Two Major Steps

Basically, the planarization heuristic can be described by two major steps which
are hard optimization problems on their own (see below). At first, for the sake
of clarity we give a fine-grained description based on the one given by Ziegler
in [36]:

1. Find a minimum set F ⊂ E of edges in the non-planar graph G = (V,E) to
be drawn whose removal from G leads to a planar subgraph Gp := G − F
of G.

2. Determine a combinatorial embedding Π of Gp.

3. Reinsert all e ∈ F into Π such that the number of crossings is minimized.

4. Replace the crossings by new artificial vertices.

21



Chapter 3. The Planarization Heuristic

5. Draw the resulting planar graph with a planar graph drawing algorithm.

6. Replace the artificial vertices by crossings.

3.1.1 First Step - Planarization

The first major step of the heuristic (step one in the above description) is known
as the Maximum Planar Subgraph Problem (MPSP). We could equivalently for-
mulate the first task of the planarization heuristic as finding a planar subgraph
Gp of G with the maximum number of edges among all planar subgraphs of G.
MPSP is an NP-hard problem. However, there is an exact branch-and-cut al-
gorithm by Jünger and Mutzel for the weighted maximum planar subgraph
problem. The only difference to MPSP is that the input graph is edge-weighted
and a planar subgraph with the maximum sum over all edge weights is desired.
It is practically applicable as long as the number of deleted edges does not exceed
ten [7]. So, with an edge weight of one for all edges an optimal solution of MPSP
can be obtained by this algorithm.

In practice the computation of a maximal planar subgraph is more convenient.
A maximal planar subgraph G′p = (V,E ′p) of a graph G = (V,E) is a planar
subgraph of G with the property that adding any edge in E − E ′ would destroy
the planarity of G′p. The problem to find such a maximal planar subgraph is
solvable in polynomial worst-case time. A simple approach is to start with a
subgraph of G containing no edges and trying to insert edges of G one-by-one
iteratively. After an edge is inserted, the current subgraph is tested for planarity.
In the case it is non-planar, the edge is deleted from the subgraph and disregarded
for the remaining steps. Since planarity can be tested in linear time in the number
of vertices of a graph (e.g., [5]), the total running time is O(|V | · |E|). Instead
of starting this algorithm with no edges a spanning-tree of G can be utilized
to save planarity testings. A better improvement is achieved with an on-line
planarity testing algorithm using BC- and SPQR-trees [12]. It tests in amortized
time O(log |V |) whether an edge can be inserted such that planarity is preserved
plus necessary update operations. Altogether this leads to a total running time
O(|E| · log |V |).

3.1.2 Second Step - Edge Reinsertion

The second major step of the planarization heuristic (step three in the above de-
scription) is known as the Constrained Crossing Minimization Problem (CCMP)
which has been thoroughly studied by Ziegler [36]. The formal definition of this
problem claims that all e ∈ F have to be inserted into the combinatorial embed-
ding Π with the minimum number of crossings at once such that Π is preserved

22



3.2. Heuristics for CCMP

and there are only crossings between edges in F and edges in E − F . Ziegler
has proved CCMP to be NP-hard and has developed a branch-and-cut algorithm
that can solve CCMP optimally for small instances.

But even if both MPSP and CCMP are solved to optimality, the planarization
method must not yield a crossing minimum drawing. The first reason is that we
choose a maximum (maximal) planar subgraph whose planarity is preserved in
the subsequent steps. But this subgraph can contain pairs of edges that have
to cross in a crossing minimum drawing [36]. The second reason is that we fix
one combinatorial embedding of this subgraph. But different combinatorial em-
beddings of the same subgraph allow solutions of CCMP with different qualities.
The following example makes those facts clear. Consider the embedded planar
subgraph Gp in Figure 3.1(a) taken from [22]. The gray shaded frame in Figure
3.1 stands for a sufficiently dense planar part of Gp. Suppose the first step of the
planarization heuristic has removed only edge e = {u, v} from the original graph
to obtain Gp. Reinserting e into Gp with minimum crossings while preserving
its embedding produces five crossings (cf. Figure 3.1(b)). But if the embedding
of the dense planar part is not preserved and mirrored (can be thought of as a
rotation along the vertical axis through s, t) whereby one crossing is accepted,
then e can be inserted with only one crossing leading to two crossings at all (cf.
Figure 3.1(c)).

3.2 Heuristics for CCMP

3.2.1 The Basic Heuristic

CCMP is solved heuristically as follows. According to [36], we call this procedure
basic heuristic. The edges of F are reinserted one-by-one, instead of reinserting
them at once, and the reinsertion of one edge e = {u, v} into Π is transformed
to a shortest path computation between u and v in the so-called augmented dual
graph1 Π∗[{u, v}]. Π∗[{u, v}] arises from the dual graph Π∗ = (F ∗, E∗) by adding
the vertices u, v to F ∗ and by adding edges between u and all f ∗ ∈ F ∗ and v and
all f ∗ ∈ F ∗ to E∗ such that f ∗ represents the face in Π on whose boundary u
and v, respectively, lie. Clearly, the insertion of e into Π with minimum crossings
can be described by an ordered list of edges of Gp that e crosses. Since there is
a dual edge in Π∗[{u, v}] for each edge of Gp this can be done by a shortest path
computation between u and v in Π∗[{u, v}] where dual edges incident to u and v
are traversed without costs. A formal proof of this equivalence can be found in
[36].

1Also known under the term extended dual graph.

23



Chapter 3. The Planarization Heuristic

s

t

vu

(a)

s

t

vu

(b)

s

t

v u

(c)

Figure 3.1: Embedding Π of a graph (a) into which the edge {u, v} has to be
reinserted. (b) and (c) show each a resulting embedding with 5 and 2
crossings while the planarity of Π is one time preserved and the other
time disregarded.

24



3.2. Heuristics for CCMP

1

2

3

4 6

5

7

(a)

1

2

3

4 6

5

7

a

b

d

e

c

f

g

h i

j

(b)

Figure 3.2: Example of a graph (a) and its augmented dual graph (b) with addi-
tional vertices 2, 5 and 7.

Below a formal definition of the augmented dual graph, a subsequent example,
and the algorithm presenting the basic heuristic for CCMP are given.

Definition 3.1 (Augmented dual graph) Let G = (V,E) be a planar graph,
V ′ ⊆ V , Π be an embedding of G and Π∗ = (F ∗, E∗) be the dual graph of G with
respect to Π. Further let Fv = {{v, f ∗} | f ∗ ∈ F ∗, v lies on the boundary of f} be
for every v ∈ V ′. Then Π∗[V ′] = (F ∗∪V ′, E∗∪ (

⋃
v∈V ′ Fv)) is the augmented dual

graph of G with respect to Π and V ′.

Figure 3.2(a) shows a graph G with an embedding Π and Figure 3.2(b) shows
the augmented dual graph of G with respect to Π and vertex set {2, 5, 7}. We
assume that the edge e = {2, 7} has to be inserted. We observe that P = 2, d, e, 7
is the only shortest path between 2 and 7 in the augmented dual graph that does
not use 5 as internal vertex. The length of P is one. The edge e′ = {d, e} used
by P indicates that e can be inserted into Π by crossing the dual edge {3, 4} of
e′. For example, the path P ′ = 2, h, j, 5, f, 7 is not a proper shortest path that
can be transformed to a list of edges that e crosses. So generally, a shortest path
between two additional vertices in an augmented dual graph must not contain
any additional vertex as internal vertex.

Algorithm 3.1: Basic heuristic for CCMP.

Input: Embedding Π of a planar subgraph Gp, edge set F with endpoints in Gp
Output: Embedding Π′ of a planar graph G′p

Π′ := Π
G′p := Gp

25



Chapter 3. The Planarization Heuristic

while F 6= ∅ do
Choose edge e = {u, v} ∈ F
F := F − {e}
Compute the augmented dual graph Π∗[{u, v}]
Insert e into Π by computing a shortest path in Π∗[{u, v}] between u and v
Replace crossings by artificial vertices to obtain a new planar graph G′p and an
↪→ embedding Π′ of G′p

end while
Replace all artificial vertices by crossings
return Π′

3.2.2 Refinements of the Basic Heuristic

The quality of the basic heuristic for CCMP depends on the order in which edges
in F are reinserted. But even if all different insertion orders and furthermore all
shortest paths between the endpoints of an edge are taken into account, it is not
guaranteed to solve CCMP to optimality. Ziegler presents in [36] an example
for which this fact is true.

The basic heuristic can be improved by the following variations:

Permutation Heuristic. Algorithm 3.1 is modified such that it expects an
ordered list of the edges in F and reinserts the edges according to this list.
We generate n lists each saving a randomly computed permutation of the
edges in F and call the modified Algorithm 3.1 for each list. Clearly, the
result of this heuristic is the solution with the smallest number of crossings.

Shortest First Heuristic. This heuristic inserts that edge among the remain-
ing edges to be inserted with the shortest shortest path. This approach is
based on the assumption that when inserting an edge with a large number
of crossings also the number of crossings for remaining edges to be inserted
increases.

Remove and Reinsert Heuristic. This heuristic is a post-processing strategy
and it addresses the following drawback. After an edge is reinserted it is not
regarded anymore. However, it is possible that this edge has been reinserted
early in the reinsertion phase and might be involved in many crossings at
the end of the reinsertion phase. Hence, it can be profitable to delete and
directly reinsert this edge again. Thereby the edge can be reinserted with
the same number of crossings as before and thus it is guaranteed that the
quality of the overall solution is only improved. This is done for all edges of

26



3.2. Heuristics for CCMP

1

2

3

4

5

6

7

8

9 1 0

(a)

1

2

3

4

5

6

7

8

9 1 0

(b)

Figure 3.3: The minimum number of crossings needed when inserting an edge
depends on the chosen embedding.

F . Having performed one run, the situation might have changed again for
all edges of F . So, it is reasonable to iterate the procedure until no more
improvement is achieved.

Another improvement in one single edge reinsertion step is to take all combi-
natorial embeddings of the current subgraph into account. More formally, this
problem can be defined as follows. Let G = (V,E) be a planar (sub)graph and
e = {u, v} /∈ E be an edge with endpoints u, v ∈ V . Find a combinatorial em-
bedding Π of G among all embeddings of G such that e can be inserted into
Π with the minimum number of crossings. Figure 3.3 shows a simple example
in which the choice of the combinatorial embedding has an impact on the num-
ber of crossings produced when inserting the edge {3, 7}. When choosing the
embedding of Figure 3.3(a) the dashed edge cannot be inserted with less than
two crossings whereas the embedding of Figure 3.3(b) allows to add it with one
crossing. Gutwenger, Mutzel and Weiskircher present in [19] a linear time
algorithm based on SPQR-trees for the solution of this problem.

In [9] Gutwenger and Mutzel present an extensive experimental study of
crossing minimization heuristics. They have studied the effects of various meth-
ods for computing the maximal planar subgraph and for edge reinsertion with
different post-processing strategies based on the remove and reinsert heuristic.
Gutwenger and Mutzel conclude that the remove and reinsert heuristic with
deleting and reinserting also edges of the planar subgraph ”helps a lot”. But also
starting with a ”good” planar subgraph and performing edge reinsertion with a
variable embedding are worthwhile.

27





4 VIP - The Vertex Insertion
Problem

This chapter is the main part of this thesis. First of all in Section 4.1 we define
and motivate what the Vertex Insertion Problem1 is about. Thereto belong two
variants of this problem which will be defined formally and referred to as VIP-FIX
and VIP-VAR. The main focus lies on the latter problem. Thereafter in Section
4.2 two polynomial time algorithms solving VIP-FIX are presented. Section 4.3
is dedicated to VIP-VAR. We present two algorithms that can compute a lower
bound of the costs of VIP-VAR. Moreover in Section 4.3.2 we develop an algorithm
for a certain subproblem arising in our polynomial time algorithm with respect to
a biconnected graph. This algorithm is given in Section 4.3.3. At last in Section
4.3.4 a polynomial time algorithm with respect to a connected graph is developed.

4.1 Problem Definition and Motivation

Chapter 3 presented the planarization heuristic which is one of the best methods
in practice to tackle the crossing minimization problem. In its original form, the
heuristic uses edge deletion and reinsertion ”only”. However, the problems re-
lating to these two major steps, the Maximum Planar Subgraph and Constraint
Crossing Minimization Problem, are both proved to be NP-hard. But the pla-
narization method is also conceivable in another way and its two steps can be
substituted as follows. Firstly, a preferably small set of vertices including their
incident edges is deleted to obtain a planar subgraph of the given non-planar
graph. We cannot hope to compute such a vertex set of minimum size efficiently.
This is due to the fact that the problem of deciding for an integer k whether
a non-planar graph can be made planar by deleting at most k vertices is NP-
complete [25]. But this step can be done heuristically. For example, a greedy
algorithm deletes vertices of minimum (or maximum) degree until the obtained
subgraph is planar. Conversely, it can start with an empty graph and extends
the graph with vertices of maximum (or minimum) degree until no further vertex
can be added. A more sophisticated algorithm is proposed by Edwards and

1We use Vertex Insertion Problem as a synonym for the problem of Inserting a Vertex into a
Planar Graph.

29



Chapter 4. VIP - The Vertex Insertion Problem

Farr in [14]. Their algorithm provides an induced planar subgraph of at least
3 · |V |/(dmax+1) vertices in a graph of maximum degree dmax and in a runtime of
O(|V | · |E|). Afterwards the deleted vertices are reinserted one-by-one each with
their incident edges at once. Thereby the inserted edges should produce as few
crossings as possible with edges in the current (sub)graph. Again crossings are
replaced by artificial vertices to obtain a planar graph for the next vertex rein-
sertion step. This Vertex Insertion Problem can be formulated in two variants.
The first one is to insert a vertex and its incident edges into the current graph
with respect to a fixed combinatorial embedding of it. Formally, we define this
problem variant as follows.

Problem 4.1 (VIP-FIX) Let G = (V,E) be a connected planar graph, W ⊆ V
be a non-empty vertex set and Π be a fixed combinatorial embedding of G. The
Vertex Insertion Problem Fix is the problem to insert a vertex ϑ /∈ V and all
edges in {{ϑ,w} |w ∈ W} into Π with the minimum number of crossings.

The second variant of the Vertex Insertion Problem takes all combinatorial em-
beddings of the current graph into account. Formally, we define this problem
variant as follows.

Problem 4.2 (VIP-VAR) Let G = (V,E) be a connected planar graph and
W ⊆ V be a non-empty vertex set. The Vertex Insertion Problem Variable is the
problem to find a combinatorial embedding Π among all combinatorial embeddings
of G such that a vertex ϑ /∈ V and all edges in {{ϑ,w} |w ∈ W} are inserted into
Π with the minimum number of crossings.

In both problems we implicitly demand that there are only edge crossings between
edges in E and edges to be inserted. Consequently, we denote the vertex to be
inserted by ϑ and the set of vertices becoming adjacent to ϑ by W 2. We call a
vertex w ∈ W an affected vertex and the graph into which ϑ has to be inserted is
also called input graph. Furthermore we easily recognize that the subproblem in
VIP-VAR to insert ϑ and its incident edges into the determined embedding cross-
ing minimally is exactly VIP-FIX. Therefore in our following considerations we
rather associate with VIP-VAR the problem to find an appropriate combinatorial
embedding.

Since the input graph G of VIP-VAR is finite, and thus the set of all combinato-
rial embeddings of G is finite, VIP-VAR is a combinatorial optimization problem.
The basic set is given by the set of combinatorial embeddings of G. Feasible so-
lutions for VIP-VAR are combinatorial embeddings that permit planar drawings
of G. The costs of a solution are the number of crossings produced by inserted

2Additionally, we can claim |W | > 2 because otherwise the problem can be solved trivially
(|W | = 1) or is equivalent to the problem in [19] (|W | = 2).

30



4.2. VIP with Fixed Embedding

1

2

3 4 5 6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

(a)

1

2

3 4 5 6

7

9

8

1 0

1 2

1 1

1 3

1 5

1 4

1 6

1 8

1 7

(b)

Figure 4.1: Biconnected graph with affected vertices 4, 5, 8, 11, 14, 17. The em-
bedding (a) allows to insert ϑ and its incident edges with 10 crossings
whereas these elements can be inserted into the embedding (b) with
only 4 crossings.

edges. The aim of the problem is to minimize the costs and an optimal solution
of VIP-VAR is a solution with minimum costs.

Clearly, since the number of crossings produced by inserted edges highly de-
pends on the chosen embedding of the current graph, there is no doubt about a
better quality of a solution of VIP-VAR compared to a solution of VIP-FIX (cf.
Figure 4.1). One open question is left. What is the advantage of the modified
planarization method in contrast to the usual one? The benefit is that in each
vertex reinsertion step a certain amount of edges, namely the incident edges of
the current considered vertex, is reinserted at once. Thus, no longer each edge
is reinserted separately and this may lead to an embedding of the original graph
with less crossings overall.

4.2 VIP with Fixed Embedding

As we know from Section 3.2, we can describe the insertion of one edge e = {u, v}
into a combinatorial embedding Π by giving an ordered list of edges that e crosses.
We call such a list edge insertion path. Its formal definition is the following [35].

Definition 4.1 Let G = (V,E) be a connected planar graph and let Π be an
embedding of G. The list P = e1, . . . , ek with ei ∈ E (i = 1, . . . , k) is an edge
insertion path between two vertices v1, v2 ∈ V of G with respect to Π if either

31



Chapter 4. VIP - The Vertex Insertion Problem

k = 0 and v1 and v2 are contained in a common face in Π or the following
conditions are satisfied:

1. There is a face in Π with e1 and v1 on its boundary

2. There is a face in Π with ek and v2 on its boundary

3. e∗1, . . . , e
∗
2 is a path in the dual graph Π∗

We have seen that this list can be determined by computing a shortest path
P ∗ = u, f ∗1 , . . . , f

∗
k , v between u and v in the augmented dual graph Π∗[{u, v}]

and by replacing the dual edges {f ∗1 , f ∗2}, . . . , {f ∗k−1, f
∗
k} with their primal edges.

Basically, to solve VIP-FIX with inputs G = (V,E),Π and W we have to
compute several shortest edge insertion paths between ϑ and all w ∈ W with the
additional difficulty that ϑ has to be inserted itself. Since ϑ can only be inserted
into a face f of Π and all the edges to be inserted will originate only in ϑ and thus
need not cross among themselves, the basic solution of VIP-FIX is to compute
shortest dual edge insertion paths between f ∗ and all w ∈ W (we denote one such
shortest path and its length by P (f ∗, w) and |P (f ∗, w)|, respectively) for all dual
vertices f ∗ ∈ F ∗ in the augmented dual graph Π∗[W ] = (F ∗ ∪W, Ẽ∗) of G with
respect to Π and W . Algorithm 4.1 acts like this. Note, that a shortest path
P (w, f ∗) must not contain any w′ ∈ W as internal vertex. Let Ṽ := F ∗ ∪W . If,
e.g., Dijkstra’s algorithm is employed to compute a shortest path together with
efficient data structures, this leads to a total running timeO(|Ṽ |·log |Ṽ |·|F ∗|). We
can generalize this running time to O(|V |2 · log |V |) because |F ∗| ≤ |Ṽ | = O(|V |)
holds and also the computation of Π∗[W ] needs time O(|V |). If we use a breadth-
first search (BFS) instead of Dijkstra’s algorithm we achieve an improvement
of factor log |V | such that a solution is computable in time O(|V |2).

Algorithm 4.1: Computes shortest dual edge insertion paths naively.

Input: Embedding Π of a connected planar graph G = (V,E), W ⊆ V
Output: List L of shortest dual edge insertion paths

1: c :=∞
2: L := ()
3: Compute Π∗[W ] = (F ∗ ∪W, Ẽ∗)
4: for all f∗ ∈ F ∗ do
5: c′ := 0
6: L′ := ()
7: for all w ∈W do
8: Compute P (f∗, w) in Π∗[W ] and append it to L′

9: c′ := c′ + |P (f∗, w)|

32



4.2. VIP with Fixed Embedding

10: end for
11: if c′ < c then
12: L := L′

13: c := c′

14: end if
15: end for
16: return L

A more efficient approach is Algorithm 4.2 (cf. also Figure 4.2). The algorithm
processes a BFS in Π∗[W ] starting from each w ∈ W and utilizing two associative
data structures C and L. C(f ∗) is the sum of the length of shortest paths between
f ∗ ∈ F ∗ and the current processed w ∈ W . L(f ∗) is a list of all shortest dual edge
insertion paths between f ∗ and the current processed w ∈ W . Whenever a vertex
f ∗ ∈ F ∗ is reached during a BFS, C(f ∗) and L(f ∗) are updated. Because Π∗[W ]
is planar one BFS requires time O(|Ṽ |) and therefore the total running time is
O(|Ṽ | · |W |) = O(|V | · |W |). Since |W | ≤ |V | the same worst-case runtime is
guaranteed as with Algorithm 4.1. But if |W | is sufficiently small this algorithm
can even have linear runtime.

Algorithm 4.2: Computes shortest dual edge insertion paths by processing
several breadth-first searches.

Input: Embedding Π of a connected planar graph G = (V,E), W ⊆ V
Output: List L of shortest dual edge insertion paths

1: c :=∞
2: L := ()
3: C := L := ∅ . associative data structures
4: Compute Π∗[W ] = (F ∗ ∪W, Ẽ∗)
5: for all f∗ ∈ F ∗ do
6: C(f∗) := 0
7: L(f∗) := ()
8: end for
9: for all w ∈W do

10: Process a BFS in Π∗[W ] starting from w and let P (w, f∗):
↪→ C(f∗) := C(f∗) + |P (w, f∗)| and append P (w, f∗) to L(f∗)

11: end for
12: f∗min := nil
13: for all f∗ ∈ F ∗ do
14: if C(f∗) < c then
15: c := C(f∗)

33



Chapter 4. VIP - The Vertex Insertion Problem

1

2

3

4

5

6

7

8

1 0

1 1

b

e

c d

f

h

i

g

a

(a)

4

b ec

d f

h ig

a

5

b

ec

d f

h i

g

a

1 1

b

e

c

d

f h

i

g

a

0
0

0
0

00

0

(b)

a b c d e f g h i

4 1 0 0 1 0 1 2 2 2
5 0 1 2 1 2 1 1 0 0

11 1 2 2 1 3 2 0 2 1∑
2 3 4 3 5 4 3 4 3

(c)

Figure 4.2: Example illustrating the approach of Algorithm 4.2. (a) shows a
graph with its augmented dual graph with respect to affected ver-
tices 4, 5 and 11, (b) possible BFS trees outgoing from these vertices
and (c) a distance matrix for each affected vertex. As can be seen the
new vertex would be inserted into face a.

34



4.3. VIP with Variable Embedding

16: f∗min := f∗

17: end if
18: end for
19: return L := L(f∗min)

Clearly, only by computing the shortest dual edge insertion paths, we have
not solved VIP-FIX entirely. It remains to construct the shortest edge insertion
paths, to replace all crossings described by these by artificial vertices and to
insert ϑ itself. With Π as fixed embedding of G and G0 := G, for the i-th edge
insertion path Pi = e1, . . . , ek between the vertices ϑ and wi ∈ W we build a
graph Gi from Gi−1 by splitting each edge ej in P with a new vertex xj and
insert new edges forming a path ϑ, x1, . . . , xk, wi. If the edge ej is subdivided
into two new edges ej1 , ej2 , it must be ensured that either ej1 or ej2 is associated
with ej. Otherwise unprocessed edge insertion paths may contain invalid edges.
Note that it is necessary to process the edge insertion paths in a specific order
due to the fact they can share common edges (cf. Figure 4.1(a)). This order also
induces the cyclic clockwise order of the edges around ϑ. Thereto we build a tree
T induced by all the shortest dual edge insertion paths. The root of T becomes
f ∗. Let g∗1, . . . , g

∗
k be the children of f ∗ in cyclic clockwise order. We traverse

T by processing a depth-first search on each subtree Ti of T with root g∗i for
i = 1, . . . , k. The depth-first search always visits the left most unvisited subtree
of the current inner node. Whenever a leaf wj ∈ W is reached, we build the
corresponding primal edge insertion path and process it as just now described.
Figure 4.3(a) shows the same biconnected graph as in Figure 4.1(a) with the tree
that is induced by all shortest dual edge insertion paths. Figure 4.3(b) illustrates
the tree again, this time with labeled edges indicating the traversing order of the
tree. Hence the edge insertion paths between ϑ and 4, ϑ and 8,. . . , and ϑ and
11 are processed in this order. We can build T , e.g., by deleting every edge in
the augmented dual graph Π∗[W ] that does not belong to a shortest dual edge
insertion path. This takes time O(|V |). At most each edge of T is considered as
many times as leafs in T exist. This is caused by constructing the primal edge
insertion paths. There are |W | leafs in T and O(|V |) edges. Hence processing all
edge insertion paths takes time O(|V | · |W |) and therefore VIP-FIX is solvable in
an overall running time of O(|V | · |W |).

4.3 VIP with Variable Embedding

Obviously, the concept of enumeration is a simple solution for VIP-VAR like for
any other combinatorial optimization problem, since the set of feasible solutions

35



Chapter 4. VIP - The Vertex Insertion Problem

1

2

3 4 5 6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7
1 8

f *

da

g h

b

c

e

f

(a)

4

81 1 1 41 7

f *

d agh

b

c

5

e

f

1
6

1 0
8

1 4 579

3

2

4

1 2

1 3

1 1

(b)

Figure 4.3: Biconnected graph (a) with the tree (b) induced by all shortest dual
edge insertion paths and a labelling of the tree edges indicating the
tree’s traversing order.

is finite. In the case that the input graph is biconnected we could enumerate all
its embeddings with the help of its SPQR-tree (cf. Theorem 2.3). During this
enumeration we save the current best embedding. But this is not a promising
approach, since the number of embeddings of a graph is usually exponential.
Moreover if the input graph is connected even the enumeration is a non-trivial
problem. So both these facts make an efficient solution of VIP-VAR non-trivial.

4.3.1 Upper and Lower Bound

Let G = (V,E) be the input graph of VIP-VAR. A trivial upper bound for the
costs of an optimal solution of VIP-VAR is |W | · |E|, because one inserted edge
does not need to cross more than |E| edges. We can improve this upper bound if
we choose an arbitrary embedding of G and solve VIP-FIX with respect to that
embedding.

Surprisingly, to compute a lower bound for the costs of an optimal solution
of VIP-VAR we can employ the algorithm in [19] for finding a combinatorial
embedding of a planar graph where one edge can be inserted with the minimum
number of crossings (see also Section 3.2.2). For the moment let us refer to this
problem as EIP-VAR. Let b denote the lower bound; initially b = 0 holds. A
(greedy) algorithm computes in a first phase a |W | × |W | matrix Ω = (ωij),
where ωij denotes the number of crossings in an optimal solution of EIP-VAR
with input graph G into which edge {wi, wj}, wi, wj ∈ W has to be inserted.

36



4.3. VIP with Variable Embedding

The entries ωij and ωji are equal and it suffices to compute the entries above
the diagonal of Ω. After this, all vertices are regarded as unmarked. The second
phase of the algorithm builds greedily pairs of unmarked vertices wi, wj with
the maximum value ωij among all unmarked vertices, adds ωij on b and marks
wi, wj. This is repeated until either all vertices are marked (|W | is even) or
one unmarked vertex remains (|W | is odd). Constructing the matrix takes time
O((|V | + |E|) · |W |2) = O(|V | · |W |2) because one call of the algorithm solving
EIP-VAR takes time O(|V | + |E|) and we have to compute 1

2
· (|W | − 1) · |W |

matrix entries. The second phase has a running time of O(|W 3|) since the matrix
is traversed at most |W | times. Since |W | ≤ |V | a total runtime of O(|V | · |W |2)
is obtained.

We can argue the algorithm’s correctness as follows. If ϑ is inserted into an op-
timal solution Π for VIP-VAR, there is a path wi, ϑ, wj between any two affected
vertices wi, wj. Such a path causes at least as many crossings as the optimal edge
insertion path between wi, wj in an embedding Π′. Due to this fact, the algorithm
searches for unmarked vertices with the maximum value in Ω in each step of the
second phase. The reason why the algorithm must take unmarked vertices can be
explained as follows. Consider two edges e1 = {wi, wj}, e2 = {wi, wk}, j 6= k. As-
sume the algorithm for EIP-VAR with inputs G and e1 in one and inputs G and e2
in another call returns in both cases an identical embedding Π ofG. Then it is pos-
sible that edge insertion paths P1 = wi, e1, . . . , eh, wi and P2 = wi, e

′
1, . . . , e

′
j, wk

are not distinct, i.e., an index l exists such that e1 = e′1, . . . , el = e′l is true.
Clearly, ϑ is connected once to wi in any solution of VIP-VAR. But adding values
ωij and ωik may cause in counting l crossings twice, if, e.g., Π is also an optimal
solution for VIP-VAR.

The second phase of this algorithm can be improved with the help of matchings.
A set M of non-adjacent edges in a graph G = (V,E) is called a matching. A
matching M is called a maximum (cardinality) matching if there is no other
matching M ′ with |M ′| > |M |. If the edges e ∈ E are weighted, we can ask
for a maximum weight (cardinality) matching. That is a maximum matching
M such that the sum of weights for e ∈ M is maximum among all maximum
matchings. Therefore, we can replace the greedy pair search in the second phase
of our algorithm and compute a stronger bound by finding a maximum weight
matching of the complete graph K|W | on all affected vertices. Edges between
vertices wi, wj in K|W | are weighted with ωij. The algorithm of Gabow [16]
computes a maximum weight matching for K|W | in time O(|W |3). Thus, the
total running time of our algorithm is maintained.

Usually, we cannot expect the computed lower bound to be sharp, even with
the help of maximum weight matchings. For example, this is the case, if |W |
is odd and the matching algorithm remains one exposed vertex wi but the edge

37



Chapter 4. VIP - The Vertex Insertion Problem

  

1

3

2 4

Figure 4.4: A counterexample that shows a graph for which the computed lower
bound is not sharp.

{ϑ,wi} produces crossings in an optimal solution of VIP-VAR. Figure 4.4 shows
an example graph G for which the lower bound is not sharp even in the case where
|W | is even. The vertices 1, 2, 3, 4 are affected and the shaded region represents a
dense planar part of G. If this dense planar part is crossed by an edge, let at least
two crossings occur. Assume further the graph resulting from G by deleting the
vertices 2, 4 is triconnected. Then the SPQR-tree of G consists of one R-node,
one P-node and two S-nodes. Optimal solutions of EIP-VAR with input edge
{i, j} for all i, j ∈ {1, 2, 3, 4}, i 6= j produce no crossings. But an optimal solution
of VIP-VAR produces one crossing.

4.3.2 The Core Problem

In this section we deal with a certain optimization problem which arises as a
subproblem in our holistic algorithm solving VIP-VAR. This problem forms the
main difficulty and therefore can be called core problem. We first give some more
definitions and notations whereupon the core problem is defined and an algorithm
for it is stepwise developed.

Definition of the Core Problem

W (G′) and W−(G′) denote the sets of affected vertices of the pertinent, skeleton
or expansion graph G′ including and excluding its possibly affected poles, respec-
tively. From now on we implicitly interpret each virtual edge e = {u, v} as a
directed edge from u (v) to v (u). The same imaginary direction is interpreted
for the reference edge of skeleton(µ) and pert(µ) with µ as pertinent node of e.
We denote it by εµ := {u, v}. fr(e) is the face to the right and fl(e) is the face
to the left of e according to its imaginary direction. fr(εµ) is the face which is
separated by εµ and lies to the right of another edge {u, v′} ({v, u′}) according

38



4.3. VIP with Variable Embedding

to its imaginary direction from u (v′) to v′ (u) if e has the imaginary direction
from u (v) to v (u). fl(εµ) is the counter face separated by εµ. Due to this defi-
nition a clear association between fr(e) and fr(εµ), and between fl(e) and fl(εµ)
is established. As supplied before P (x, y) is a (weighted) shortest path between
the elements x and y in a graph and |P (x, y)| its length (if x = ∅ or y = ∅ holds,
P (x, y) is an empty path with |P (x, y)| := 0).

Another fundamental concept used in our algorithms is that of the traversing
costs of a skeleton edge. Thereto the following lemma is necessary.

Lemma 4.1 Let µ be an inner node of a rooted SPQR-tree. The length of a
shortest path P (f ∗r (εµ), f ∗l (εµ)) in the dual graph Λ∗ that does not use ε∗µ is inde-
pendent of the embedding Λ of pert(µ).

Definition 4.2 (Traversing Costs) Let e be a skeleton edge. If e is a proper
edge, then the traversing costs c(e) of e are equal to 1. Else let µ be the pertinent
node of e. The traversing costs c(e) of e are then defined as the length of a shortest
path P (f ∗r (εµ), f ∗l (εµ)) in the dual graph Λ∗ that does not use ε∗µ with Λ as any
embedding of pert(µ).

The above lemma and definition are based on [19]. Traversing costs of skeleton
edges allow statements about the exact number of crossings produced when in-
serting an edge into an embedding of a skeleton. Let T be an SPQR-tree. The
traversing costs of all skeleton edges for all skeletons associated with nodes of T
are computed by a bottom-up traversal of T . Let the current inner node in this
traversal be µ with virtual edge e. Only if µ is an R-node a weighted shortest
path computation is necessary to obtain c(e). Else, if skeleton(µ) contains the
edges e1, . . . , ek excluding the reference edge and µ is

• an S-node, then c(e) := min({c(e1), . . . , c(ek)}).

• a P-node, then c(e) := c(e1) + . . .+ c(ek).

The worst-case computation time of this algorithm eventuates if T consists only
of R-nodes. The dual graph of an embedding of skeleton(µ) can be built in
time O(|skeleton(µ)|). The weighted shortest path computation can be done in
time O(|skeleton(µ)|) with the algorithm suggested in [33]. This leads to a total
running time of O(|V |) since the overall size of all skeletons is O(|V |). The formal
definition of the core problem is the following.

Problem 4.3 (Core Problem) Let T be a rooted SPQR-tree, µ be an inner
node of T and W := W−(pert(µ)) 6= ∅. For j = |W|, . . . , 0 find an embed-
ding Π(j) among all embeddings of pert(µ) such that for an arbitrary partition

39



Chapter 4. VIP - The Vertex Insertion Problem

W1 ∪̇W2 =W with |W1| = j

C̄(j) :=
∑
w∈W1

|P (w, f ∗r (εµ))|+
∑
w′∈W2

|P (w′, f ∗l (εµ))|

is minimum with P (w, f ∗r (εµ)) and P (w′, f ∗l (εµ)) as shortest paths in the aug-
mented dual graph Π∗(j)[W ] of pert(µ) with respect to Π(j) and W that do not
use ε∗µ.

A more illustrative characterization of this problem (and its solution) is to find
a best embedding Π(j) of pert(µ) for j = 0, . . . , |W| such that vertices vr and vl
can be inserted into fr(εµ) and fl(εµ), respectively, and edges between v ∈ {vl, vr}
and all w ∈ W can be inserted into Π(j) with the minimum number of crossings
under the premise that exactly j and |W| − j of these have endpoints vr and vl,
respectively. Figure 4.5 shows an example. Figure 4.5(a) and Figure 4.5(b) show
a biconnected graph with affected vertices 7, 8, 10 and 11 and its SPQR-tree with
root µ1 and drawn in skeletons, respectively. Figure 4.5(c) and 4.5(d) show the
optimal subsolutions of Problem 4.3 with respect to µ2 and j = 2, 3 with values
C̄(2) = 3 and C̄(3) = 4, respectively. With respect to the imaginary direction
from 5 to 6 of the virtual edge {5, 6} the face fr(εµ2) is defined by the edges
{5, 6}, {6, 7} and {7, 5}.

Solving the Core Problem

Our general approach for solving the core problem is to compute the value of a
solution of it, i.e., the cost vector3 C̄, with dynamic programming and to save
extra information to be able to construct the solution, i.e., the embeddings of
pert(µ), itself. As will be clear in the next section where we present an algorithm
for solving VIP-VAR for biconnected graphs, basically we are only interested in
the cost vector and at most in one embedding of pert(µ). For the computation of
C̄ the cost vector for each child of µ has to be computed before. Then with further
dynamic programming C̄ is obtained. This induces a bottom-up approach. For
the following consideration we presume that the traversing costs of all skeleton
edges are given.

S-/R-node. Let µ be an S- or R-node and a j with 0 ≤ j ≤ |W| be given. We
show how to obtain a subsolution of the core problem with respect to µ and j and
that our computation is correct. To make the argumentation easier we use the
illustrative characterization of a solution of the core problem as shortly described.
We first deal with the non-simple case in which µ is an inner node.

3In the whole chapter we do not use the standard mathematical notation for vectors and
matrices since further vectors and matrices will be used with sub- and superscripts.

40



4.3. VIP with Variable Embedding

1

2 3 4

5

6

7

8

9

1 0

1 1

1 2

(a)

1

2 3 4 5

6

5

6

7 8

8

6

9 1 0 1 1 1 2

(b)

5

6

7

81 2

1 1

1 0

9

(c)

5

6

7

89

1 0

1 1

1 2

(d)

Figure 4.5: Biconnected graph (a), its SPQR-tree with root (b) and two embed-
dings of pert(µ2) (c),(d) representing optimal subsolutions of Problem
4.3.

41



Chapter 4. VIP - The Vertex Insertion Problem

  

|W i |−k−m

k−l

m

l

vl
vrexpansion eiui vi

pert 

ui vi

skeleton

f l
*ei

f r
*ei 

f r
*


f l

*



|W i |−k−m

k−l

m

l

Figure 4.6: Schematic illustration concerning Equation 4.1.

Let e1, . . . , en≥1, εµ be the virtual edges of skeleton(µ) with pertinent nodes
ν1, . . . , νn such that W1 := W−(pert(ν1)), . . . ,Wn := W−(pert(νn)) 6= ∅. Further
let W0 := W−(skeleton(µ)) and let the core problem be solved optimally with
respect to ν1, . . . , νn. C̄1, . . . , C̄n denote the cost vectors associated with these
pertinent nodes. An embedding of pert(µ) is created by fixing an embedding of
skeleton(µ) and expanding all the virtual edges of skeleton(µ) except εµ. At first
we assume the embedding Π of skeleton(µ) is given.

It is allowed to replace each virtual edge e of skeleton(µ) such that
W−(expansion(e)) = ∅ with an arbitrary embedding of expansion(e). This fol-
lows from the following consideration. There is no edge inserted into an em-
bedding of pert(µ) with an endpoint contained in expansion(e). Thus at most
expansion(e) is crossed by an inserted edge. According to Lemma 4.1 such an
edge can cross expansion(e) with the same costs independent of the embedding
of expansion(e).

We make a case distinction. The first case is given by n = 1,W0 = ∅. When
inserting edges between v ∈ {vr, vl} and all w ∈ W1 then 0 ≤ k ≤ |W1| and
|W1| − k of these edges must cross the faces represented by fr(e1) and fl(e1) in
Π, respectively, whereof k− l and 0 ≤ l ≤ k have endpoint vr and vl respectively,
and |W1| − k −m and 0 ≤ m ≤ |W1| − k have endpoint vr and vl respectively
such that k − l + |W1| − k −m = |W1| − l −m = j (cf. Figure 4.6). Then the
following steps obviously lead to an optimal solution:

(1) i := 1.

(2) Compute the dual graph Π∗ of skeleton(µ) with respect to Π. Weight all
edges except ε∗µ of Π∗ with the traversing costs of their primal edges.

42



4.3. VIP with Variable Embedding

(3) Compute `1 := |P (f ∗r (ei), f
∗
r (εµ))|, `2 := |P (f ∗r (ei), f

∗
l (εµ))|,

`3 := |P (f ∗l (ei), f
∗
r (εµ))|, `4 := |P (f ∗l (ei), f

∗
l (εµ))| (each weighted shortest

path concerns Π∗ and does not use ε∗µ).

(4) Compute

Ci(j) := min
0≤k≤|Wi|

(C̄i(k)+ min
0≤l≤k,

0≤m≤|Wi|−k:
|Wi|−l−m=j

(`1·(k−l)+`2·l+`3·(|Wi|−k−m)+`4·m))

(4.1)
and let k′ be the argument of the minimum function defining Ci(j).

(5) Replace e1 by the embedding of pert(ν1) − e1 induced by the embedding
Π(k′) of pert(ν1) and each remaining virtual edge of skeleton(µ) except εµ
by any embedding of its expansion graph.

The second case is given by n > 1,W0 = ∅. When inserting the edges between
v ∈ {vr, vl} and all w ∈ W , then holds for i = 1, . . . , n that 0 ≤ ki ≤ |Wi| and
|Wi|−ki of these edges with endpoints w ∈ Wi must cross the faces represented by
fr(ei) and fl(ei) in Π, respectively, whereof ki − li and 0 ≤ li ≤ ki have endpoint
vr and vl, respectively, and |Wi| − ki−mi and 0 ≤ mi ≤ |Wi| − ki have endpoint
vr and vl, respectively, such that |W1| − l1 −m1 + . . .+ |Wn| − ln −mn = j and
C1(|W1|− l1−m1)+ . . .+Cn(|Wn|− ln−mn) crossings occur. Hence the following
steps lead to an optimal solution since all possibilities are taken into account:

(1) For i = 1, . . . , n, ji = 0, . . . , |Wi| compute Ci(ji) (as described in the pre-
vious case) and let k′ji be the argument of the minimum function defining
Ci(ji).

(2) For i = 1, . . . , n find appropriate ji such that j1 + . . .+ jn = j and C1(j1) +
. . .+ Cn(jn) is minimum.

(3) For i = 1, . . . , n replace ei by the embedding of pert(νi) − ei induced by
the embedding Π(k′ji) of pert(νi) and replace each remaining virtual edge
of skeleton(µ) except εµ by any embedding of its expansion graph.

Step (2) could be solved by trying all |W1| · . . . · |Wn| possibilities in a naive
manner. But this can be done more elegant as follows. Let C1

1 := C1. For
i = 2, . . . , n, ji1 = 0, . . . , |W1|+ . . .+ |Wi| we compute

Ci
1(j

i
1) := min

0≤k≤|W1|+...+|Wi−1|
0≤l≤|Wi|:
k+l=ji1

(Ci−1
1 (k) + Ci(l))

(4.2)

43



Chapter 4. VIP - The Vertex Insertion Problem

and save again all necessary integer arguments for step 3. The correctness easily
follows.

The third case is given by n > 1,W0 6= ∅. Now there must be additionally
0 ≤ j0 ≤ |W0| and |W0| − j0 inserted edges with endpoint vr and vl, respectively.
It is easy to see that this case is similar to the previous one (it is helpful to imagine
there is a further virtual edge e0 such that W0 = W−(expansion(e0))) and that
we can process the same steps as in the previous case except that i has to run from
0 to n, ji1 has to be replaced by ji0 running from 0 to |W0|+ . . .+ |Wi| and C0(j0)
for j0 = 0, . . . , |W0| has to be computed differently. Thereto the augmented dual
graph Π∗[W0] of skeleton(µ) with respect to Π and W0 is computed, all edges of
Π∗[W0] with endpoint w ∈ W0 are weighted with 0 and all other edges except ε∗µ
with the traversing costs of their primal edges.

The following equation defines the computation of C0(j0). This time the short-

est paths concern Π∗[W0] and they do not use ε∗µ.
i

min symbolizes the i-th smallest

value of the minimum function.

C0(j0) :=



0
j0 = |W0| = 0 or

µ is an S-node∑
w∈W0

|P (w, f ∗r (εµ))| j0 = |W0| > 0

C0(j0 + 1)+
|W0|−j0
min
w∈W0

(|P (w, f ∗l (εµ))| − |P (w, f ∗r (εµ))|)
j0 = |W0| − 1, . . . , 0

(4.3)

The equation can be explained like this. The case j0 = |W0| = 0 holds trivially.
The cases j0 = |W0| = 0 and j0 = |W0| > 0 should be clear. If µ is an S-node, the
equation holds since all w ∈ W0 lie on the boundaries of fr(εµ) and fl(εµ). In the
case j ≤ |W0| − k there must be k ≥ 1 edges with endpoint vr. Outgoing from
C0(|W0|), we search for k endpoints in W0 which can be connected with vl with
the minimum number of crossings. This relates to add the k smallest values from
the set D := {{|P (w, f ∗l (εµ))| − |P (w, f ∗r (εµ))|} |w ∈ W0} to C0(|W0|). Since the
computation of C0(j + 1) has already chosen the k − 1 smallest values from D,
we need only to add the |W0|− j0 = |W0|− (|W0|−k) = k-th smallest value from
D to C0(j0 + 1).

It remains to consider how an optimal solution can be computed if the em-
bedding of skeleton(µ) is not given. We exploit the fact that skeleton(µ) has
at most two embeddings which are mirror images of each other. Therefore we
apply the computation with respect to j and |W| − j based on one arbitrarily
fixed embedding of skeleton(µ). Then that embedding of pert(µ) which allows
to insert the elements with less crossings is chosen. If embedding Π(|W| − j) is

44



4.3. VIP with Variable Embedding

the cheaper one, it must only be mirrored.
Finally let us consider the simple case in which µ is a leaf. It holds pert(µ) =

skeleton(µ) and thus we have to choose embeddings of skeleton(µ). If µ is of
type S, then there is only one embedding of skeleton(µ) which is therefore the
only solution. If µ is of type R, there are two embeddings of skeleton(µ) which
are mirror images of each other. Then C0(j) and C0(|W|− j) are computed with
respect to any fixed embedding of skeleton(µ), the cheaper embedding is chosen
and must possibly be mirrored.

Algorithm 4.3 presents a detailed algorithm for the computation of C̄. The
algorithm basically computes

1. C0.

2. Ci for i = 1, . . . , n whereto C̄i must be available.

3. Ci
0 for i = 1, . . . , n. Ci

0 is obtained by combining Ci−1
0 and Ci (C0

0 := C0).

to obtain
C̄(j) := min(Cn

0 (j), Cn
0 (|W| − j)) (4.4)

for j = 0, . . . , |W|. The algorithm also includes operations saving all the necessary
information to construct an embedding Π(j) of pert(µ) corresponding to C̄(j).
Thereto a vector of lists I and a Boolean vector M are maintained. The list
I(j) = ((e1, k

′
j1

), . . . , (en, k
′
jn)) consists of 2-tuples and (ei, k

′
ji

) indicates that ei
has to be replaced by an embedding of pert(νi) − ei induced by the embedding
Π(k′ji) of pert(νi). M(j) = true indicates that the embedding which has been
constructed with respect to C̄(j) must be mirrored subsequently. C,M and I are
associative data structures. With parent(µ) as function returning the parent node
of µ or nil if µ is the root of the SPQR-tree, C(µ, parent(µ)), I(µ, parent(µ)) and
M(µ, parent(µ)) return the cost vector C̄, the vector of lists I and the Boolean
vector M associated with µ, respectively. The reason why the pair µ, parent(µ)
is used to index each associative data structure will be explained in Section 4.3.3.

Algorithm 4.3: Computes the value of a solution of the core problem with
respect to µ as S- or R-node.

Input: S- or R-node µ, C, I,M

1: Let Π be the fixed embedding of skeleton(µ)
2: W0 := W−(skeleton(µ))
3: Let C0 be a vector of size |W0|+ 1
4: Let I0 be a vector of size |W0|+ 1 initialized with () . () is an empty list
5: if µ is an S-node or W0 = ∅ then . Eq. 4.3

45



Chapter 4. VIP - The Vertex Insertion Problem

6: for j0 := 0, . . . , |W0| do
7: C0(j0) := 0
8: end for
9: else

10: H := ∅ . Minimum heap
11: C0(|W0|) := 0 . Eq. 4.3
12: Compute Π∗[W0]
13: for all w ∈ W0 do
14: `r(w) := |P (f∗r (εµ), w)| . Weighted shortest path in Π∗[W0] not using ε∗µ
15: `l(w) := |P (f∗l (εµ), w)| . Weighted shortest path in Π∗[W0] not using ε∗µ
16: C0(|W0|) := C0(|W0|) + lr(w)
17: Insert `l(w)− `r(w) into H
18: end for
19: for j0 := |W0| − 1, . . . , 0 do
20: Extract the minimum value min from H
21: C0(j0) := C0(j0 + 1) +min
22: end for
23: end if
24: C0

0 := C0

25: I0
0 := I0

26: if n ≥ 1 then
27: Compute Π∗ = (F ∗, E∗)
28: if µ is an S-node then
29: min :=∞
30: for all edges e 6= εµ of skeleton(µ) do
31: if c(e) < min then
32: min := c(e)
33: end if
34: end for
35: `r(f∗r (εµ)) := `l(f∗l (εµ)) := 0
36: `r(f∗l (εµ)) := `l(f∗r (εµ)) := min
37: else
38: for all f∗ ∈ F ∗ do
39: `r(f∗) := |P (f∗r (εµ), f∗)| . Weighted shortest path in Π∗ not using ε∗µ
40: `l(f∗) := |P (f∗l (εµ), f∗)| . Weighted shortest path in Π∗ not using ε∗µ
41: end for
42: end if

43: for i := 1, . . . , n do . Eq. 4.1
44: Let Ci, Ii be vectors of size |Wi|+ 1
45: Initialize Ci with ∞
46: for k := 0 to |Wi| do

46



4.3. VIP with Variable Embedding

47: for l := 0 to k do
48: for m := 0 to |Wi| − k do
49: C̄i := C(νi, parent(νi))
50: C ′ := C̄i(k) + `r(f∗r (ei)) · (k − l) + `l(f∗r (ei)) · l+

↪→ `r(f∗l (ei)) · (|Wi| − k −m) + `l(f∗l (ei)) ·m
51: if C ′ < Ci(|Wi| − l −m) then
52: Ci(|Wi| − l −m) := C ′

53: Ii(|Wi| − l −m) := ((ei, k))
54: end if
55: end for
56: end for
57: end for

58: Let Ci0 be a vector of size |W0|+ . . .+ |Wi|+ 1 initialized with ∞
59: Let Ii0 be a vector of size |W0|+ . . .+ |Wi|+ 1
60: for k := 0, . . . , |W0|+ . . .+ |Wi−1| do . Eq. 4.2
61: for l := 0, . . . , |Wi| do
62: if C ′ := Ci−1

0 (k) + Ci(l) < Ci0(k + l) then
63: Ci0(k + l) := C ′

64: Ii0(k + l) := Ii−1
0 (k) + Ii(l) . List concatenation

65: end if
66: end for
67: end for
68: end for
69: end if

70: I := In0
71: Let C̄,M be vectors of size |W|+ 1
72: for j := 0, . . . , |W| do . Eq. 4.4
73: if Cn0 (|W| − j) < Cn0 (j) then
74: C̄(j) := Cn0 (|W| − j)
75: M(j) := true
76: C̄(|W| − j) := Cn0 (|W| − j)
77: M(|W| − j) := false
78: I(j) := I(|W| − j)
79: end if
80: end for
81: C(µ, parent(µ)) := C̄
82: I(µ, parent(µ)) := I
83: M(µ, parent(µ)) := M

47



Chapter 4. VIP - The Vertex Insertion Problem

The worst-case running time of Algorithm 4.3 is O(|skeleton(µ)| · |W |3). We
analyze it by blocks of lines. We use S := skeleton(µ) as abbreviation.

• Lines 1–25: The augmented dual graph in line 12 can be computed in
time O(|S|). The lengths of all weighted shortest paths in lines 14 and 15
can be computed by the algorithm in [33] in the augmented dual graph
starting from the two faces that are separated by the reference edge in
time O(|S|). At most O(|W |) values are inserted into, e.g., a Fibonacci
heap in the loop in line 17. One insertion operation takes amortized time
O(1). Extracting the minimum value out of the Fibonacci heap which
contains at most O(|W |) elements takes time amortized O(log |W |) in line
20. Since the loop in line 19 iterates at most O(|W |) times, extracting
all values takes time O(|W | · log |W |). The running time of this block is
O(|S|+ |W |+ |W | · log |W |) = O(|S|)|+ |W | · log |W |).

• Lines 27–42: The dual graph in line 27 can be computed in time O(|S|).
The worst-case running time of this block is dominated by the else block
in lines 37-42. Again the lengths of all shortest paths in line 39 and 40 can
be computed in time O(|S|) in the dual graph. Hence the running time of
this block is O(|S|).

• Lines 43–69: The outermost loop in line 43 iterates as many times as µ
children has. The number of children of µ is bounded by |S|. The three
nested loops in lines 46–48 obviously cause O(|W |3) computation steps.
The operations within these loops take constant time. The initializations
of the vectors in lines 45 and 58 take time O(|W |). The running time of
the two nested loops in lines 60 and 61 is O(|W |2). The concatenation of
the lists in line 64 takes constant time. Thus, this part has a running time
of O(|S| · (|W |3 + |W |2 + |W |)) = O(|S| · |W |3).

• Lines 70–83: The loop in this block processes at most O(|W |) computation
steps of which each has constant running time.

Therefore we obtain as worst-case running time:

O(|S|)|+ |W | · log |W |) +O(|S|) +O(|S| · |W |3) +O(|W |) = O(|S| · |W |3)

P-node. Now let µ be a P-node and a j with 0 ≤ j ≤ |W| be given. We have
only to deal with the non-simple case in which µ is an inner node. The reason
is that W−(pert(µ)) = ∅ always holds if µ is a leaf and of type P. Moreover let
e1, . . . , en≥2, εµ be the edges of skeleton(µ) and let the core problem already be
solved for all children of µ. If ei is a virtual edge with pertinent node νi such

48



4.3. VIP with Variable Embedding

that W−(pert(µ)) 6= ∅, then again C̄i denotes its cost vector. In contrast to the
previous paragraph we define for i = 1, . . . , n

Wi :=

{
∅ ei is a proper edge

W−(pert(νi)) ei is a virtual edge with pertinent node νi

Again we use the illustrative description of a subsolution of the core problem with
respect to µ and j and make some observations which allow to derive a dynamic
programming algorithm. Thereto we consider expansion(en) or en if it is a proper
edge. Without loss of generality we can assume that εµ lies on the boundary of
the external face of any embedding of pert(µ).

The observations are the following. With respect to the imaginary direction of
εµ, to the right and left of expansion(en) or en there are subgraphs of pert(µ).
Such a subgraph is either empty, an expansion graph or an edge. We call the set of
subgraphs to the right or left simply structure. Figure 4.7(c) illustrates this for an-
other expansion graph. If en is a virtual edge and W−(expansion(en)) 6= ∅ holds,
then there are 0 ≤ jn ≤ |Wn| and |Wn| − jn inserted edges connecting endpoints
in expansion(en) and vr as well as vl, respectively, crossing the structure to the
right and left of expansion(en). We state that the embedding and permutation of
the subgraphs of the structure to the right and left of expansion(en) or en is inde-
pendent from the embedding of expansion(en) or en. Especially, an inserted edge
with endpoint in expansion(en) causes the same number of crossings when chang-
ing the embedding (conclusion of Lemma 4.1) and/or permutation of a subgraph.
This is the most important observation which the correctness of our algorithm is
based on. Let f be the face bordered by edges of expansion(en) or en and edges
of the right/left structure. We define the thickness t of the right/left structure
as the minimum number of crossings which arises when inserting a vertex into f
and connecting it with vr/vl. So t is the sum of the traversing costs of the edges
or virtual edges corresponding to the right/left structure. Clearly, expansion(en)
or en is possibly crossed by inserted edges outgoing from the right/left structure.
The embedding of expansion(en) or en is also irrelevant for these edges. If en or
expansion(en) is deleted from this embedding, obviously all the just mentioned
observations are valid with respect to expansion(en−1) or en−1.

According to these observations the following algorithm solves the core problem
with respect to µ:

(1) Solve the core problem with respect to µ under assumption that skeleton(µ)
consists of e1, . . . , en−1, εµ only and the constraint that the right and left
structure4 of expansion(en−1) or en−1 has thickness i and tn−2 − i (t0 := 0,
tj :=

∑
1≤k≤j c(ek) for j = 1, . . . , n − 1), respectively, for (adequate) i =

4Each structure must not contain a subgraph of one expansion graph.

49



Chapter 4. VIP - The Vertex Insertion Problem

  

u

v



N1
1
0,0,0=0

f r f l 

N1
m
0,0,1=0

e
xp

a
n
si
o
n
e

1


u

v



N1
1
0,0,0=0

f r f l 

N1
m
0,0,1=0

e1

vrvl vrvl

(a)

  

u

v



vr

N1
1
0, j ,0= j

f r 

v l

f l 

N1
m
0, j , t1=|W1 |− j

e
xp

a
n
si
o
n
e

1


(b)

  u

...

v

tm−1−i

...

i

e
xp

a
n
si
o
n
e

m


L0

N1
m
i , j , i

Lk R0 Rl



vr

N1
m
i , j ,0= j

f r 

vl

f l 

N 1
m
i , j , tm=

|W1 |...|Wm |− j

(c) L0, . . . , Rl represent each either an edge, expansion or empty graph.

Figure 4.7: Pertinent graphs with inserted elements visualizing the computation
of a subsolution of the core problem with respect to a P-node.

50



4.3. VIP with Variable Embedding

0, . . . , tn−2. Let Π(i, jn−1
1 ) for jn−1

1 = 0, . . . , |W1|+ . . .+ |Wn−1| be the one
obtained embedding of the modified pertinent graph.

(2) For i = 0, . . . , tn−2, j
n−1
1 = 0, . . . , |W1|+ . . .+ |Wn−1| extend Γ := Π(i, jn−1

1 )
as follows:

(a) If en is a proper or virtual edge such that W−(expansion(en)) = ∅,
extend Γ for i′ = 0, . . . , tn−1 by embedding en or expansion(en) arbi-
trarily into that face f of Γ such that the structure to the right of en
or expansion(en) has thickness i′. Edges crossing f previously have
to cross en or expansion(en) with the minimum number of crossings.
Each time save the best embedding.

(b) Else, extend Γ for i′ = 0, . . . , tn−1, jn = 0, . . . , |Wn| by embedding
expansion(en) according to Π(jn) into that face f of Γ such that
the structure to the right of expansion(en) has thickness i′ and by
inserting jn and |Wn| − jn edges between appropriate affected ver-
tices of expansion(en) and vr and vl, respectively, such that there are
0 ≤ j ≤ |W| and |W| − j edges with endpoint vr and vl, respectively.
Inserted edges crossing f previously have to cross expansion(en) with
the minimum number of crossings. Each time save the best embedding.

It is easy to see that step 1 of this algorithm could be solved recursively. In
the case that n = 2 holds, step 1 can be solved trivially.

In fact, it suffices again to compute the costs and to save extra information to
be able to construct embeddings. As is indicated by the algorithm above, due to
the additional constraint (a certain thickness to the right of an edge or expansion
graph) we compute a (tn−1 + 1× |W1|+ . . .+ |Wn|+ 1) cost matrix Cn

1 . From it,
we obtain the actual cost vector for j = 0, . . . , |W| as follows

C̄(j) := min
0≤i≤tn−1

(Cn
1 (i, j)) (4.5)

Cn
1 is computed stepwise, i.e., for m = 2, . . . , n the (tm−1 + 1 × |W1| + . . . +

|Wm|+1) cost matrix Cm
1 (cf. step 1) is computed and built from the cost matrix

Cm−1
1 as basically described by step 2 in the above algorithm. C1

1 is the initial cost
matrix that can directly be built. Before we give all optimality equations, we have
to explain the meaning of the (tm−1 +1×|W1|+ . . .+ |Wm|+1× tm+1) auxiliary
matrix Nm

1 used for the computation of Cm+1
1 . Thereto consider the embedding

Π(i, j) of the modified pertinent graph belonging to Cm
1 (i, j) into which vr, vl

and appropriate edges are inserted. For k = 0, . . . , tm the entry Nm
1 (i, j, k) saves

the number of edges crossing that face f of Π(i, j) such that the structure to the
right of f has thickness k (cf. Figure 4.7(c)). If f is bordered by edges belonging
to one expansion graph then Nm

1 (i, j, k) is defined as infinite.

51



Chapter 4. VIP - The Vertex Insertion Problem

The following equations define how to obtain the entries of the initial matrices
for j = 0, . . . , |W1| and k = 0, . . . , t1. If e1 is a proper edge the first two equations
and if e1 is a virtual edge such that W−(expansion(e1)) = ∅, the latter two
equations are valid.

C1
1(0, j) := 0 (4.6)

N1
1 (0, j, k) :=

{
0 k = 0, t1

∞ 0 < k < t1
(4.7)

C1
1(0, j) := C̄1(j) (4.8)

N1
1 (0, j, k) :=


j k = 0

∞ 0 < k < t1

|W1| − j k = t1

(4.9)

The next series of equations define how to obtain the entries of the matrices in
the non-initial case, so for m = 2, . . . , n, i = 0, . . . , tm, j = 0, . . . , |W1|+. . .+|Wm|
and k = 0, . . . , tm. Again, if em is a proper edge the first two equations and if em
is a virtual edge such that W−(expansion(em)) = ∅, the first two equations and
otherwise the latter two ones are valid. Note, in Equation 4.11 and 4.13 we use
i′, j′ as the arguments defining Cm

1 (i, j).

Cm
1 (i, j) := min

0≤i′≤tm−2

(Cm−1
1 (i′, j) +Nm−1

1 (i′, j, i)) (4.10)

Nm
1 (i, j, k) :=


Nm−1

1 (i′, j, k) 0 ≤ k ≤ i

∞ i < k < i+ c(em)

Nm−1
1 (i′, j, k − c(em)) i+ c(em) ≤ k ≤ tm

(4.11)

Cm
1 (i, j) := min

0≤i′≤tm−2,
0≤j′≤|W1|+...+|Wm−1|:

0≤j−j′≤|Wm|


Cm−1

1 (i′, j′) + C̄m(j − j′)+
Nm−1

1 (i′, j′, i) · c(em)+

i · (j − j′)+
(tm−1 − i) · (|Wm| − j + j′)

 (4.12)

Nm
1 (i, j, k) :=


Nm−1

1 (i′, j′, k) + (j − j′) 0 ≤ k ≤ i

∞ i < k < i+ c(em)

Nm−1
1 (i′, j′, k − c(em))+

|Wm| − j + j′
i+ c(em) ≤ k ≤ tm

(4.13)

52



4.3. VIP with Variable Embedding

For the explanation of Equation 4.6–4.9 confer to Figure 4.7(a) and 4.7(b)).
We explain only Equation 4.12 whereof the explanation of Equation 4.13 follows.
The remaining equations can be shown similarly. We orientate by step 2 of the
above algorithm. The embedding Π(i′, j′) (with inserted elements) of the modified
pertinent graph belonging to Cm−1

1 (i′, j′) ”is extended”. Clearly, there are already
Cm−1

1 (i′, j′) crossings. expansion(em) is embedded according to Π(j−j′′) into the
face of Π(i′, j′) such that the structure to the right of expansion(em) has thickness
i. When inserting edges between appropriate affected vertices of expansion(em)
and vr as well as vl, the right and left structure each with thickness i and tm−1− i
is crossed by these edges producing i · (j − j′) + (tm−1 − i) · (|Wm| − (j − j′′))
crossings. expansion(em) is crossed by inserted edges itself, namely by edges
with and without endpoint in expansion(em). These crossings relate to the term
Nm−1

1 (i′, j′, i′) · c(em) + C̄m(j − j′).
Algorithm 4.4 presents a detailed algorithm. This algorithm also maintains

a vector I of lists. The list I(j) = ((e′1, k
′
j1

), . . . , (e′n, k
′
jn)) serves for the same

purpose as described for Algorithm 4.3 and additionally encodes the embedding
of skeleton(µ). That means, if εµ = {u, v} has the imaginary direction from u
(v) to v (u), then e′1, . . . , e

′
n, εµ is the cyclic clockwise order of the edges incident

to u (v).

Algorithm 4.4: Computes the value of a solution of the core problem with
respect to µ as P-node.

Input: P-node µ, C, I

1: Let e1, . . . , en, εµ be the edges of skeleton(µ)
2: Let C1

1 , I
1
1 be (1× |W1|+ 1)-matrices and N1

1 be a (1× |W1|+ 1× t1 + 1)-matrix
↪→ initialized with ∞

3: if e1 is a proper edge then
4: C1

1 (0, 0) := N1
1 (0, 0, 0) := N1

1 (0, 0, 1) := 0 . Eq. 4.6, 4.7
5: else
6: for j = 0, . . . ,W1 do
7: if W−(expansion(e1)) = ∅ then . Eq. 4.6, 4.7
8: C1

1 (0, j) := 0
9: N1

1 (0, j, 0) := N1
1 (0, j, t1) := 0

10: I1
1 (0, j) := ((e1, 0))

11: else . Eq. 4.8, 4.9
12: C1

1 (0, j) := C̄1(j)
13: N1

1 (0, j, 0) := j
14: N1

1 (0, j, t1) := |W1| − j

53



Chapter 4. VIP - The Vertex Insertion Problem

15: I1
1 (0, j) := ((e1, j))

16: end if
17: end for
18: end if

19: for m = 2, . . . , n do
20: Let Cm1 , Am1 and Im1 be (tm−1 + 1× |W1|+ . . . |Wm|+ 1)-matrices initialized

↪→ with ∞ and Nm
1 be a (tm−1 + 1× |W1|+ . . .+ |Wm|+ 1× tm + 1)-

↪→ matrix . Am1 is an auxiliary matrix only used in this algorithm
21: for i′ := 0, . . . , tm−2 do
22: for j′ := 0, . . . , |W1|+ . . .+ |Wm−1| do
23: for i := 0, . . . , tm−1 do
24: if em is a proper edge or W−(expansion(em)) = ∅ then
25: C ′ := Cm−1

1 (i′, j′) +Nm−1
1 (i′, j′, i) . Eq. 4.10

26: if C ′ < Cm1 (i, j′) then
27: Cm1 (i, j′) := C ′

28: Am1 (i, j′) := (i′, j′, 0)
29: end if
30: else
31: for j := 0, . . . , |Wm| do
32: C ′ := Cm−1

1 (i′, j′) + C̄m(j) +Nm−1
1 (i′, j′, i) · c(em) + i · j+

↪→ (tm−1 − i) · (|Wm| − j) . Eq. 4.12
33: if C ′ < Cm1 (i, j′ + j) then
34: Cm1 (i, j′ + j) := C ′

35: Am1 (i, j′ + j) := (i′, j′, j)
36: end if
37: end for
38: end if
39: end for
40: end for
41: end for

42: for i := 0, . . . , tm−1 do
43: for j := 0, . . . , |W1|+ . . .+ |Wm| do
44: Let Am1 (i, j) = (i′, j′, j′′)
45: for k := 0, . . . , tm do . Eq. 4.11, 4.13
46: if k ≤ i then
47: Nm

1 (i, j, k) := Nm−1
1 (i′, j′, k) + j′′

48: else if i < k < i+ c(em) then
49: Nm

1 (i, j, k) :=∞
50: else
51: Nm

1 (i, j, k) := Nm−1
1 (i′, j′, k − c(em)) + |Wm| − j′′

52: end if

54



4.3. VIP with Variable Embedding

53: end for

54: if i = 0 then
55: Im1 (i, j) := Im1 (i, j) + ((em, j′′))
56: else if i = tm−1 then
57: Im1 (i, j) := ((em, j′′)) + Im1 (i, j)
58: else
59: Let Im−1

1 (i′, j′) = ((e′1, k
′
1), . . . , (e′m−1, k

′
m−1))

60: for k := m− 1, . . . , 1 do
61: if i = c(e′m−1) + . . .+ c(e′k) then
62: Im1 (i, j) := (. . . , (e′k−1, k

′
k−1), (em, j′′), (e′k, k

′
k), . . .)

63: Break
64: end if
65: end for
66: end if
67: end for
68: end for
69: end for

70: Let C̄, I be vectors each of size |W|+ 1
71: for j := 0, . . . , |W| do
72: i′ := 0
73: for i := 0, . . . , tn−1 do
74: if Cn1 (i, j) ≤ Cn1 (i′, j) then
75: i′ := i
76: end if
77: end for
78: C̄(j) := Cn1 (i′, j)
79: I(j) := In1 (i′, j)
80: end for
81: C(µ, parent(µ)) := C̄
82: I(µ, parent(µ)) := I

The worst-case running time of Algorithm 4.4 is O(|skeleton(µ)| · t2max · |W |2)
with tmax as the maximum thickness of a skeleton associated with a P-node in
the given SPQR-tree in the core problem. It is generated by the block in lines
19–69. As supplied before we use S := skeleton(µ) as abbreviation temporarily
and analyze the running time by blocks of lines:

• Lines 2–18: The runtime of this block is O(tmax · |W |) caused by the ini-
tialization of the auxiliary matrix N1

1 .

55



Chapter 4. VIP - The Vertex Insertion Problem

• Lines 20–41: The initialization of the three matrices needs timeO(tmax·|W |)
and the four nested loops have a runtime of O(t2max · |W |2) since tm−2 ≤
tn ≤ tmax and the runtime of the operations within the innermost loop can
be estimated by O(1).

• Lines 42–68: O(tmax · |W | · (tmax + |S|)) = O(t2max · |W |) due to k ≤ n ≤ |S|
(line 60) and tmax+3 ≥ |S|. Again, this is simply the product of the number
of steps in the nested loops.

• Lines 19–69: Having regard to the outermost loop of this block iterating
n ≤ |S| times and the previous runtimes, we obtain a runtime of O(|S| ·
(t2max · |W |2)) for this block.

• Lines 70–82: O(tmax · |W |).

Constructing an Embedding. A detailed algorithm for constructing an embed-
ding Π(j) of pert(µ) belonging to C̄(j), i.e., a subsolution of the core problem,
is given by Algorithm 4.5. This algorithm processes a recursive top-down re-
placement of the virtual edges of skeleton(µ) with embeddings of their expansion
graphs. Thereto it utilizes the extra information stored during the computation
of C̄.

The runtime of Algorithm 4.5 is O(|V |2). At most all skeleton edges are con-
sidered in all recursions together which takes time O(|V |) due to the size of T .
Mirroring the embedding of pert(µ) means mirroring all the skeletons associated
with nodes in the subtree Tµ of T . Hence in the worst-case, the embedding of each
skeleton is as many times mirrored as its associated node in Tµ is deep. The max-
imum depth of Tµ is O(|V |), since there are at most O(|V |) nodes in Tµ. Hence all
the mirroring operations take time

∑
µ′ in Tµ |V | · |skeleton(µ′)| = O(|V |2). The

total worst-case running time is therefore O(|V |2).

Algorithm 4.5: Computes an embedding Π(j) of pert(µ) belonging to C̄(j).

Input: Rooted SPQR-tree T , node µ of T , integer 0 ≤ j ≤ |W−(pert(µ))|, I, M
Output: Embedding Π(j) of pert(µ)

1: if I(µ) = nil then . No cost vector exists associated with µ
2: return any planar embedding Π(j) of pert(µ)
3: end if
4: I := I(µ)
5: Let I(j) = ((e′1, k

′
j1

), . . . , (e′n, k
′
jn

)) and εµ = {u, v}
6: if µ is a P-node then
7: Let Π(j) be the embedding of skeleton(µ) such that e′1, . . . , e

′
n, εµ is the cyclic

56



4.3. VIP with Variable Embedding

↪→ clockwise order of the edges incident to u or v depending on the imaginary
↪→ direction of εµ

8: else
9: Let Π(j) be the fixed embedding of skeleton(µ)

10: end if
11: for i := 1, . . . , n ≥ 1 do
12: if e′i is a virtual edge then
13: Let ν ′i be the pertinent node of e′i
14: Call this algorithm recursively with inputs T , ν ′i, k′ji , I,M and obtain

↪→ an embedding Π′(k′ji) of pert(ν ′i)
15: Replace e′i in Π(j) by the embedding of pert(ν ′i)− e′i induced by Π′(k′ji)
16: end if
17: end for
18: if M :=M(µ) 6= nil and M(j) then
19: Mirror Πj

20: end if
21: for each virtual edge e of skeleton(µ) do
22: Replace e in Π(j) by any planar embedding of expansion(e)
23: end for
24: return Π(j)

4.3.3 Solving VIP-VAR for Biconnected Graphs

Algorithm 4.6 presents the frame algorithm for solving VIP-VAR for a bicon-
nected planar graph optimally in polynomial time. An overview about the rele-
vant steps of this algorithm is the following:

1. First of all the SPQR-tree T of the biconnected planar input graph G is
computed.

2. The algorithm roots T at each of its nodes once.

3. The solution value of the core problem is computed with respect to either
each node of T except the root or each node of the bottom-up path from
the previous to the current root except the current root. This depends on
whether the loop iterates for the first time. Additionally, the traversing
costs of the virtual edges of these nodes are computed.

4. Afterwards the insertion of ϑ into each face of an embedding of the root’s
skeleton is simulated and the overall costs are computed, i.e., the mini-
mum number of crossings which occur if ϑ and its incident edges would be

57



Chapter 4. VIP - The Vertex Insertion Problem

inserted in reality. This computation is delegated to the function Cross-
ingNumberSR in the case the current root is of type S or R and otherwise
to the function CrossingNumberP. If the costs of such a solution are less
than the best solution so far, necessary data structures are saved to provide
a construction of an embedding of G later on.

5. Finally, an embedding of G is computed. This done by applying Algorithm
4.5.

(6. It remains to insert ϑ and its incident edges in fact as described in Section
4.2.)

Algorithm 4.6: Computes an optimal solution of VIP-VAR for a biconnected
planar graph.

Input: Biconnected planar graph G = (V,E), W ⊆ V , W 6= ∅
Output: Embedding of G

1: µoptr := µoldr := nil
2: c1 :=∞
3: C := I := Iopt :=M :=Mopt := ∅
4: Compute the SPQR-tree T of G . Fixes embeddings of all skeletons
5: if T consists of one node µr only then
6: return any embedding of skeleton(µr)
7: end if
8: for each node µr of T do
9: Root T at µr

10: if W = W (skeleton(µr)) then
11: Let Π be the fixed embedding of skeleton(µr)
12: for each virtual edge e of skeleton(µr) do
13: Replace e in Π by any embedding of expansion(e)
14: end for
15: return Π
16: end if
17: if µoldr = nil then
18: Let ν1, . . . , νm≥2 = µr be a bottom-up order5 of all nodes of T
19: else
20: Let µoldr = ν1, . . . , νm≥2 = µr be a bottom-up path in T
21: end if
5The bottom-up order of these nodes is the order in which they are visited in a bottom-up

traversal of T . That means if a node is visited, all of its children have to be visited already
before.

58



4.3. VIP with Variable Embedding

22: for i := 1, . . . ,m− 1 do
23: Let ei be the virtual edge of νi
24: Compute c(ei)
25: if W−(pert(νi)) 6= ∅ and C(νi, parent(νi)) = nil then
26: if νi is an S- or R-node then . Computing the cost vector w.r.t. νi
27: Call Algorithm 4.3 with inputs νi, C, I, M
28: else
29: Call Algorithm 4.4 with inputs νi, C, I
30: end if
31: end if
32: end for
33: µoldr := µr
34: if µr is an S- or R-node then
35: c2 :=CrossingNumberSR(µr, C, I)
36: else
37: c2 :=CrossingNumberP(µr, C, I)
38: end if
39: if c2 < c1 then
40: c1 := c2
41: µoptr := µr
42: Iopt := I
43: Mopt :=M
44: end if
45: end for
46: Root T at µoptr

47: return the embedding of G obtained by calling Algorithm 4.5 with inputs
↪→ T , µoptr , Iopt, Mopt, 0

1: function CrossingNumberSR(Root node µr of type S or R, C, I)
2: Let Π be the fixed embedding of skeleton(µr)
3: Let e1, . . . , en≥1 be the virtual edges of skeleton(µr) with pertinent nodes ν1, . . . , νn

↪→ such that W1 := W−(pert(ν1)), . . . ,Wn := W−(pert(νn)) 6= ∅
4: Compute Π∗ = (F ∗, E∗)
5: if W (skeleton(µr)) 6= ∅ and µr is an R-node then
6: Compute Π∗[W (skeleton(µr))]
7: end if
8: c0 :=∞
9: Let I be a vector of size 1

10: I(0) := () . Empty list
11: for all f∗ ∈ F ∗ do . Regard ϑ as inserted into f
12: c1 := 0
13: I ′ := ()
14: if W (skeleton(µr)) 6= ∅ and µr is an R-node then

59



Chapter 4. VIP - The Vertex Insertion Problem

15: for all w ∈W (skeleton(µr)) do
16: c1 := c1 + |P (w, f∗)| . Weighted shortest path

in Π∗[W (skeleton(µr))]
17: end for
18: end if
19: for all f̄∗ 6= f∗ ∈ F ∗ do
20: `(f̄∗) := |P (f̄∗, f∗)| . Weighted shortest path in Π∗

21: end for
22: for i := 1, . . . , n do
23: c2 :=∞
24: C̄i := C(νi)
25: for j := 0, . . . , |Wi| do
26: c3 := C̄i(j) + `(f∗r (ei)) · j + `(f∗l (ei)) · (|Wi| − j)
27: if c3 < c2 then
28: c2 := c3
29: j′ := j
30: end if
31: end for
32: I ′ := I ′ + ((ei, j′))
33: c1 := c1 + c2
34: end for
35: if c1 < c0 then
36: c0 := c1
37: I(0) := I ′

38: end if
39: end for
40: I(µr, parent(µr)) := I
41: return c0
42: end function

1: function CrossingNumberP(Root node µr of type P, C, I)
2: Let u, v be the poles and e1, . . . , en≥3 be the edges of skeleton(µ)
3: c0 :=∞
4: c1 := 0
5: for i := 1, . . . , n do
6: c1 := c1 + c(ei)
7: end for
8: for i := 1, . . . , n− 1 do
9: for j := i+ 1, . . . , n do

10: Split µ into two new nodes µr1 , µr2
11: Let skeleton(µr1) be induced by e′1 := ei, e

′
2 := ej and a new virtual

↪→ edge e′3 := {u, v} with pertinent node µr2
12: Let skeleton(µr1) have the embedding Π in which e′1, e

′
2, e
′
3 is the cyclic

60



4.3. VIP with Variable Embedding

↪→ clockwise order of these edges incident to u
13: Let skeleton(µr2) be induced by e1, . . . , en /∈ {e′1, e′2} and εµr2 := e′3
14: Let f be the face of Π defined by e′1, e

′
2 . Regard ϑ as inserted into f

15: Compute Π∗ = (F ∗, E∗)
16: for all f̄∗ 6= f∗ ∈ F ∗ do
17: `(f̄∗) := |P (f̄∗, f∗)| . Weighted shortest path in Π∗

18: end for
19: Call Algorithm 4.4 with inputs µr2 , C, I
20: c(e′3) := c1 − c(e′1)− c(e′2)
21: c2 := 0;
22: for l := 1, 2, 3 do
23: if e′l is a proper edge then
24: kl := 0
25: Continue
26: else if W := W−(expansion(e′l)) 6= ∅ then
27: Let νl be the pertinent node of e′l
28: C̄l := C(νl)
29: c3 :=∞
30: for m := 0, . . . , |W| do
31: c4 := C̄l(m) + `(f∗r (e′l)) ·m+ `(f∗l (e′l)) · (|W| −m)
32: if c4 < c3 then
33: c3 := c4
34: kl := m
35: end if
36: end for
37: c2 := c2 + c3
38: end if
39: end for
40: if c2 < c0 then
41: c0 := c2
42: Let I be a vector of size 1
43: I ′ := I(µr2)
44: I(0) := I ′(k3) + ((e′1, k1), (e′2, k2)) . List concatenation
45: I(µr, parent(µr)) := I
46: end if
47: end for
48: end for
49: return c0
50: end function

61



Chapter 4. VIP - The Vertex Insertion Problem

Correctness

The algorithm distinguishes between three cases where two of them are special
cases.

Case 1. The first special case occurs if T consists of only one node µ (cf. lines
5–7). Then the optimal solution is any embedding of skeleton(µ). If µ is of
type S- or P, then all affected vertices are part of each face of any embedding of
skeleton(µ) and ϑ and its incident edges can be inserted without crossings. This
is obviously optimal. If µ is of type R, then skeleton(µ) has only two embeddings
which are mirror images of each other. Thus it is does not matter which is chosen.

Case 2. The other special case occurs if there exists one node µ of T such that
skeleton(µ) contains all affected vertices (cf. lines 10–16). Then it is optimal to
insert ϑ into a face of any embedding Π of pert(µ) which corresponds to a face
of the embedding of skeleton(µ) induced by Π. If µ is of type S or P, ϑ and its
incident edges can be inserted into any embedding of pert(µ) without crossings.
If µ is of type R, the correctness follows from the consideration below and from
the property that skeleton(µ) has only two embeddings which are mirror images
of each other.

Let Π be an embedding of pert(µ) representing an optimal solution. Further
on let ϑ and its incident edges be inserted into Π with the minimum number
of crossings whereby ϑ is inserted into a face of an embedding of expansion(e)
with e = {u, v} as virtual edge of skeleton(µ). f ′r and f ′l denote the two faces
in Π corresponding to fr(e) and fl(e) in the embedding of skeleton(µ) induced
by Π. If {u, v} = W , then obviously ϑ can be reinserted into f ′r or f ′l and its
incident edges can be reinserted without crossings. Hence assume {u, v} 6= W .
Then inserted edges between ϑ and all w ∈ W − {u, v} must cross f ′r and f ′l
on their insertion paths. Let Er and El be the distinct sets of these inserted
edges according to this property. Er = ∅, El 6= ∅ or Er 6= ∅, El = ∅ cannot
hold because ϑ could be reinserted into f ′r and f ′l respectively and all crossings
with respect to expansion(e) could be saved. Thus Er 6= ∅ and El 6= ∅ must
hold. Consider the case |Er| = |El|. For one e ∈ Er and one e′ ∈ El with
insertion paths P = e1, . . . , ek and P ′ = e′1, . . . , e

′
l, respectively, there exist indices

k′ ≤ k, l′ ≤ l such that ek′ and e′l′ lie on the boundary of f ′r and f ′l , respectively.
Then |{e1, . . . , ek′ , e′1, . . . , e′l′}| ≥ c(e) holds. It follows that ϑ can be reinserted
into f ′r without loss of generality while producing the same number of crossings.
All e ∈ Er need not cross expansion(e) anymore and the length of their insertion
paths is reduced by |Er| · |P |. We let all e′ ∈ El now cross expansion(e) by an
insertion path of length c(e). We easily see that the case |Er| 6= |El| cannot hold

62



4.3. VIP with Variable Embedding

because a solution with less crossings would be possible. Clearly, the described
property is valid for each virtual edge of skeleton(µ).

Case 3. This is the general case. The insertion of ϑ into an embedding of G,
especially an embedding representing an optimal solution, corresponds to the
insertion of ϑ into an embedding of a skeleton associated with a node of T and
vice versa. Let Π be an embedding of G. Then ϑ is inserted into a face f ′ of Π.
According to Theorem 2.3 we can uniquely define an embedding of the skeleton
of each node in T by means of Π. Then there must be a face f of the embedding
of a skeleton such that f = f ′ or the replacement of each virtual edge bordering
f by an embedding of its expansion graph creates f ′. The converse direction
follows easily.

The algorithm simulates the insertion of ϑ into each face of an appropriate
embedding of the skeleton associated with each node of T and therefore takes
all possibilities into account. Thereby it is no restriction to make the current
considered node µr the root of T . The reason is that T is the only SPQR-tree of
G and rerooting it causes only that the meaning of edges in the skeleton associated
with each node on the bottom-up path from the old to the new root changes, i.e.,
especially the reference edge becomes another.

Whenever ϑ is regarded as inserted into a face f of an embedding of skeleton(µr)
the subproblem which arises and has to be solved for each child νi of µr with
Wi := W−(pert(νi)) 6= ∅ is the core problem. Thereto consider the virtual edge
ei of νi in skeleton(µr). When ei is replaced by an embedding of expansion(ei)
and edges between ϑ and all w ∈ Wi are inserted into the so obtained embedding
then 0 ≤ j ≤ |Wi| and |Wi|−j of these edges must cross the face corresponding to
fr(ei) and fl(ei) in the embedding of skeleton(µr), respectively. With a solution
of the core problem with respect to νi at hand, not only the minimum number
of crossings produced with respect to expansion(ei) but also a best embedding
of expansion(ei) is provided for each value of j. We have shown in detail how to
solve the core problem for an S-, R- or P-node to optimality. One can easily see
that there is no need to create any embedding until not all nodes are processed.

Clearly, in the first iteration we have to solve the core problem in a bottom-
up order for all nodes of the SPQR-tree except the root whose pertinent graphs
contain affected vertices. But afterwards it suffices to do so for all the nodes on
the bottom-up path from the old to the new root since only the meaning of edges
of their skeletons changes and therewith their associated cost vector as well as
the traversing costs of their virtual edges. Now the reason why all the associative
data structures are indexed with the pair µ, parent(µ) becomes obvious. It serves
for the memoization technique and avoids the multiple computation of the cost
vector and the related data structures under the same conditions.

63



Chapter 4. VIP - The Vertex Insertion Problem

It remains to explain that the choice of the embedding of the root’s skeleton is
correct. In the case µr is an S- or R-node an arbitrary embedding of skeleton(µr)
can be chosen for the reasons mentioned several times so far. In the case µr is a
P-node we apply the trick of splitting µr into two artificial P-nodes µr1 , µr2 (cf.
CrossingNumberP) based on the simple observation that skeleton(µr) consist-
ing of a bundle of n edges has O(n2) different faces where ϑ can be ”inserted” into
despite of its (n − 1)! embeddings. Therewith the task to create an embedding
of skeleton(µr1) with µr1 as temporary new root becomes trivial and the core
problem has to be solved with respect to µr2 .

Running Time

At first we give the running times of the two functions. The running time of
CrossingNumberSR is O(|skeleton(µr)|2 · |W |). The dual and augmented dual
graph in lines 4 and 6 can be computed in time O(|skeleton(µr)|). The number
of steps of the outermost loop can be estimated by |skeleton(µr)| as well as of the
loop in line 22. As multiple times mentioned the computation of the lengths of
the weighted shortest paths in lines 16 and 20 take also time O(|skeleton(µr)|).
The running time of the loop in line 25 can be estimated by O(|W |).

The running time of CrossingNumberP is dominated by the multiple calls
of Algorithm 4.4 for µr2 with a worst-case running time of O(|skeleton(µr2)| ·
t2max · |W |2). The computation of the dual graph and the length of the shortest
paths are negligible since skeleton(µr2) consists of three edges only. In fact it is
not necessary to compute the dual graph. We easily see that the block in lines
22–39 has a running time of O(|W |). n ≤ |skeleton(µr)| is valid and the two
nested loops in lines 8 and 9 cause |skeleton(µr)|2 computation steps. We obtain
O(|skeleton(µr)|2 · (|skeleton(µr2)| · t2max · |W |2 + |W |)) = O(|skeleton(µr)|3 · t2max ·
|W |2).

In the first iteration of the outer loop of the main algorithm the traversing costs
of all virtual edges are computed and furthermore for each node of the SPQR-tree
either Algorithm 4.3 or 4.4 is called within the inner loop. The computation of
the traversing costs takes time O(|V |). Algorithm 4.3 and 4.4 have running times
of O(|skeleton(νi)| · |W |3) and O(|skeleton(νi)| · t2max · |W |2) with respect to the
considered node νi. Hence we can estimate this portion of the running time by

O(|V |) +
∑
µ in T

O(|skeleton(µ)| · t2max · |W |2) = O(|V | · t2max · |W |2)

In all the following iterations of the outer and inner loop together either Algorithm
4.3 or 4.4 is called at most d(µ) times for each node µ of the SPQR-tree due to
the fact that each neighbour of µ becomes the root and due to the memoization
technique. Therefore in total we can estimate at most twice as many calls of

64



4.3. VIP with Variable Embedding

Algorithm 4.3 and 4.4 as there are nodes in the SPQR-tree. Taking again the
worse running time of both algorithms and summing up leads toO(|V |·t2max·|W |2).
Traversing all the bottom-up paths and computing all the traversing costs can be
estimated by O(|V |2). The two functions are also called as many times as there
are nodes in the SPQR-tree. This causes a running time of∑

µ in T

O(|skeleton(µ)|3 · t2max · |W |2) = O(|V |3 · t2max · |W |2)

The associative data structures I and M have each size O(|V |). Hence making
copies of them takes time O(|V |2). The same running time is true for the final
creation of the embedding. The SPQR-tree which is built at the beginning of the
algorithm causes a linear running time in the number of vertices of the graph.
All in all we obtain a worst-case running time of

O(|V |3 · t2max · |W |2)

The theorem below summarizes our results.

Theorem 4.1 Let G = (V,E) be a biconnected planar graph and W ⊆ V be a
non-empty vertex set. Then VIP-VAR can be solved optimally with respect to G
and W in time O(|V |3 · t2max · |W |2) (tmax ≤ |V |).

The given runtime is also valid when taking the runtime of O(|V | · |W |) for
inserting the elements (cf. Section 4.2) into the so-obtained embedding into ac-
count. Moreover we have to remark that the worst-case runtime improves to
O(|V | · |W |3 + |V |2 · |W |) = O(|V |2 · |W |2) (|W | ≤ |V |) if the SPQR-tree consists
of S- and R-nodes only.

4.3.4 Solving VIP-VAR for Connected Graphs

In this section we present an algorithm solving VIP-VAR for a connected planar
graph G = (V,E) and W ⊆ V . Basically, this algorithm is based on two algo-
rithms solving VIP-VAR with respect to a block of G and the BC-tree of G. This
algorithm has polynomial worst-case running time.

Let G′ = (V ′, E ′) be a biconnected graph and W ′ ⊆ V ′. By A1 we denote the
algorithm solving VIP-VAR with respect to G′ and W ′ and assume further that
A1 can process weighted w′ ∈ W ′. That means when computing the length of
a dual shortest (sub)path with a weighted w′ as endpoint this length is always
multiplied with the weight of w′. By A2 we denote the algorithm for solving
VIP-VAR with respect to G′, W ′ and another input v′ ∈ V ′. A2 can process
also weighted w′ ∈ W ′ like A1 and additionally assumes that the new vertex

65



Chapter 4. VIP - The Vertex Insertion Problem

to be inserted into an embedding of G′ has to be inserted into a face on whose
boundary v′ lies. Moreover we assume that both algorithms not only return the
embedding of G′ but also the face in which the new vertex has to be inserted
and the number of crossings which would occur when inserting that vertex and
its incident edges into the returned embedding. We can adapt the algorithm(s)
presented in the previous section to realize A1 and A2. Basically, thereto it is
necessary to maintain larger cost vectors (whose components may contain ∞)
and to save the face which the insertion vertex is regarded as inserted into. We
can provide the same worst-case runtime of O(|V ′|3 · t2max · |W ′|2) if we make W ′

a multiset which contains an affected vertex with weight ω exactly ω times.
Let T be the rooted BC-tree of G. x(B) and x(c) denote the nodes of T

associated with the block B and the cut-vertex c, respectively. If x is a node of
T , then H(x) stands for the subgraph of G which is induced by the vertices of G
associated with all nodes of the subtree of T with root x.

Now let Π be an embedding of G which represents an optimal solution of VIP-
VAR with respect to G and W . Moreover let B1, . . . , Bn≥1 be the blocks of G
and ϑ and its incident edges be inserted into Π with the minimum number of
crossings. Below, by means of Π we give some facts whose correctness is easy to
comprehend and which induce an optimal algorithm:

(1) ϑ is inserted into a face f ′ of Π. So there must be a face f of an embedding
Πi of a block Bi (1 ≤ i ≤ n) induced by Π such that f ′ = f or the removals
of all subgraphs of G except Bi connected only through the cut-vertices (see
step 2) lying on the boundary of f ′ let f arise.

(2) If there are cut-vertices c1, . . . , cj≥1 in Bi, then for k = 1, . . . , j there ex-
ists a connected subgraph Hk := H(x(ck)) (assuming Bi is the root of T )
connected with the rest of G only through ck. Additionally, Hk is com-
posed by distinct subgraphs H̄1 := H(x(B̄1)), . . . , H̄l≥1 := H(x(B̄l)) with
x(B̄1), . . . , x(B̄l) as the children of x(ck). H̄m for m = 1, . . . , l must be
embedded into a face of Πi on whose boundary ck lies (cf. Figure 4.8).

(3) If H̄m does not contain affected vertices excluding the possibly affected ck,
then H̄m is not crossed by any inserted edge. Obviously, an inserted edge
can cross the face which H̄m is embedded into always without crossing H̄m

itself.

(4) If H̄m contains affected vertices excluding the possibly affected ck, then
all inserted edges with endpoint in H̄m must cross the face which H̄m is
embedded into.

(5) If H̄1, . . . , H̄l are not embedded into a common face on whose boundary ck
lies, these graphs and therewith Hk can be embedded into a common face

66



4.3. VIP with Variable Embedding

  

H1

H3

H2

B1

ck

f 1

f 2

f 3

G

Figure 4.8: Distinct subgraphs H̄1, H̄2 and H̄3 sharing the common cut-vertex ck.

f such that the total minimum number of crossings is preserved. f is the
face on whose boundary ck lies and that would be crossed when inserting
an edge between ϑ and ck with the minimum number of crossings.

(6) The embeddings of B1, . . . , Bn can be fixed independently from each other
and therewith the embedding of Bi can be fixed independently from the
embedding of Hk and vice versa for all k.

Now we construct the algorithm based on these facts. According to fact 1 we
assume for i = 1, . . . , n that the insertion of ϑ into an embedding of G relates to
the insertion of ϑ into an embedding of Bi. According to fact 6 we compute an
embedding Πi of Bi and for all k an embedding Πk of Hk separately and extend
Πi by Πk appropriately, i.e., Hk is embedded according to Πk into a certain face
of Πi on whose boundary ck lies. If the costs of the resulting embedding, so the
minimum number of crossings that would occur when inserting ϑ and its incident
edges in fact, are less than the costs of the best solution so far, this embedding
is saved. When all blocks are processed the best embedding is available.

Let us explain how to compute the embeddings. Thereto let Bi be the current
block. Consider the case in which Bi contains all w ∈ W . Then it is not optimal
to insert ϑ into a face of an embedding of Hk for all k. Illustratively, this can be
reasoned as follows. According to fact 5 we assume Hk is embedded into a face

67



Chapter 4. VIP - The Vertex Insertion Problem

f of an embedding of Bi. According to fact 4 all inserted edges must cross f and
produce crossings with respect to Hk. But at least these crossings can be saved
if ϑ is reinserted into f . This holds for all k and it follows that ϑ can optimally
be inserted into a face of an embedding of Bi. Therefore we can call Algorithm
4.6 with inputs Bi and W , obtain a best embedding Πi of Bi and for all k we can
embed Hk arbitrarily planar into a face of Πi on whose boundary ck lies.

Now consider the case in which Bi does not contain all w ∈ W . Then, without
loss of generality, there is an index 1 ≤ j′ ≤ j such that Hk′ for k′ = 1, . . . , j′

contains affected vertices excluding the possibly affected ck′ . According to fact 5,
for all k′ we can embed Hk′ into a face on whose boundary ck′ lies. According to
fact 4 all inserted edges with endpoints in Hk′ would cross this face. Therefore
for all k′ we can simply weight ck′ with the number of affected vertices in Hk′ and
make ck′ an affected vertex. Then A1 can be called with respect to Bi and the
affected vertices ofBi. Thus the number of crossings with respect toBi is correctly
paid attention to. Let the embedding Πi of Bi and the face f of Πi be the return
values of A1. For all k′ we compute the shortest path P (f ∗, ck′) = f ∗0 , . . . , f

∗
l , ck′

(l ≥ 0, f ∗0 := f ∗) in Π∗i [{c′k}], a best embedding Πk′ of Hk′ (as will be shortly
described) and extend Πi by embedding Hk′ according to Πk′ into fl. According
to fact 3, again we can embed Hk for k = j′ + 1, . . . , j arbitrarily planar into a
face of Πi on whose boundary ck lies.

The number of crossings with respect to Bi that would occur when inserting
edges between ϑ and all affected vertices in Hk′ is already paid attention to. Since
Hk′ will be embedded entirely into fl it is easy to see that the problem to com-
pute a best embedding of Hk′ is equivalent to solve VIP-VAR with respect to Hk′

and its affected vertices excluding the possibly affected ck′ under an additional
constraint. This constraint is that the vertex which is assumed to be inserted into
an embedding of Hk′ has to be inserted into a face on whose boundary ck′ lies.
According to fact 2 we can solve this equivalent problem by solving it with respect
to the distinct subgraphs of Hk′ that contain affected vertices. Without loss of
generality let 1 ≤ l′ ≤ l be the index such that H̄m′ for m′ = 1, . . . , l′ contains af-
fected vertices. The embedding of H̄m′ could be computed recursively. According
to the additional constraint and fact 1 the vertex assumed to be inserted into an
embedding of H̄m′ is assumed to be inserted into an embedding of B̄m′ (e.g., cf.
B̄1 in Figure 4.8). We recognize that facts 2–6 are valid for B̄m′ with respect to
H̄m′ . Hence we can compute the embedding of H̄m′ almost the same way as we
do for G itself. That means according to fact 6 an embedding of B̄m′ and for each
subgraph of H̄m′ connected with a cut-vertex of B̄m′ is computed and composed
to an embedding of H̄m′ . This time the computation of the embedding of a block
is done by A2. Note, that it is essential to make the face of the embedding of the
block, both returned by A2, the external face. Otherwise in a real insertion of the

68



4.3. VIP with Variable Embedding

elements into the obtained embedding of G there could be extra crossings. On
the other hand it is no restriction since each block is biconnected and each face of
its embedding can be made the external face while preserving its combinatorial
embedding.

Algorithm 4.7 presents the algorithm as just now described more compactly
and completely. It does not create embeddings recursively. Instead it processes a
bottom-up traversal of T . Moreover we presume that A2 when called with respect
to a block B, an empty set of affected vertices and a vertex v of B returns any
planar embedding of B, any face of this embedding on whose boundary v lies and
0 as crossing number.

Algorithm 4.7: Computes an optimal solution of VIP-VAR for connected planar
graphs.

Input: Connected planar graph G = (V,E), W ⊆ V , W 6= ∅
Output: Embedding of G

1: Compute the BC-tree T of G
2: if T contains only one node then . Special case 1
3: return the embedding obtained by calling Algorithm 4.6 with inputs G, W
4: end if
5: for all nodes x of T do . Special case 2
6: if x is associated with block B and V (B) ∩W = W then
7: Root T at x
8: Call Algorithm 4.6 with inputs B, W and obtain an embedding Π of B
9: Let x(c1), . . . , x(cj≥1) be the children of x

10: for k := 1, . . . , j do
11: Extend Π by embedding H(x(ck)) arbitrarily planar into a face of

↪→ Π on whose boundary ck lies
12: end for
13: return Π
14: end if
15: end for

16: cropt :=∞
17: for all nodes x of T do
18: if x is not associated with a block then
19: Continue
20: end if
21: cr := 0
22: Root T at x
23: W ′ := ∅ . Set of artificially affected cut-vertices

69



Chapter 4. VIP - The Vertex Insertion Problem

24: Πopt := ∅
25: for all nodes y of T in a bottom-up order do
26: if y is associated with the block B then
27: if y = x then
28: Call A1 with inputs B, V (B) ∩ (W ∪W ′) and obtain an embedding

↪→ Π of B, a face f of Π and a crossing number cr′

29: cr := cr + cr′

30: else
31: Call A2 with inputs B, V (B) ∩ (W ∪W ′), the cut-vertex associated

↪→ with the parent of y and obtain an embedding Π of B,
↪→ a face f of Π and a crossing number cr′

32: cr := cr + cr′

33: Make f the external face of Π
34: end if
35: if y has children x(c1), . . . , x(cj≥1) then
36: Compute Π∗[{c1, . . . , cj}]
37: for k := 1, . . . , j do
38: Compute P (f∗, ck) = f∗0 , . . . , f

∗
l≥0, ck (f∗0 := f∗) in Π∗[{c1, . . . , cj}]

39: Extend Π by embedding H(x(ck)) according to Π(x(ck)) into fl
40: end for
41: Π(y) := Π
42: end if
43: if y = x and cr < cropt then
44: Πopt := Π
45: cropt := cr
46: end if
47: else if y is associated with the cut-vertex c then
48: Let Π := ∅ be the empty embedding
49: Let z1, . . . , zj≥1 be the children of y
50: for k := 1, . . . , j do
51: Extend Π by embedding H(zk) according to Π(zk) into the external

↪→ face of Π
52: end for
53: Π(y) := Π
54: if w := |W ∩ V (H(y))| > 0 then
55: Weight c with w
56: W ′ := W ′ ∪ {c}
57: end if
58: end if
59: end for
60: end for
61: return Πopt

70



4.3. VIP with Variable Embedding

In the following we verify the polynomial running time of our algorithm in the

known manner by analyzing portions of its running time. We assume an adjacency
list representation of the (combinatorial) embeddings using doubly linked lists.

We can compute the BC-tree of the graph in line 1 in linear time by a modified
depth-first search [32]. The size of the BC-tree is linear in the number of the
graph’s vertices. This relies on the facts that the graph is planar and contains
at most as many blocks as there are edges in it and, clearly, at most as many
cut-vertices as there are vertices in it.

If the first special case in line 2 applies, Algorithm 4.6 is called which has a
runtime of O(|V |3 · t2max · |W |2). If the second case is true, Algorithm 4.6 is called
as well, this time with respect to B and thus causing a runtime of O(|V (B)|3 ·
t2max · |W |2) = O(|V |3 · t2max · |W |2). Any planar embedding of the subgraph in line
11 can be computed in linear time (see, e.g.,[26]) after its construction. There are
as many subgraphs as B owns cut-vertices and each subgraph has a size less than
|V |. Thus computing the embeddings of all those subgraphs can be estimated
with O(|V |2). Due to the adjacency list representation, the current embedding
in line 11 can be extended by only little pointer rearrangement (list insertion
and concatenation). Hence, the runtime of the algorithm in those special cases is
O(|V |3 · t2max · |W |2).

The code-block in lines 47–58 with respect to the loop in line 25 has a runtime
of O(|V |). Each node associated with a block and cut-vertex is considered once.
Again, because of the adjacency list representation, the construction of the em-
bedding described in line 53 can be done with only little pointer rearrangement.
We can further assume that the assignment of the embedding in line 53 is realized
with a pointer assignment and thus causes constant runtime.

The augmented dual graph computation in line 36 can be realized in time
O(|V (B)|). All shortest paths can be computed with one BFS in the augmented
dual graph and need not to be computed iteratively as suggested in lines 37 and
38. This takes time O(|V (B)|) again. The construction of the embedding in
line 39 can be estimated by constant time as already reasoned above. Paying
attention to the loop in line 25, the operations in lines 35–46 obviously lead to a
runtime portion of O(|V |).

Now let tmax be the maximum thickness associated with a P-node’s skeleton
among all P-nodes and ω(w) the weight of an affected vertex. The runtime of A1

71



Chapter 4. VIP - The Vertex Insertion Problem

as well as A2 with respect to B is then:

O(|V (B)|3 · t2max · |V (B) ∩ (W ∪W ′)︸ ︷︷ ︸
becomes a multiset

|2)

= O(|V (B)|3 · t2max · (|V (B) ∩W )︸ ︷︷ ︸
unweighted

vertices

|+ |V (B) ∩W ′︸ ︷︷ ︸
weighted cut-
vertices of B

|)2)

= O(|V (B)|3 · t2max · (|V (B) ∩W )|︸ ︷︷ ︸
≤|W |

+
∑

w∈V (B)∩W ′
ω(w)︸ ︷︷ ︸

≤|W |

)2)

= O(|V (B)|3 · t2max · |W |2)

Over all iterations of the loop in line 25, we therefore obtain a runtime of

O(|V |3 · t2max · |W |2)

for the code-block in lines 27–34. We see that this is also the runtime of the
code-block in lines 25–59.

It remains only to take the main loop in line 17 into account. This leads to the
following total runtime with b as the number of the blocks of G:

O(b · |V |3 · t2max · |W |2)

We conclude the chapter with the following theorem.

Theorem 4.2 Let G = (V,E) be a connected planar graph and W ⊆ V be a
non-empty vertex set. Then VIP-VAR can be solved optimally with respect to G
and W in time O(b · |V |3 · t2max · |W |2) (b, tmax ≤ |V |).

72



5 Summary and Outlook

In this thesis we have dealt with the two variants VIP-FIX and VIP-VAR of
the Vertex Insertion Problem. We could successfully develop polynomial time
algorithms for both problems although especially VIP-VAR is formulated over
the set of all combinatorial embeddings of a graph and therefore has a possibly
exponential solution space. At the beginning, it was not clear at all if VIP-VAR
is possibly an NP-hard problem.

In the worst-case, the algorithm presented for VIP-FIX has quadratic runtime
in the number of vertices of the given graph. In the case the number of affected
vertices is small, it has even a linear runtime. We have achieved this runtime due
to the usage of BFS for shortest path computations in the augmented dual graph
in a non-naive strategy. Further on we have provided an approach that defines
the order of inserting the new edges. We have seen that the order is essential for
inserting all edges as desired.

In our consideration of VIP-VAR, firstly we have presented an algorithm for
computing a lower bound of the costs (number of crossings) in an optimal solution
of this problem. This result is rather enriching from theoretical point of view since
we are able to solve VIP-VAR optimally. However, the interesting is that it uses
the algorithm for the related Edge Insertion Problem (cf. Chapter 3, [19]) and
the concept of maximum weight matchings.

Afterwards we have developed an algorithm based on SPQR-trees for solv-
ing VIP-VAR for biconnected graphs. The algorithm has polynomial worst-case
runtime and it depends on the number of affected vertices and the maximum
thickness of a skeleton associated with a P-node. If these values are negligible in
real-world input instances, the algorithm runs in a worst-case time cubic in the
number of vertices. If additionally P-nodes are absent the runtime improves to a
worst-case runtime quadratic in the number of vertices. The special about the al-
gorithm is its doubly dynamic programming approach and that it predominantly
performs a pure cost computation before an embedding is constructed.

Subsequently, we have presented a polynomial time algorithm for solving VIP-
VAR for connected graphs. The just mentioned remarks according the runtime
of the algorithm for VIP-VAR for biconnected graphs also hold for this algorithm
if additionally the number of the graph’s blocks is sufficiently small. The algo-
rithm reduces the problem by solving VIP-VAR with respect to each block of the
connected graph in a certain manner. In addition it makes use of the BC-tree

73



Chapter 5. Summary and Outlook

data structure for managing the blocks and cut-vertices.
For various reasons it is advisable to implement all those algorithms. There-

with, first and foremost, an evaluation of their performance with respect to real-
world input instances would be possible. As stated above, the worst-case runtime
of both algorithms for VIP-VAR obliques a few values. So these factors need not
to be that much significant in practice.

Of course it is also of high interest to apply these algorithms within the mod-
ified planarization method for comparing the quality of drawings against such
ones created with the usual planarization method. As mentioned in Chapter 4,
the benefit of the modified approach is that it reinserts a certain set of edges
in each vertex reinsertion step at once. Hence it might produce drawings with
less crossings overall. Within the modified planarization method it would also be
interesting to vary the vertex reinsertion step. For example, the order of the ver-
tices to be reinserted could be varied or each time that vertex with lowest degree
among all vertices not yet reinserted could be reinserted first. Further on, an
interesting question is if our approach can improve the quality of drawings when
applying it as a post-processing strategy after the usual planarization method.

When implementing the modified heuristic there must be also a choice of
”good” heuristics to compute a planar subgraph by deleting a preferably small set
of vertices. We have proposed some simple concepts. However the more success-
ful algorithm is probably the one given in [14] since it guarantees a certain size
of the vertex induced subgraph. Of course, another interesting question is how
the runtime between the modified and standard planarization approach differs.

In summary we can emphasize that the presented algorithms open up the possi-
bility of an interesting modified planarization method and post-processing strat-
egy within the usual planarization method. However their usefulness in practice
concerning the quality of generated drawings and running times is outstanding
and has to be proved.

74



Bibliography

[1] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity
relationship diagrams. Journal of Systems and Software, 4:163–173, 1984.

[2] G. Di Battista and R. Tamassia. Incremental planarity testing. In 30th
Annual Symposium on Foundations of Computer Science, pages 436–441.
IEEE, 1989.

[3] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal draw-
ings with the minimum number of bends. IEEE Transactions on Computers,
49(8):826–840, 2000.

[4] T. Biedl. Graph-theoretic algorithms. Lecture notes of a graduate course,
University of Waterloo, http://www.student.cs.uwaterloo.ca/~cs762/

Notes/, 2005.

[5] J.M. Boyer and W. Myrvold. Simplified O(n) planarity algorithms. Journal
of Graph Algorithms and Applications, 8(3):241–273, 2004.

[6] F.J. Brandenburg, M. Jünger, and P. Mutzel. Algorithmen zum automatis-
chen Zeichnen von Graphen. Informatik Spektrum, 20(4):199–207, 1997.

[7] C. Buchheim, D. Ebner, C. Gutwenger, M. Jünger, and P. Mutzel. Cross-
ings and planarization. In Handbook of Graph Drawing and Visualization,
chapter 4. 2006. To appear.

[8] C. Buchheim, D. Ebner, M. Jünger, G.W. Klau, P. Mutzel, and
R. Weiskircher. Exact crossing minimization. In Graph Drawing, volume
3843 of LNCS, pages 37–48. Springer-Verlag, 2005.

[9] Gutwenger C. and Mutzel P. An experimental study of crossing minimization
heuristics. In Graph Drawing, volume 2912 of LNCS, pages 13–24. Springer-
Verlag, 2003.

[10] M. Chimani, C. Gutwenger, and P. Mutzel. Experiments on exact crossing
minimization using column generation. In Experimental Algorithms, volume
4007 of LNCS, pages 303–315. Springer-Verlag, 2006.

75

http://www.student.cs.uwaterloo.ca/~cs762/Notes/
http://www.student.cs.uwaterloo.ca/~cs762/Notes/


Bibliography

[11] G. Di Battista and R. Tamassia. On-line maintenance of triconnected com-
ponents with SPQR-trees. Algorithmica, 15:302–318, 1996.

[12] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal
of Computing, 25(5):956–997, 1996.

[13] R. Diestel. Graphentheorie. Springer-Verlag, 2006.

[14] K. Edwards and G. Farr. An algorithm for finding large induced planar
subgraphs. In Graph Drawing, volume 2265 of LNCS, pages 75–83. Springer-
Verlag, 2002.

[15] R. Fleischer and C. Hirsch. Graph drawing and its applications. In Kaufmann
and Wagner [24], pages 1–22.

[16] H. Gabow. Implementation of Algorithms for Maximum Matching on non-
bipartite graphs. PhD thesis, Stanford University, 1974.

[17] M.R. Garey and D.S. Johnson. Crossing number is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983.

[18] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees.
In Graph Drawing, volume 1984 of LNCS, pages 77–90. Springer-Verlag,
2001.

[19] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar
graph. Algorithmica, 41:289–308, 2005.

[20] F. Harary. Graphentheorie. Oldenbourg Verlag, 1974.

[21] P. Hlineny. Crossing number is hard for cubic graphs. In Mathematical
Foundations of Computer Science 2004, volume 3153 of LNCS, pages 772–
782. Springer-Verlag, 2004.

[22] P. Hlineny and G. Salazar. On the crossing number of almost planar graphs.
In Graph Drawing, volume 4372 of LNCS, pages 162–173. Springer-Verlag,
2007.

[23] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected com-
ponents. SIAM Journal on Computing, pages 135–158, 1973.

[24] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Mod-
els, volume 2025 of LNCS. Springer-Verlag, 2001.

76



Bibliography

[25] J. M. Lewis and M. Yannakakis. The node-deletion problem for heredi-
tary properties is NP-complete. Journal of Computer and System Sciences,
20:219–230, 1980.

[26] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and
Tarjan planarity testing algorithm. Algorithmica, 16(2):233–244, 1996.

[27] P. Mutzel. Zeichnen von Diagrammen - Theorie und Praxis. Research report,
Max-Planck-Institut für Informatik, 1997.

[28] P. Mutzel. The SPQR-tree data structure in graph drawing. In Automata,
Languages and Programming, volume 2719 of LNCS, pages 34–46. Springer-
Verlag, 2003.

[29] H. Purchase. Which aesthetic has the greatest effect on human understand-
ing? In Graph Drawing, LNCS, pages 248–261. Springer-Verlag, 1997.

[30] H. C. Purchase, R. F. Cohen, and M. I. James. An experimental study of the
basis for graph drawing algorithms. Journal of Experimental Algorithmics,
2, 1997.

[31] R. Tamassia, G.D. Battista, and C. Batini. Automatic graph drawing and
readability of diagrams. IEEE Transactions on Systems, Man, and Cyber-
netics, 18:61–79, 1988.

[32] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

[33] M. Thorup. Undirected single-source shortest paths with positive integer
weights in linear time. Journal of the ACM, 46(3):362–394, 1999.

[34] R. Weiskircher. Drawing planar graphs. In Kaufmann and Wagner [24],
pages 23–45.

[35] R. Weiskircher. New Applications of SPQR-Trees in Graph Drawing. PhD
thesis, Universität des Saarlandes, 2002.

[36] T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD thesis,
Max-Planck-Institut für Informatik, 2001.

77


	1 Introduction
	2 Preliminaries
	2.1 Graph Theory
	2.2 Definition of the SPQR-tree Data Structure
	2.2.1 Example Decomposition
	2.2.2 Properties of an SPQR-tree


	3 The Planarization Heuristic
	3.1 The Two Major Steps
	3.1.1 First Step - Planarization
	3.1.2 Second Step - Edge Reinsertion

	3.2 Heuristics for CCMP
	3.2.1 The Basic Heuristic
	3.2.2 Refinements of the Basic Heuristic


	4 VIP - The Vertex Insertion Problem
	4.1 Problem Definition and Motivation
	4.2 VIP with Fixed Embedding
	4.3 VIP with Variable Embedding
	4.3.1 Upper and Lower Bound
	4.3.2 The Core Problem
	4.3.3 Solving VIP-VAR for Biconnected Graphs
	4.3.4 Solving VIP-VAR for Connected Graphs


	5 Summary and Outlook
	Bibliography

