A New ILP Formulation for
2-Root-Connected Prize-Collecting
Steiner Networks (TR)

Markus Chimani
Maria Kandyba
Petra Mutzel

Algorithm Engineering Report
TR0O7-1-001
April 2007

ISSN 1864-4503

University of Dortmund
Department of Computer Science
Algorithm Engineering (LS 11)
ALGORITHM 44221 Dortrr_lund | Germany
ENGINEERING http://lIs11-www.cs.uni-dortmund.de/

A New ILP Formulation for 2-Root-Connected
Prize-Collecting Steiner Networks (TR)

Markus Chimani, Maria Kandyba*, and Petra Mutzel*™

Chair for Algorithm Engineering, Dep. of CS, University of Dortmund, Germany
{markus.chimani,maria.kandyba,petra.mutzel}@cs.uni-dortmund.de

Technical Report TR07-1-001
April 2007

Abstract. We consider the real-world problem of extending a given infrastructure network
in order to connect new customers. By representing the infrastructure by a single root node,
this problem can be formulated as a 2-root-connected prize-collecting Steiner network prob-
lem in which certain customer nodes require two node-disjoint paths to the root, and other
customers only a simple path. Herein, we present a novel ILP approach to solve this prob-
lem to optimality based on directed cuts. This formulation becomes possible by exploiting
a certain orientability of the given graph. To our knowledge, this is the first time that such
an argument is used for a problem with node-disjointness constraints. We prove that this
formulation is stronger than the well-known undirected cut approach. Our experiments show
its efficiency over the other formulations presented for this problem, i.e., the undirected cut
approach and a formulation based on multi-commodity flow.

1 Introduction

Extending already existing fiber-optics networks by connecting new customers is an
important topic in the design of telecommunication networks. Thereby, we have an
existing infrastructure network I, a set of potential new customers C' and a set of
potential new route-segments for laying the fiber cables. As each new customer v will
generate a certain assessable profit p(v) € RT and each route-segment e has a certain
laying cost ¢(v) € RT, the main task is to connect a subset of C' with I such that
the overall profit is maximized. In this paper we consider the real world problem [1],
where some of the customers, if added to the network, require two node-disjoint
connections to I to increase reliability. We denote these customers with the set Cj,
and the other customers with C}.

By representing the infrastructure network by a single root node r (for the details
of such transformation see, e.g., [2]), we obtain a rooted Prize-Collecting Steiner
Network problem where certain nodes are required to be (nodewise) 2-connected
with the root. Formally, we are given an undirected graph G = (V, E), a root node

* Supported by the German Research Foundation (DFG) through the Collaborative Research Center
“Computational Intelligence” (SFB 531)

** Partially supported by the Austrian Research Promotion Agency (FFG) under grant 811378 (NetQuest
project)

2 Markus Chimani, Maria Kandyba, and Petra Mutzel

r € V, a set of customer nodes C = C;UC, C V, a prize function p : V — RT, and
a cost function ¢ : F — RT. Find a subgraph N = (Vy, Ey) of G with r € Viy which
minimizes) .. c(e) =), ey, P(v) and satisfies the following connectivity property:
for every node v € C, N Vy (k € {1,2}), N contains at least k& node-disjoint paths
connecting v to 7.

We call such a problem a 2-Root-connected Prize-Collecting Steiner Network
problem (2RPCSN). If we require all customers to be included into the solution
network, the resulting problem is called 2-Root-connected Steiner Network problem
(2RSN). Both 2RPCSN and 2RSN are NP-hard, as they contain the Steiner tree
problem as a special case. While our paper centers on the investigation of 2RPCSN,
all results clearly also hold for 2RSN. Furthermore, our approach can be used for the
relaxed version where Cy customers are only required to be 2-edge-connected with
the root.

2RPCSN was already studied in [20,21], where two different ILP formulations
for this problem were suggested: one based on multi-commodity flow, similar to [13],
the other one using undirected cut inequalities!. In this paper, we tranform 2RPCSN
into the problem of finding an optimal subgraph in a related directed graph and give
a new ILP formulation which uses directed cut inequalities. To our knowledge, our
formulation is the first which applies such an approach to a node-disjoint connectivity
problem, cf. Section 1.1. Furthermore, we study the polyhedral properties of our
ILP and show that our formulation is stronger than the undirected cut formulation.
We solve 2RPCSN using this new formulation within a Branch-and-Cut framework,
utilizing an LP-based heuristic also presented herein. Our experimental results in
Section 3 show that our approach is superior to those of [20,21] for nearly all test
instances.

1.1 Basics and Related Work

For a set W C V of an undirected graph G = (V, E) we denote the set of edges
which separate W from V \ W by dq(W) = {{u,v} € E |ue W,v € V\ W}. For
a directed graph G', we distinguish between d;, (W) and 62, (W), i.e., the set of cut
edges having a source or a target node in W, respectively. We may drop the index
specifying the graph, if the graph is clear from the context.

2RSN is a special class of survivable network design problems (SNDP) [18]; see,
e.g., [8,22] for surveys. In [19] the following variant of SNDP is considered: each
node v of the given graph is associated with a nonnegative integer r, € {0,...,k}.
For each pair of nodes u,v € V the connectivity requirement is then defined by
rw = min{r,,r,}, i.e., there should be at least r,, edge- or node-disjoint paths
between those nodes. These problems are called kECON and KNCON, respectively.
In general, 2RSN and 2NCON are not equivalent, cf. Fig. 1(a).

! Although the paper’s title uses the term “directed cut”, it turns out to be equivalent to the traditional
undirected approach discussed in Section 2.3.

A New ILP Formulation for 2RPCSN (TR) 3

oo &%

) This network is infeasible for) This orientation satisfies the properties of Robbins’
2NCON but feasible for 2RSN. proof, but there are no two node-disjoint paths between
the root and the C5 customer.

Fig. 1. The root node is denoted by the black circle, C; and Cs customers are denoted by simple and double
circles, respectively.

For kECON and kNCON, Grétschel, Monma, and Stoer [6] described integer
linear programs and investigated their polyhedral structure. The central idea is to
express the connectivity requirements by undirected cuts: for every non-empty set
of nodes W C V' the number of edges in §(W) should be at least max{r,, | u €
W,v € V\W}. Wagner et al. [21] formulated their ILP for 2RSN and 2RPCSN using
basically the same idea.

An orientation of an undirected graph G is a directed graph G’ which is obtained
by transforming each edge of G into a directed edge. Robbins [17] (for the special
case of k = 1) and Nash-Williams [15] showed that for any graph G there exists
an orientation G’ with the following property: for every pair of nodes u,v which is
2k-connected in G, there exist k pairwise edge-disjoint directed paths (v — v) and
k pairwise edge-disjoint directed paths (v — u) in G'.

This fact has been exploited by Chopra [4] for solving 2ECON via directed graphs,
who proved his formulation to be superior to the undirected formulation. Goemans [5]
and Stoer [19] extended this formulation to kECON for the case that all connectivity
requirements are 0, 1, or even; later Magnanti and Raghavan [13] extended it for
general k. It has been an open problem [19] if a similar orientation technique can be
used for kNCON-type problems, i.e., when we require node-disjointness. Considering
2RSN and 2RPCSN, where we require nodewise 2-connectedness with a special root
node, we will show that this is indeed the case.

Note that the above described approaches considered Steiner networks, and did
not consider the prize-collecting variants. If C, = (), 2RPCSN becomes a Rooted
Prize-Collecting Steiner Tree (RPCST) problem which has been investigated, e.g.,
by [10, 11]. Therein, the authors presented several ILP models, including a directed
cut approach, which turned out to be the most successful one.

2 Investigating 2RPCSN

2.1 Transformation into a directed problem

The central idea of our formulation is that we can transform the undirected 2RPCSN
problem (G = (V,E),r,¢c,p) into a directed variant (G = (V, A),r,d,p) as fol-
lows: for each edge {u,v} € E there are two directed edges (u,v) and (v,u) in A,
with ¢ ((u,v)) = ¢ ((v,u)) = ¢({u,v}). An optimal solution of this directed problem

4 Markus Chimani, Maria Kandyba, and Petra Mutzel

(D2RPCSN) is a subgraph D = (Vp C V, Ap C A) with r € Vp, which minimizes
Y eeap €(€) =D ey, p(v) and satisfies:

(D1) For each edge {u,v} € E, Ap may include at most one of the arcs (u,v) and
(v, u).

(D2) For each customer node v € Cy N Vp there is a directed path (r — v) in D.

(D3) For each customer node v € Cy N Vp there is a path (r — v) and a path
(v —) in D, which are node-disjoint.

We show that D2RPCSN is equivalent to 2RPCSN. Clearly, every feasible solution
of D2RPCSN can be interpreted as a feasible solution of 2RPCSN with the same ob-
jective value straightforwardly. Hence we have to focus on the reverse transformation
from 2RPCSN to D2RPCSN. As we can see for the single Cy node in Figure 1(b), the
existence of node-disjoint paths does not follow from the orientability theorem [17]
exploited by Chopra [4]. However note that, in this example, a reorientation of the
3-cycle containing this customer would result in a valid orientation for D2RPCSN.

Theorem 1. Any optimal solution for 2RPCSN can be transformed into a corre-
sponding feasible solution for D2RPCSN with the same objective value.

Proof. Let N = (Viv, Ex) be an optimal solution for 2RPCSN. We will show that
there exists an orientation D of N which is a feasible solution for the corresponding
D2RPCSN problem.

We first shrink N by orienting all attached trees, i.e., we iteratively find an edge
{u,v} where v has degree 1; we orient the edge from u to v, and remove it temporarily.
The remaining graph structure of undirected edges consists of one or more at least
2-connected components attached to r. It is clear that by orienting each one of them
separately, we obtain a valid orientation for the complete structure. Hence we can
restrict ourselves to a 2-connected undirected graph B = (Vp, E) which contains .

We use £ : Vg — RU{undefined} as a labeling function; initially we have £(v) :=
undefined for all v € V. We start by identifying a simple cycle Z in B containing
r, and orient its edges consistently in one of the two possible directions. We then
label each node on Z with increasing fractional numbers between 0 and 1, according
to this orientation, starting with ¢(r) := 0. Hence, all edges of Z (except its last
edge é) are oriented from the smaller towards the larger label number. We will now
orient the remaining undirected edges in such a way that this invariant is valid for
all oriented edges:

We define an augmenting path P = (a — b) as a simple path of unoriented edges
where only the disjoint start and end nodes are labeled, and ¢(a) < £(b).

To orient B, we repeatedly find an augmenting path P = (a — b) and orient
it from a to b, labeling all inner nodes with increasing numbers greater than ¢(a)
but smaller than ¢(b); these labels are to be unique over all labelings so far. By this
construction, we guarantee that each labeled node has at least one incoming and one

A New ILP Formulation for 2RPCSN (TR) 5

outgoing edge. Furthermore, each oriented edge is oriented from the smaller towards
the larger label number. Hence, each oriented path will always contain monotonously
increasing label numbers (with the exception of ¢€). This means that any directed
circle starting from r and going through any labeled node v will be simple, and we
therefore have node-disjoint paths (r — v) and (v — 7).

It remains to show that every edge gets oriented by this process. Assume that
at some point there is at least one unoriented edge e left, but we cannot find any
augmenting path. Clearly, e has to be part of some shortest path @ = (¢ — d)
of unoriented edges with labeled nodes ¢ and d. Since neither () nor its reversal is
an augmenting path, we have f(¢) = ¢(d) and therefore ¢ = d, i.e., @ is a cycle
of unoriented edges, and none of its nodes except for ¢ are labeled. Since B is 2-
connected, there has to be an additional unoriented path from some node ¢ € @) to
some labeled node p (p,q # ¢). But then, the path (p — ¢ — ¢) (or its reversal)
would be an augmenting path, which is a contradiction. Hence, the above algorithm
correctly orients any optimal solution of 2RPCSN. O

2.2 ILP for D2RPCSN
To model D2RPCSN on G’ we introduce two sets of binary variables

Te, Yy €{0,1} Vee A Vv e V.

The variables are 1, if the corresponding node or edge is in the solution network D,
and 0 otherwise. We therefore obtain the objective funtion:

mian(e) CTe — Zp(v) Y- (1)

In a feasible solution of D2RPCSN, at most one of the edges corresponding to an
undirected edge {u, v} can be selected. Furthermore, selecting an edge requires both
incident nodes to be selected as well:

Tuw + Tou S Yo Yo €V, V(v,u) € A. (2)

The forward-cut constraints are traditional cut-constraints requiring the selected
customer nodes to be reachable from the root.

Y mezy, VSCV\{rhWwesSncC. (3)

e€dt(S)

For customers requiring 2-connectedness we have analogous backward-cut constraints:

Y wmezy, VSCV\{rhWweSna. (4)

ecd—(S)

6 Markus Chimani, Maria Kandyba, and Petra Mutzel

Finally, we have to assure that the 2-connected customer nodes are connected via
node-disjoint forward- and backward-paths, i.e., we require each node w to be part
of at most one of these paths. This is equivalent to require that at least one of these
paths does not contain w. Let GI, denote the graph G’ without the node w and its
incident edges. Then we have V.S1, S, C V \ {r},Vv € S1 NSy N Cy,Yw € V \ {r,v}:

Z Te + Z Te 2 Yy (5)

eEJg,w (S1) 6665,10 (S2)

2.3 Polyhedral Comparison

We compare our ILP formulation to the common and straightforward formulation
of 2RPCSN based on the undirected graph and undirected cuts. This formulation
was, e.g., used in [21], although in a slightly more redundant form. Thereby, we have
the characteristic vector z € {0, 1}|E‘ specifying the selected edges, and the vector y
analogous to the definition in Section 2.2. We then have:

minz cle) - ze — Zp(v) Yy (6)

ecE veV

Y =y VSCV\{rl,YwesSnc, (7)
e€d(S)

> =2y, VS CV\{rl,Yve SnC, (8)
e€d(S)

Y zzy, VSCV\{r},VoeSNCy,Vw eV \{rv} (9)
eE(SGw(S)

Zey Yy €10,1} Ve e E,Yv eV (10)

Let us consider any 2RPCSN problem and its corresponding D2RPCSN counter-
part. For corresponding solutions, we clearly have the projection z,, = Ty, + Toy.

Let Py and Pp be the polyhedrons corresponding to feasible LP relaxations,
i.e., feasible solutions for the ILP without integrality constraints, for 2RPCSN and
D2RPCSN, respectively. We show that Pp C Py, i.e., the lower bounds obtained
by the LP relaxations of our new formulation will in general be tighter than for
the undirected formulation. The proof technique is based on [4,6], but had to be
extended for the prize-collecting setting.

Observation 1 Pp # Py.

Proof. Consider a triangle graph with the root node and two high-profit C; customer
nodes. For 2RPCSN the fractional solution of 0.5 on all edges will satisfy all edge
constraints. For D2RPCSN any solution corresponding to this undirected solution
would be infeasible. O

A New ILP Formulation for 2RPCSN (TR) 7

Theorem 2. The directed cut formulation is stronger than the undirected cut for-
mulation. l.e., Pp C Py.

Proof. Due to Observation 1, it is enough to show Pp C Py. Hence, we have to show
that the undirected cut inequalities can be generated from their directed counter-
parts, based on z,, = Tyy + Tyy.

Consider any set S C V' \ {r}. For v € C5N S we have:

Z Ty + Z Tyy = Z Typ + Ty = Z Zup = 2?/1;

(u,v)€dt(S) (v,u)ed—(S) {u,v}€é(S) {u,v}€d(S)

For v € C7 NS we have:

Z Pyy = Z Tyy + Loy = Z Tyw + Z vu 2 Yy-

{u,v}€d(S) {u,v}€d(S) (u,v)€6%(9) (v,u)ed=(S)

Analogously, we generate the undirected node-disjointness inequalities for any node

veSNCyand we V\ {rv}:

Z Ry = Z Ty + Tou = Z Tyw + Z Loy = Y- u
{u,v} {u,v} (u,v) (v,u)
€0Gy, (5) SJEME)) 66;, (S) €6, (9)

w w

2.4 Polynomial Separation and Branch-and-Cut

Based on our D2RPCSN ILP formulation, we developed a Branch-and-Cut code. For
a general description of the Branch-and-Cut scheme see, e.g., [23]. Generally, such
algorithms start with solving the LP relazation, i.e., the ILP without the integrality
property, only considering a certain subset of all constraints. Given the fractional
solution of this partial LP, we perform a separation routine, i.e., identify constraints
of the full constraint set which the current solution violates. We then add these
constraints to our current LP and reiterate these steps. If at some point we cannot
find any violated constraints, we have to resort to branching, i.e., we generate two
disjoint subproblems, e.g., by fixing a variable to 0 or 1. By using the LP relaxation
as a lower bound, and our heuristic solution (cf. Section 2.5) as an upper bound, we
can prune irrelevant subproblems.

In our case, we start with the constraints (2) and the subset of the constraints (3)
for |S| = 1. In the optimal solution, the root is the only node which may have only
outgoing but no incoming edges. Analogously, no node, except for C; customers, will

8 Markus Chimani, Maria Kandyba, and Petra Mutzel

ever have only incoming edges. Hence, we can use flow-preservation constraints:

Tpy < Z Ty — V(v,u) € Ajv#r (11)
(w,w)eA
w#u
T < Z Tow V(u,v) € A, & Cy (12)
(vyw)eA
WHU
These constraints do not affect the strength of the formulation, as similar constraints
do for the Steiner tree problem [9]. But adding all of these constraints to the initial
constraint set, can help to increase the efficiency of our Branch-and-Cut approach.
In our experiments we added all constraints (12) for the ClgM and ClgM™ instances,
cf. Section 3.

The cut constraints (3) can be separated in polynomial time via the traditional
max-flow separation scheme: after obtaining some LP relaxation for our partial ILP,
we compute the maximum flow from r to each v € C' in G using the edge values of
the current solution as capacities. If the resulting value is less then y,, we extract one
or more of the induced minimum r-v-cuts and add the corresponding constraint(s)
to our ILP model. The cut constraints (4) can be separated analogously.

If there are no violated constraints of type (3) or (4), we solve the separation
problem for the constraints of type (5) in an analogous way: for each node v € Cy
and for each node w € V, w # v we compute both the v-r and r-v maximal flows in
G.,. If the sum of these flows is less than y,, we add the corresponding inequalities.
Actually, we do not need to perform the separation routine for each node w: let us
consider an integer solution where the constraints (3) and (4) are valid, i.e., we have
edge-disjoint paths (r — v) and (v — r) for any v € Cy. Assume these paths have
a common node w, then there are at least two incoming and two outgoing edges at
w. More general, this means that in our fractional solution, we have to consider only
nodes w satisfying 2665_(w) 2. > 1 and Ze€5+(w) Te > 1.

Hence all constraints can be separated in polynomial time and, unless P = NP,
we cannot assume that the LP-relaxation will always be integer. Therefore, if the
solution is fractional and there are no separable cuts, we have to revert to branching
techniques.

2.5 Primal Heuristic

A fractional solution of the LP relaxation is used to construct a feasible solution, thus
obtaining upper bounds for the optimal solution. Our heuristic first finds a feasible
solution T" of the RPCST problem, which we obtain by interpreting all customers as
(' customers. This solution is then extended to a feasible solution S of 2RPCSN by
adding additional paths for the Cy customers of 7. Finally, we shrink S by deleting
some nodes and edges from it without losing feasiblity.

A New ILP Formulation for 2RPCSN (TR) 9

Construct T'. We construct T using the LP-based heuristic by Ljubic [10]: according
to the y-values of the fractional solution, the algorithm first computes the set of
customer nodes to be included in 7. Using the edge costs 1 — z, for e € E, we
construct a Steiner tree 7" with the Steiner tree heuristic by Mehlhorn [14].

Assure 2-connectivity. The idea is to successively extend 7" by adding shortest (v —
r)-paths for the customer nodes v € Cy for which the 2-connectivity requirement is
not satisfied yet. Let v be such a node and let P be the unique (r — v)-path in
the original T'. To find the missing backward-path from v to r, we apply Dijkstra’s
algorithm on G\ P; the costs of the edges already in the solution are 0, for the other
edges we use the given cost function c. Clearly, we have to perform this operations
only for nodes v € C5 which do not contain any further C'; customers in their subtrees
of T: 2-connecting v results in proper 2-connectedness for all nodes w € P. In the
resulting subgraph S, all connectivity requirements are satisfied.

Shrinking. In general, S can be further optimized by deleting some nodes and edges
from S without losing feasiblity. We know that S consists of one or more non-trivial
2-connected components, which have only the root node in common. All other com-
ponents of the graph form trees, which are attached to some 2-connected component.
Having this decomposition in mind we can optimize S in two steps:

As described in [23], the rooted PCST problem can be solved in linear time,
when applied to trees. We use this algorithm to optimize all attached trees, using
the attachment node as its root. For the next step, these root nodes will be considered
to be ('] customers with corresponding prizes.

For every block B of S we compute its core graph B. Thereby, every chain of
edges only containing nodes v € V' \ (Cy U {r}) are replaced by a single edge. We
remove an edge e from B if all connectivity requirements are still satisfied for B — e.
The corresponding path P, is also removed from the original subgraph B if no inner
node of P, is a customer node. Otherwise, we can determine in linear time whether
it is worth to include such nodes into the solution and, if this is the case, which edges
of P, are superfluous for the 1-connectedness of these.

Use within Branch-and-Cut. We run this heuristic after every 10th computation of
an LP-relaxation. Furthermore, we use the heuristic to generate an initial solution,
choosing ¥y, := 1 for all v € C' and using ¢(.) as edge costs for the initial Steiner
tree T'.

3 Experiments

We implemented our Branch-and-Cut algorithm in C++, using CPLEX 9.0 and

LEDA 5.0.1. The tests were run on a 2.4 GHz AMD Opteron with 2GB of RAM per
process. For the experiments we used three different sets of instances presented in [1],

10 Markus Chimani, Maria Kandyba, and Petra Mutzel

10000 = N \f 10000 :
A =t I I
1000 \ 1000 v«"\\ u
TN © 1
1 E100 7 S
100 * E E
O 10 3
2103] *UC
= 1 g —
2 [~UC ~MCF =DC A MCF
O 1 i = DC
0.1 H | !!
K instances P instances
(a) Grid instances with 400 nodes (b) PCSTLib™ instances
100 < 1000 =
] +UC ~—MCF -=DC 1 | UC —MCF —=DC
] 100 E
10 < 1
2
g] 10 4
R
S £
' S 1
] &
: O
| 0,1
0.1 ICi| 4| 7|10 8116|4508 |10]15[12]22/17]8
ict] 9|9 [12)14]13|13]17 | 16| 10|13]15] 13|13 | 20| 24| 20
(c¢) ClgS instances (d) ClgST instances

Fig. 2. Diagrams comparing the undirected cut (UC) and the multi-commodity flow (MFC) approach to
our directed cut (DC) formulation.

and compared the results of our directed cut (DC) approach with those of the multi-
commodity flow (MCF) and undirected cut (UC) formulations, which were partially
published in [20,21]%. As it was the case in these publications, we applied a time
limit of 2 hours per problem instance. See Figure 2 for diagrams corresponding to
the experiments described below: generally, the vertical axis shows the required CPU
time in seconds on a logarithmic scale, whereas the horizontal axis corresponds to the
instances (in lexicographical order). When an instance could not be solved to provable
optimality, there is no corresponding data point for the according formulation.

Grid Instances. We used the artificial grid instances with 100, 400, 900, 1600, 2500
nodes [1]. There are two different infrastructure layings I per graph size; for each such
I, there are 15 instances with different sets of customer nodes. The instances have

2 The algorithms by Wagner et al. were run by Wagner on a stronger Intel Xeon 3.6GHz with CPLEX 10.0.1
and LEDA 5.1.

A New ILP Formulation for 2RPCSN (TR) 11

[# nodes| 100 | 400 | 900 [1600 | 2500 |
UcC 9.36/41.3[3834/4021 (33.3%)[(0%) [(0%) (0%)
MCF [5.15/25.6[1161/2638 (56.7%)| (0%) [(0%) (0%)
DC 0.10/0.25 20.0/28.6 214/423[1615,/1840[1856,/2238 (73.3%)

Table 1. Median/average CPU time for the grid instances. The percentage of successful instances is given
in brackets if not 100%.

5-13 'y and 3-8 C5 customers. Our algorithm is able to solve all of these instances to
optimality, except for 8 instances with 2500 nodes. The largest instances solvable by
the previous approaches contained 400 nodes and the running times are much longer,
cf. Table 1 and Figure 2(a). Interestingly, our approach required no branching for
the instances with 900-2500 nodes.

PCSTLib*. This set of instances is based on the instances of PCSTLib [7], also used,
e.g., in [3,10,12], and were extended in [1] for 2RPCSN. We used the instances of
the groups K and P; each contains graphs with 100, 200, and 400 nodes. The set
K consists of random geometric instances which were designed to have a structure
similar to street maps. While, for the K instances, 15%-27% percent of the nodes
are customers, the P instances have 34%-50% customers; in all instances there are
roughly twice as many C} nodes as Cy nodes. As shown in Figure 2(b), we solve all P
and K instances to optimality, except for a single K instance with 400 nodes. MCF
can solve most K instances with 100 nodes, but no larger instances. It solves only a
single 100 node P instance, which seems to be due to the high number of customers.
This is the only case, where UC is comparable and sometimes even stronger than
MCEF, but still it is much weaker than DC. These modified PCSTLib instances are the
only ones, where DC regularly has to branch, requiring 24 branch nodes on average
(the median is 2).

Cologne Instances. These instances use the real-world access net data of the city dis-
trict Cologne-Ossendorf. For our experiments we took the small (ClgS) and medium
(ClgM) sets of instances [1]: 20 instances with 190 nodes and 377 edges, and 25
instances with 1757 nodes and 3877 edges, respectively. Since these instances have a
quite small number of customers (3-6 C} and 2-3 Cy customers), we generated ad-
ditional sets of instances for both sizes by choosing additional customers, resulting
in 16 ClgS* and 6 ClgM™ instances.

Figure 2(c) gives the results for ClgS and shows that MCF and DC are com-
petitive and both clearly outperform the undirected cut approach. As soon as there
are more customers, as it is the case for ClgS™ depicted in Figure 2(d), DC is again
superior to two both other approaches.

For the ClgM instances with very few customers, MCF is stronger than the
others, being able to solve 14 instances, whereas DC solves 9. DC only solves 5
when we run it without the flow-preservation constraints, and UC does not solve

12 Markus Chimani, Maria Kandyba, and Petra Mutzel

any instance. This seems to be due to the fact that in these instances the solutions
contain very long paths between the customer nodes, giving the flow formulation an
advantage over the cut approaches. This is supported by the observed gain by using
the flow-preservation constraints. When there are more customers, which is the case
for ClgM™, the average path length is reduced and DC becomes dominant again:
while MCF and UC are unable to solve any instance, DC can solve 1. Furthermore,
after two hours, DC obtains better lower bounds than MCF and UC in 4 out of 6
cases, and always has a better feasible solution.

4 Additional Remarks

Even without our Theorem 1, we can improve the multi-commodity flow approach
presented by Wagner et al. [20] and Raghavan’s approach for a related problem
where at most two-connectedness is required (cf. page 188 of [16]): We know that
2-connectedness between two nodes r and v is equivalent to having a simple cycle
through r and v. Instead of introducing two commodities, and sending either both of
them from r to v ([20]), or one from r to v and the other backwards from v to r ([16]),
the ILP can use one commodity per pair r,v and compute a cyclic flow through both
of them. The resulting ILP is intuitively equivalent to the original variant, but the
number of variables is greatly decreased.

In [20,21], the 2RPCSN problem is also considered with a special relaxation for
the Cy customers: these customers are not required to be 2-connected with the root,
but to be near to a node with such a property. Therefore, each edge e has a certain
distance d(e), and each selected Cy customer v is allowed to have a connection path
of length up to k(v), if it itself is not 2-connected. Analogously to [21], we can
add these constraints to our ILP, using additional ¢y’ variables and backward-cuts
to decide whether a (non-Cs) node is 2-connected. Anyhow, we recommend to only
start with the constraints

> Yw)=ylv) Wwel (13)

weN (v)

where N (v) is the set of nodes in the neighborhood of v, i.e., there exists a path of
length at most k(v) to each of them in G. Although this constraint is not sufficient,
it allows us to introduce a column-generation scheme, where the stricter constraints
and corresponding variables for a C; node are only introduced if the above constraint
does not lead to a short enough connection path.

Acknowledgments. We are deeply indepted to Ivana Ljubic for gratefully allow-
ing us to use her PCST Branch-and-Cut code [10] as a basis of our implementation
and for helpful discussions. We also thank Daniel Wagner for conducting additional

A New ILP Formulation for 2RPCSN (TR) 13

experiments with his undirected cut and multi-commodity flow implementations |20,
21] for our comparison, and the anonymous reviewer for a hint to simplify our ori-
entability proof.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

P. Bachhiesl. The OPT- and the SST-problems for real world access network design — basic definitions
and test instances. Working Report NetQuest 01/2005, Carinthia Tech Institute, Klagenfurt, Austria,
2005.

. P. Bachhiesl. The OPT- standard problem, solvers, and results. Working Report NetQuest 02/2005,

Carinthia Tech Institute, Klagenfurt, Austria, 2005.
S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for the prize-
collecting steiner tree problem in graphs. Networks, 38(1):50-58, 2001.

. S. Chopra. The equivalent subgraph and directed cut polyhedra on series-parallel graphs. SIAM J.

Discrete Math., 5(4):475-490, 1992.

M. X. Goemans. Analysis of linear programming relazations for a class of connectivity problems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1990.

M. Grétschel, C. L. Monma, and M. Stoer. Polyhedral Approaches to Network Survivability. In
Reliability of Computer and Communication Networks, Proc. Workshop 1989, volume 5 of Discrete
Mathematics and Theoretical Computer Science, pages 121-141. American Mathematical Society, 1991.
D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting steiner tree problem: Theory and
practice. In Proceedings of 11th ACM-SIAM Symposium on Distcrete Algorithms, pages 760-769, San
Fransisco, CA, 2000.

H. Kerivin and A. R. Mahjoub. Design of survivable networks: A survey. Networks, 46(1):1-21, 2005.
T. Koch and A. Martin. Solving steiner tree problems in graphs to optimality. Networks, 32(3):207-232,
1998.

I. Ljubic. Ezact and Memetic Algorithms for Two Network Design Problems. PhD thesis, Technische
Universitat Wien, 2004.

I. Ljubic, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An algorithmic framework
for the exact solution of the prize-collecting steiner tree problem. Mathematical Programming, Series
B, 105(2-3):427-449, 2006.

A. Lucena and M. G. C. Resende. Strong lower bounds for the prize-collecting steiner problem in
graphs. Discrete Applied Mathematics, 141(1-3):277-294, 2003.

T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with connectivity
requirements. Networks, 45(2):61-79, 2005.

K. Mehlhorn. A faster approximation for the steiner problem in graphs. Information Processing Letters,
27:125-128, 1988.

C. Nash-Williams. On orientations, connectivity and odd-vertex pairings in finite graphs. Canad. J.
Maith., 12:555-567, 1960.

S. Raghavan. Formulations and Algorithms for the Network Design Problems with Connectivity Re-
quirements. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.

H.E. Robbins. A theorem on graphs with an application to a problem of traffic control. American
Mathematical Monthly, 46:281-283, 1939.

K. Steiglitz, P. Weigner, and D. J. Kleitman. The design of minimum-cost survivable networks. IEEFE
Trans Circuit Theory, 16:455-460, 1969.

M. Stoer. Design of Survivable Networks. Springer-Verlag, 1992. volume 1531 of Lecture Notes in
Mathematics.

D. Wagner, G. R. Raidl, U. Pferschy, P. Mutzel, and P. Bachhiesl. A multi-commodity flow approach
for the design of the last mile in real-world fiber optic networks. In Operations Research Proceedings
2006. Springer-Verlag, 2006.

D. Wagner, G. R. Raidl, U. Pferschy, P. Mutzel, and P. Bachhiesl. A directed cut for the design of the
last mile in real-world fiber optic networks. In Proceedings of the International Network Optimization
Conference 2007, 2007.

14 Markus Chimani, Maria Kandyba, and Petra Mutzel

22. P. Winter. Steiner problem in networks: A survey. Networks, 17(2):129-167, 1987.
23. L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

