
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 8 • Winter 2011/12 • Dec 6

Carsten Gutwenger: Object-oriented Programming 2

Custom Types

 So far we have used built-in types (int, float, …) and types
defined in the C++ standard library (std::string, std::vector)

 Now we define our own data types

 C++ allows us to define new data types that behave just like
built-in and std:: types

Carsten Gutwenger: Object-oriented Programming 3

Example: A data type for points

 We will implement a custom data type for representing points
on the screen

 Requirements:
– a point has an x- and y-coordinate, both shall be integers

– possible values for x-coordinates are 0, …, 1919

– possible values for y-coordinates are 0, …, 1079

– it shall be possible to add two points

– it shall be possible to scale a point by some floating point value

– it shall be possible to print points using the output operator

– it shall be possible to read points using the input operator in a
convenient way

 We will start with a basic implementation and add the
functionality step-by-step

Carsten Gutwenger: Object-oriented Programming 4

Data type for points: version 0.1
// represents one point on the screen

struct point {

 int x;

 int y;

};

int main()

{

 point p;

 p.x = 2;

 p.y = 45;

 cout << "p = (" << p.x << ',' << p.y << ")\n";

 return 0;

}

We define a new data
type called point

We declare two data members.
No memory is allocated yet!

We declare a variable p of type point.
Now memory (for two ints) is allocated.

We access the data members of p.
Note the usage of the .-notation

Carsten Gutwenger: Object-oriented Programming 5

What about our requirements?

 Solution: Use member functions to ensure integrity of data

 point q;

 q.x = 3000; // this shouldn’t be possible

 q.y = -20; // and this shouldn’t be possible, as well

Carsten Gutwenger: Object-oriented Programming 6

Point 0.2: Adding a member function
struct point {

 int x; int y;

 void assign(int new_x, int new_y) {

 if(0 <= new_x && new_x < 1920)

 x = new_x;

 if(0 <= new_y && new_y < 1080)

 y = new_y;

 }

};

int main() {

 point p;

 p.assign(2, 45);

 point q;

 q.assign(3000, 20);

 cout << "q = (" << q.x << ',' << q.y << ")\n";

 return 0;

}

We add a member function
assign to point.
By using assign, we can
make sure that only valid
coordinates are assigned

assign can only be applied to an object
of type point, and not just on its own.
Again, we have to use the .-notation.

Carsten Gutwenger: Object-oriented Programming 7

Adding a Constructor

 Constructors are invoked when an object is created
– initializes the object

 They are special member functions:
– have the same name as their struct

– have no return type

 If we don’t implement our own constructors, some
constructors are created automatically:
– Initializing the new object with an object of the same type by

memberwise initialization:
point p = q;

– Default constructor: Initializes each member to its default value:
point p;

Carsten Gutwenger: Object-oriented Programming 8

Adding a Constructor

 Constructors can be overloaded

 We can define different constructors for a struct, each with
different parameter types

 Constructors shall ensure that the instances (variables) of the
structure are in a proper state.

 We will add the following constructors to point:

– default constructor:
point() { } // initializes point to (0,0)

– // initializes point to (xc,yc)

point(int xc, int yc) { }

Carsten Gutwenger: Object-oriented Programming 9

Point 1.0: Overloaded Constructors
struct point {

 int x;

 int y;

 point() : x(0), y(0) { }

 point(int xc, int yc)

 : x(xc), y(yc) {

 truncate();

 }

 void assign(int new_x, int new_y)

 {

 x = new_x;

 y = new_y;

 truncate();

 }

 void truncate() {

 if(x < 0) x = 0;

 if(x >= 1920) x = 1919;

 if(y < 0) y = 0;

 if(y >= 1080) y = 1079;

 }

}; // end of struct point

Initialize data members

Carsten Gutwenger: Object-oriented Programming 10

Using Point 1.0
int main()

{

 point p;

 cout << "p = (" << p.x << ',' << p.y << ")\n";

 point q(50, 40);

 cout << "q = (" << q.x << ',' << q.y << ")\n";

 point r(2000, 78);

 cout << "r = (" << r.x << ',' << r.y << ")\n";

 return 0;

}

Using our own constructor

Using our default constructor

Carsten Gutwenger: Object-oriented Programming 11

The story so far…

 What we have done:
– We defined a data type (structure) for points

– Using constructors and the assign member function, we can make sure
that a point has only valid coordinates

 Not yet possible:
– Adding two points and scaling a point in a nice way

– Testing for equality in a nice way

– Printing and reading points in a convenient way

 Solution: Operator overloading!

Carsten Gutwenger: Object-oriented Programming 12

Operator Overloading

 C++ allows us to overload the various operators (like ==, <, +)
for new data types.

 However, you cannot redefine operators for built-in types
Would you like to have a new “version” for adding two integers? No you
wouldn’t!

 We overload an operator by writing a normal function (not a
member function) with the operator keyword
(e.g. operator==)

 Example for the equality operator:

bool operator==(const point &p, const point &q)

{

 return (p.x == q.x && p.y == q.y);

}

Carsten Gutwenger: Object-oriented Programming 13

Adding overloaded operators for point
bool operator==(const point &p, const point &q) {

 return (p.x == q.x && p.y == q.y);

}

bool operator!=(const point &p, const point &q) {

 return !(p == q);

}

point operator+(const point &p, const point &q) {

 return point(p.x+q.x, p.y+q.y);

}

point operator*(float s, const point &p) {

 return point(

 static_cast<int>(s*p.x), static_cast<int>(s*p.y)

);

}

Carsten Gutwenger: Object-oriented Programming 14

Using our oveloaded operators
int main()

{

 point p (35, 5);

 cout << "p = (" << p.x << ',' << p.y << ")\n";

 point q = p + point(100, 50);

 cout << "q = (" << q.x << ',' << q.y << ")\n";

 point r(3.8f * p);

 cout << "r = (" << r.x << ',' << r.y << ")\n";

 point s(-10.f * p);

 cout << "s = (" << s.x << ',' << s.y << ")\n";

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 15

Overloading Output Operators

 Writing an overloaded output operator is usually easy.

 But: compatibility with the various formatting options of the
output stream can be a problem

 Solution: Use an std::ostringstream, a string which
can be used as output stream.

#include <sstream>

ostream &operator<<(ostream &os, const point &p)

{

 ostringstream oss;

 oss << '(' << p.x << ',' << p.y << ')';

 os << oss.str();

 return os;

}

Carsten Gutwenger: Object-oriented Programming 16

Reading points from an input stream

 Reading points is slightly more complicated
– e.g. we also have to deal with malformed input

 General strategy for writing input operators
– Try to read input, if this is not possible set an error flag

– The following error flags are available

• goodbit: no errors

• eofbit: end of file reached

• failbit: invalid input (or output)

• badbit: unrecoverable error

– We can set any of the error flags by calling the setstate member
function of an input (or output) stream

Carsten Gutwenger: Object-oriented Programming 17

Implementing the input operator
istream &operator>>(istream &is, point &p)

{

 int x = 0, y = 0;

 char opar = '\0', cpar = '\0', sep = '\0';

 if(!(is >> opar >> x >> sep >> y >> cpar)

 || opar != '(' || sep != ',' || cpar != ')')

 is.setstate(istream::failbit);

 else

 p.assign(x,y);

 return is;

}

Carsten Gutwenger: Object-oriented Programming 18

Using Custom Types

 We can now use our point structure like any built-in type

 E.g. creating a vector of points: vector<point>

 vector<point> pv;

 // add something to vector pv

 for(int i = 0; i < 10; ++i)

 pv.push_back(point(2*i, 2*i+1));

 // iterate over vector and print elements

 for(vector<point>::iterator it = pv.begin(); it != pv.end(); ++it)

 cout << *it << endl;

 When using iterators, the -> operator is useful:
– e.g.: it->x = 10; // is a short-hand for (*it).x = 10;

Carsten Gutwenger: Object-oriented Programming 19

Preparations for next week

 Access control:
– public and private

– the const modifier for member functions

 Inheritance:

– classes and derived classes

