Object-oriented Programming

for Automation & Robotics

Carsten Gutwenger
LS 11 Algorithm Engineering

Lecture4 e Winter 2011/12 ¢ Nov S8

. - n ' .
technische universitat ﬁ department of
dortmund computer science

How to receive news about the lecture

= |'m posting news (like changes to the web page)
in my Google+stream

= To get these news:

— (You must have a Google+ profile)

8+

— First, add me to one of your circles
(there’s a link to my profile on the OOP web page)

— Then, | need to add you to a special circle of mine

— When | get notified and recognize you as one of my students, | will add

you automatically to this circle
(I will not get notified when you add me to the “just follow” circle)

— Send me an email (with a link to your profile) if | didn’t add you yet

Carsten Gutwenger: Object-oriented Programming 2

Floating Point Numbers

= There are two data-types for floating point numbers:
— float (single precision, 32-bit)
— double (double precision, 64-bit)

= Support the usual arithmetic operators (+, =, *, /)

= Floating point literals are written using a decimal point
(float is marked by an £ or F at the end):
—~ 3.14, 1.0, 25., 3e-10 (type double)
— 3.14£, 1.0£f, 25.£f, 3e-10f (type £loat)

= Scientific notation (with exponent e or E):
— 3e-10, 5.67e5 (type double)
— 3e-10f, 5.67e5f (type £1loat)
— Example: 5.67e5 £ 5.67- 10°

= Caution: The literal 1 is of type int!

Carsten Gutwenger: Object-oriented Programming

Printing and reading floating point numbers

= Similar as integers:
— Use cout and the output operator << for printing.
— Use cinin the input operator >> for reading.

= Special manipulators
— fixed: prints floating point numbers always in fixed-point notation
— scientific: prints floating point numbers always in scientific notation

— switch back to default behavior:
resetiosflags (ios_base::fixed) or
resetiosflags (ios_base::scientific)

" Precisions of output: setprecision (n)

— default: n specifies maximum number of meaningful digits to display
(before and after decimal point)

— fixed or scientific: display exactly n digits after decimal point (adds trailing
zeros if necessary)

Carsten Gutwenger: Object-oriented Programming 4

Example: Printing floating point numbers

double a = 3.1415926534; cout << setw(ll) << "fixed:";
double b = 2011.; cout << fixed <<
double ¢ = 1.0e-10; setw (15) <K<K a
setw(1l5) << b L

cout << right << setprecision(5); setw(15) << c << endl;
cout << setw(ll) << "default:"; cout << setw(ll) << "scientific:";
cout << setw(l5) << a cout << scientific <<

setw (15) << b < setw (15) << a <

setw (15) << ¢ << endl; setw(15) << b <

setw(1l5) << ¢ << endl;

Output:
default: 3.1416 2011 1e-010
fixed: 3.14159 2011.00000 0.00000

scientific: 3.14159e+000 2.01100e+003 1.00000e-010

Carsten Gutwenger: Object-oriented Programming 5

Increment and Decrement

= Letaandbbetwo int variables.
The following statements are equivalent:

++a;
__b;

and

a+l;

a
b b-1;

= These are the pre-increment and pre-decrement operators

Carsten Gutwenger: Object-oriented Programming

Pre- vs. Post-

= Why pre-?
= There are also post-increment and -decrement operators:

a++;
b--;

= What is the difference?
= These statements also return a value:

— pre: returns the value after incrementing/decrementing
— post: returns the old value before incrementing/decrementing

Carsten Gutwenger: Object-oriented Programming

Example: Pre vs. Post

mea =5, b= Output:

cout << '"pre: '; pre 6 8
cout << ++a << " " << --b << " | ";

cout << a << " " << b << endl; post: 5 9
a=5;,b=29;

cout << "post: ";

cout << a++ << " " << b-- << " | ";

cout << a << " " << b << endl;

= Prefer pre-variants (might be slightly faster)
= Use post-variants only if required

Carsten Gutwenger: Object-oriented Programming

Compound Assignment Operators

= \We often apply an operator to a variable and then reassign
the value to this variable

= |n this case we can use compound assignment operators:
variable op= expression,;

whereop e {+, -, *,/, %}

= Examples:
a += 2; a =a + 2;
b *= 10; &S b =Db * 10;
c /=3 - b; c=c/ (3 -Db);

Carsten Gutwenger: Object-oriented Programming

Vectors

= Often we need a large supply of variables of the same type
= Suppose we have to read 4 integers and then print their sum:
int a, b, ¢, 4d;

cin >> a >> b >> ¢ >> d;
cout << a + b + ¢ + d << endl;

= This quickly becomes cumbersome: imagine dozens of
variables ...

= And we need to know the number of variables when we write
the program!

= The solution: Use a vector (std: : vectoxr), which groups a
number of variables of the same type together

Carsten Gutwenger: Object-oriented Programming 10

std::vector

= The data type std: :vector isa container
= |t holds a number of variables of the same type
= These variables are stored sequentially

Carsten Gutwenger: Object-oriented Programming

11

Example: Working with vectors

int main ()

{

int n; cout << "n = "; ¢cin >> n;

vector<int> v;
for(int 1 = 0; 1 < n; ++i) {
int x; cin >> x;

v.push_back (x) ;
for (vector<int>::size type i = 0; 1 < v.size(); ++i)
v.at(i) *= 2;

for (vector<int>::size type i = 0; 1 < v.size(),; ++i)
cout << v[i] << endl;

return 0;

Carsten Gutwenger: Object-oriented Programming

Example: Step-by-Step

vector<int> v;

= We create a variable v of type vector<int>
= |nitially v is empty

= Vectors are typed: all elements are of the same type (int in
our example)

v.push_back (x) ;

= We add a new element with value x at the end of the vector
= Vectors can grow automatically (no elements are overwritten)

Carsten Gutwenger: Object-oriented Programming 13

Example: Step-by-Step

for (vector<int>::size type i = 0; 1 < v.size(); ++i)
v.at(i) *= 2;

" vector<int>::size type
is a special type for indices of vectors
" v.size()
gives the current size of the vector (i.e. number of elements)
= v.at (1)
gives us access to the element stored in the vector at position i

" Wecanusev.at (i) like any variable (assign value, use in
expressions,...)

= Valid positions are indices between 0 and v.size () -1; any
other position results in a runtime error

Carsten Gutwenger: Object-oriented Programming 14

Example: Step-by-Step

for (vector<int>::size type i = 0; i < v.size(); ++i)
cout << v[i] << endl;

= We can also access an element with the array-operator: v[i]

= Similaraswv.at (i), but does not check if we access a legal
position

= Warning: Trying to access illegal positions in a vector is a very
common cause of errors!

Carsten Gutwenger: Object-oriented Programming 15

Example: Fibonacci numbers with vectors

int main ()

{
cout << "n = "7
vector<int>::size type n; cin >> n;

if(n >= 2) {
vector<int> fib(n+l);
fib.at(0) = 0;
fib.at(1l) = 1;

for (vector<int>::size type i = 2; i1 <= n; ++i)
fib.at (i) = fib.at(i-1) + fib.at(i-2);

for (vector<int>::size type i = 0; i1 <= n; ++i)
cout << "F " << i1 << " =" << fib.at(i) << endl;
}

return 0;

}

Carsten Gutwenger: Object-oriented Programming 16

Containers and Iterators

* The standard C++ library contains

— different container classes (e.g. std: : vector and std: :1list),
each with its own advantages and disadvantages

— algorithms working on containers, e.g. sorting and searching

= Link between containers and algorithms: iterators
— an iterator points to an element in a container
— allow us to iterate over the elements in the container
— every container class has its own iterator type

= Important operations on iterators
— ++it advance iterator to the next element
— *it obtain the element to which iterator it points
— comparison of iterators with ==and '=

Carsten Gutwenger: Object-oriented Programming 17

Example: Sorting a vector

#include <iostream>
#include <iomanip>
#include <vector>
#include <algorithm>

using namespace std;

int main ()

{

vector<int> v (25) ; Returns a random number

for(int 1 = 0; i 25; ++1i)
v[i] = rand() 1000;

sort(v.begin(), v.end());

for (vector<int>::iterator it = v.begin(); it !'= v.end(); ++it)
cout << setw(3) << *it << endl;

return 0;

Carsten Gutwenger: Object-oriented Programming

18

Example: Step-by-Step

#include <algorithm>

= Gives us access to (all) the algorithms in the C++ standard library
= See: http://www.cplusplus.com/reference/algorithm/

sort(v.begin(), v.end())

= Sorts the range between v.begin () andv.end () in
ascending order

" begin () returns an iterator pointing to the first element
= end () returns an iterator pointing to one-past-the-last element

Carsten Gutwenger: Object-oriented Programming 19

http://www.cplusplus.com/reference/algorithm/
http://www.cplusplus.com/reference/algorithm/

Example: Step-by-Step

for (vector<int>::iterator it = v.begin(); it !'= v.end(); ++it)
cout << setw(3) << *it << endl;

= vector<int>::iterator
is the type of an iterator for vectors

= it = v.begin()
We start with the first element
= it !'= v.end()
We continue until we have visited all elements
"= +4it advances the iterator by one (goes to the next element)

= *jtreturns the value (1nt) of the element to which it
points

Carsten Gutwenger: Object-oriented Programming 20

Scope and Lifetime of Variables

= Recall:

— After if, while, for, only one statement is executed conditionally.

— If we want to execute more statements conditionally, we need to form
a compound statement using { and }.

— Everything between a { and a matching } is called a block.
= The scope of a variable is the block in which it is declared.

= Avariable exists (in particular memory is allocated for the
variable) only in its scope.

Carsten Gutwenger: Object-oriented Programming 21

Example for blocks and scope

int main ()
{ ---
{
int a = Scope of variable a
S S
std: :cout .
return O;
}

= This code is wrong!
= When we want to output a, the variable does not exist

anymore!

Carsten Gutwenger: Object-oriented Programming

Nested Scope and Hidden Variables

= When we declare a variable inside a block using the same
name as a variable declared outside this block, the new
variable hides the old one.

int main () OUtletZ 10
{ 40
int a = 40;
{
int a = 10;

cout << a << endl;

cout << a << endl;

return 0;

Carsten Gutwenger: Object-oriented Programming 23

Nested Scope and Hidden Variables

int main ()

{
int‘= 40;
{
intia = 10;
cout << a << endl;
}
cout <<‘<< endl;
return 0;
}

variable@is defined in the
scope of the main()-function

variableais defined in a
local scope

variablei@a hides variable@

variable@still exists and has
a value

Carsten Gutwenger: Object-oriented Programming

24

Scope and for-loops

Recall the translation of for-loops to while-loops.
Every for-loop statement implicitly creates a block around it

Therefore, any variable declared in a for-statement cannot be
used outside the loop!

for(int 1 = 0; i < 10; ++i)
cout << i << endl;

cout << 2*i << endl;
AN

\ Error: variable i is not declared!

Carsten Gutwenger: Object-oriented Programming 25

Example with vectors

= Why doesn’t the compiler complain about multiple definitions

of variable i here?

for(int 1 = 0; i < n; ++i) {
int x; cin >> x;

v.push back (x) ;

for (vector<int>::size type i = 0; i < v.size(); ++i)
v.at (i) *= 2;
for (vector<int>::size type i = 0; i < v.size(); ++i)

cout << v[i] << endl;

Carsten Gutwenger: Object-oriented Programming

26

Preparations for next week

* File I/O and characters

= Maps (data type std::map)

= Type definitions (typedef)

= Constants

= Types of integers and the sizeof operator

Carsten Gutwenger: Object-oriented Programming

27

