
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 4 • Winter 2011/12 • Nov 8

Carsten Gutwenger: Object-oriented Programming 2

How to receive news about the lecture

 I’m posting news (like changes to the web page)
in my stream

 To get these news:
– (You must have a Google+ profile)

– First, add me to one of your circles
(there’s a link to my profile on the OOP web page)

– Then, I need to add you to a special circle of mine

– When I get notified and recognize you as one of my students, I will add
you automatically to this circle
(I will not get notified when you add me to the “just follow” circle)

– Send me an email (with a link to your profile) if I didn’t add you yet

Carsten Gutwenger: Object-oriented Programming 3

Floating Point Numbers

 There are two data-types for floating point numbers:
– float (single precision, 32-bit)

– double (double precision, 64-bit)

 Support the usual arithmetic operators (+, -, *, /)

 Floating point literals are written using a decimal point
(float is marked by an f or F at the end):
– 3.14, 1.0, 25., 3e-10 (type double)

– 3.14f, 1.0f, 25.f, 3e-10f (type float)

 Scientific notation (with exponent e or E):

– 3e-10, 5.67e5 (type double)

– 3e-10f, 5.67e5f (type float)

– Example: 5.67e5 ≙ 5.67 105

 Caution: The literal 1 is of type int!

Carsten Gutwenger: Object-oriented Programming 4

Printing and reading floating point numbers

 Similar as integers:
– Use cout and the output operator << for printing.

– Use cin in the input operator >> for reading.

 Special manipulators
– fixed: prints floating point numbers always in fixed-point notation

– scientific: prints floating point numbers always in scientific notation

– switch back to default behavior:
resetiosflags(ios_base::fixed) or
resetiosflags(ios_base::scientific)

 Precisions of output: setprecision(n)

– default: n specifies maximum number of meaningful digits to display
(before and after decimal point)

– fixed or scientific: display exactly n digits after decimal point (adds trailing
zeros if necessary)

Carsten Gutwenger: Object-oriented Programming 5

Example: Printing floating point numbers

double a = 3.1415926534;

double b = 2011.;

double c = 1.0e-10;

cout << right << setprecision(5);

cout << setw(11) << "default:";

cout << setw(15) << a <<

 setw(15) << b <<

 setw(15) << c << endl;

 default: 3.1416 2011 1e-010

 fixed: 3.14159 2011.00000 0.00000

scientific: 3.14159e+000 2.01100e+003 1.00000e-010

cout << setw(11) << "fixed:";

cout << fixed <<

 setw(15) << a <<

 setw(15) << b <<

 setw(15) << c << endl;

cout << setw(11) << "scientific:";

cout << scientific <<

 setw(15) << a <<

 setw(15) << b <<

 setw(15) << c << endl;

Output:

Carsten Gutwenger: Object-oriented Programming 6

Increment and Decrement

 Let a and b be two int variables.
The following statements are equivalent:

and

 These are the pre-increment and pre-decrement operators

 ++a;

 --b;

 a = a+1;

 b = b-1;

Carsten Gutwenger: Object-oriented Programming 7

Pre- vs. Post-

 Why pre- ?

 There are also post-increment and -decrement operators:

 What is the difference?

 These statements also return a value:
– pre: returns the value after incrementing/decrementing

– post: returns the old value before incrementing/decrementing

 a++;

 b--;

Carsten Gutwenger: Object-oriented Programming 8

Example: Pre vs. Post

Output:

pre: 6 8 | 6 8

post: 5 9 | 6 8

 int a = 5, b = 9;

 cout << "pre: ";

 cout << ++a << " " << --b << " | ";

 cout << a << " " << b << endl;

 a = 5; b = 9;

 cout << "post: ";

 cout << a++ << " " << b-- << " | ";

 cout << a << " " << b << endl;

 Prefer pre-variants (might be slightly faster)

 Use post-variants only if required

Carsten Gutwenger: Object-oriented Programming 9

Compound Assignment Operators

 We often apply an operator to a variable and then reassign
the value to this variable

 In this case we can use compound assignment operators:

where op  { +, -, *, /, % }

 Examples:

 variable op= expression;

a += 2;

b *= 10;

c /= 3 - b;

a = a + 2;

b = b * 10;

c = c / (3 - b);



Carsten Gutwenger: Object-oriented Programming 10

Vectors

 Often we need a large supply of variables of the same type

 Suppose we have to read 4 integers and then print their sum:

 This quickly becomes cumbersome: imagine dozens of
variables …

 And we need to know the number of variables when we write
the program!

 The solution: Use a vector (std::vector), which groups a
number of variables of the same type together

 int a, b, c, d;

 cin >> a >> b >> c >> d;

 cout << a + b + c + d << endl;

Carsten Gutwenger: Object-oriented Programming 11

std::vector

 The data type std::vector is a container

 It holds a number of variables of the same type

 These variables are stored sequentially

Carsten Gutwenger: Object-oriented Programming 12

Example: Working with vectors
int main()

{

 int n; cout << "n = "; cin >> n;

 vector<int> v;

 for(int i = 0; i < n; ++i) {

 int x; cin >> x;

 v.push_back(x);

 }

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 v.at(i) *= 2;

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 cout << v[i] << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 13

Example: Step-by-Step

 We add a new element with value x at the end of the vector

 Vectors can grow automatically (no elements are overwritten)

 vector<int> v;

 v.push_back(x);

 We create a variable v of type vector<int>

 Initially v is empty

 Vectors are typed: all elements are of the same type (int in
our example)

Carsten Gutwenger: Object-oriented Programming 14

Example: Step-by-Step

 vector<int>::size_type

is a special type for indices of vectors

 v.size()

gives the current size of the vector (i.e. number of elements)

 v.at(i)
gives us access to the element stored in the vector at position i

 We can use v.at(i) like any variable (assign value, use in
expressions,…)

 Valid positions are indices between 0 and v.size()-1; any
other position results in a runtime error

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 v.at(i) *= 2;

Carsten Gutwenger: Object-oriented Programming 15

Example: Step-by-Step

 We can also access an element with the array-operator: v[i]

 Similar as v.at(i), but does not check if we access a legal
position

 Warning: Trying to access illegal positions in a vector is a very
common cause of errors!

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 cout << v[i] << endl;

Carsten Gutwenger: Object-oriented Programming 16

Example: Fibonacci numbers with vectors
int main()

{

 cout << "n = ";

 vector<int>::size_type n; cin >> n;

 if(n >= 2) {

 vector<int> fib(n+1);

 fib.at(0) = 0;

 fib.at(1) = 1;

 for(vector<int>::size_type i = 2; i <= n; ++i)

 fib.at(i) = fib.at(i-1) + fib.at(i-2);

 for(vector<int>::size_type i = 0; i <= n; ++i)

 cout << "F_" << i << " = " << fib.at(i) << endl;

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 17

Containers and Iterators

 The standard C++ library contains
– different container classes (e.g. std::vector and std::list),

each with its own advantages and disadvantages

– algorithms working on containers, e.g. sorting and searching

 Link between containers and algorithms: iterators
– an iterator points to an element in a container

– allow us to iterate over the elements in the container

– every container class has its own iterator type

 Important operations on iterators
– ++it advance iterator to the next element

– *it obtain the element to which iterator it points

– comparison of iterators with == and !=

Carsten Gutwenger: Object-oriented Programming 18

Example: Sorting a vector

#include <iostream>

#include <iomanip>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

 vector<int> v(25);

 for(int i = 0; i < 25; ++i)

 v[i] = rand() % 1000;

 sort(v.begin(), v.end());

 for(vector<int>::iterator it = v.begin(); it != v.end(); ++it)

 cout << setw(3) << *it << endl;

 return 0;

}

Returns a random number

Carsten Gutwenger: Object-oriented Programming 19

Example: Step-by-Step

 Gives us access to (all) the algorithms in the C++ standard library

 See: http://www.cplusplus.com/reference/algorithm/

 Sorts the range between v.begin() and v.end() in
ascending order

 begin() returns an iterator pointing to the first element

 end() returns an iterator pointing to one-past-the-last element

#include <algorithm>

 sort(v.begin(), v.end());

http://www.cplusplus.com/reference/algorithm/
http://www.cplusplus.com/reference/algorithm/

Carsten Gutwenger: Object-oriented Programming 20

Example: Step-by-Step

 vector<int>::iterator
is the type of an iterator for vectors

 it = v.begin()

We start with the first element

 it != v.end()
We continue until we have visited all elements

 ++it advances the iterator by one (goes to the next element)

 *it returns the value (int) of the element to which it
points

 for(vector<int>::iterator it = v.begin(); it != v.end(); ++it)

 cout << setw(3) << *it << endl;

Carsten Gutwenger: Object-oriented Programming 21

Scope and Lifetime of Variables

 Recall:
– After if, while, for, only one statement is executed conditionally.

– If we want to execute more statements conditionally, we need to form
a compound statement using { and }.

– Everything between a { and a matching } is called a block.

 The scope of a variable is the block in which it is declared.

 A variable exists (in particular memory is allocated for the
variable) only in its scope.

Carsten Gutwenger: Object-oriented Programming 22

Example for blocks and scope

 This code is wrong!

 When we want to output a, the variable does not exist
anymore!

int main()

{

 {

 int a = 1;

 }

 std::cout << a;

 return 0;

}

Scope of variable a

Carsten Gutwenger: Object-oriented Programming 23

Nested Scope and Hidden Variables

 When we declare a variable inside a block using the same
name as a variable declared outside this block, the new
variable hides the old one.

int main()

{

 int a = 40;

 {

 int a = 10;

 cout << a << endl;

 }

 cout << a << endl;

 return 0;

}

10

40
Output:

Carsten Gutwenger: Object-oriented Programming 24

Nested Scope and Hidden Variables

int main()

{

 int a = 40;

 {

 int a = 10;

 cout << a << endl;

 }

 cout << a << endl;

 return 0;

}

 variable a is defined in the
scope of the main()-function

 variable a is defined in a
local scope

 variable a hides variable a

 variable a still exists and has
a value

Carsten Gutwenger: Object-oriented Programming 25

Scope and for-loops

 Recall the translation of for-loops to while-loops.

 Every for-loop statement implicitly creates a block around it

 Therefore, any variable declared in a for-statement cannot be
used outside the loop!

 for(int i = 0; i < 10; ++i)

 cout << i << endl;

 cout << 2*i << endl;

Error: variable i is not declared!

Carsten Gutwenger: Object-oriented Programming 26

Example with vectors

 Why doesn’t the compiler complain about multiple definitions
of variable i here?

 for(int i = 0; i < n; ++i) {

 int x; cin >> x;

 v.push_back(x);

 }

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 v.at(i) *= 2;

 for(vector<int>::size_type i = 0; i < v.size(); ++i)

 cout << v[i] << endl;

Carsten Gutwenger: Object-oriented Programming 27

Preparations for next week

 File I/O and characters

 Maps (data type std::map)

 Type definitions (typedef)

 Constants

 Types of integers and the sizeof operator

