
Object-oriented Programming
for Automation & Robotics

Carsten Gutwenger

LS 11 Algorithm Engineering

Lecture 2 • Winter 2011/12 • Oct 18

Carsten Gutwenger: Object-oriented Programming 2

Lessons learned last time…

 Create a project in Visual Studio with the Win32 Console
Application template.

 Don’t forget to check Empty Project.

 On the pool computers:
Create the project in the folder R:\Visual Studio…
rather than the share //retina…
(this avoids mind-boggling warnings when starting the
program).

 Add a source-code file with AddNew Item in the Source
Files’ context menu.

 Build the project with Build Solution.

 Run the program with Start without Debugging.

Carsten Gutwenger: Object-oriented Programming 3

A closer look at “Hello World”

#include <iostream>

int main()

{

 std::cout << "Hello World!" << std::endl;

 return 0;

}

Add functionality for input/output
 std::cout, std::endl

Main entry point of program

main-function
returns integer

Statements end with a semicolon

Carsten Gutwenger: Object-oriented Programming 4

What means std:: ?

 Consider:
std::cout << "Hello World!" << std::endl;

 std is a namespace (for the whole C++ standard library).

 Namespaces group objects (functions, classes etc.) for
avoiding name clashes.

 :: selects an object from the namespace.

 We can avoid the need to write std:: with the using
directive:

using namespace std;

cout << "Hello World!" << endl;

Carsten Gutwenger: Object-oriented Programming 5

“Hello World” with using directive

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello World!" << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 6

Using Variables

 We declare a variable x of type int. A variable stores a value
(of a particular type, here int).

 We assign the value 7 to x (“x gets the value 7”).

 We print the value of x, followed by the string " times 2
is ", followed by the value of the expression x*2.

#include <iostream>

using namespace std;

int main() {

 int x;

 x = 7;

 cout << x << " times 2 is " << x*2 << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 7

Variables

 Variables store values for later use.

 Each variable is identified by a variable name and has a type.

 A variable must be declared before it can be used. Such a
declaration has the following form:

 type can be any C++ type (e.g. int, bool, std::string).

 A variable name
– must start with a letter, followed by letters, digits, or underscores;

– C++ keywords (e.g. int, return) are not allowed;

– names are case-sensitive:
result, Result and RESULT are three different names!

 type name;

 Example:

 int x;

Carsten Gutwenger: Object-oriented Programming 8

Assignments

 For storing a value in a variable, you have to assign the value
to the variable:

From this point on, the variable will have the value 7.

 General form of an assignment:

 On the right hand side of the assignment can be a compound
expression, e.g.

The value of the expression is calculated and assigned to x.

 Caution:
 = is the assignment operator, never an equality test!

 variable = expression;

 x = (7 + 2) * 3;

 x = 7;

Carsten Gutwenger: Object-oriented Programming 9

Printing Data

 Printing text to the console window is done using the
std::cout object.

 Everything that shall be printed is send to std::cout using the
output operator << .
– Write text as string literal " times 2 is " .

– Variables and expressions are evaluated, and their value is printed.

 Example:

prints (if x has value 7):

std::cout << x << " times 2 is " << x * 2;

7 times 2 is 14

Carsten Gutwenger: Object-oriented Programming 10

Printing Data

 You can end a line with std::endl (“end of line”).
(We assume using namespace std; is used.)

 This can also be combined:

cout << "This is the first line." << endl;

cout << "And this the second one." << endl;

cout << "This is the first line." << endl

 << "And this the second one." << endl;

Carsten Gutwenger: Object-oriented Programming 11

Reading Data

 Reading data from the console is done using the
input object std::cin and the input operator >> .

Carsten Gutwenger: Object-oriented Programming 12

Reading Data

 We declare a variable x of type int.

 We print a message.

 We read a number from the console and store it in x.

 We print something useful.

#include <iostream>

using namespace std;

int main() {

 int x;

 cout << " Enter a number: ";

 cin >> x;

 cout << x << " squared is " << x*x << endl;

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 13

Operations on Integers

 ints can be read with std::cin and printed with
std::cout.

 Arithmetic operators:
– Addition: +

– Subtraction: -

– Multiplication: *

– Division: /

– Modulo (remainder after division): %

 As usual: Multiplication, division, modulus precede over
addition and subtraction

 Use parentheses to explicitly specify precedence.

 Integer division is always rounding down:
19 / 10 is 1

Carsten Gutwenger: Object-oriented Programming 14

Conditional Statements

 The if statement allows the program to make decisions.

 That means that some part of the program is executed
conditionally, depending on some boolean expression.

 The general form of an if statement is:

 statement is executed if condition is true; otherwise,
statement is not executed.

 Example:

 if (condition)
 statement;

 if (x > 0)

 cout << x << " is positive." << endl;

Carsten Gutwenger: Object-oriented Programming 15

A typical source of errors…

 if refers only to the immediately following statement!

 What happens here?

 int money;

 bool inDebt;

 /* money is assigned some value here */

 if (money < 0)

 inDebt = true;

 cout << " Your account is in debt!" << endl;

 The message “Your account is in debt!” is printed in any case!

Carsten Gutwenger: Object-oriented Programming 16

Compound Statements

 How to solve this problem? Use a compound statement!

 int money;

 bool inDebt;

 /* money is assigned some value here */

 if (money < 0) {

 inDebt = true;

 cout << " Your account is in debt!" << endl;

 }

 Multiple statements can be grouped with curly braces: { }

 We say that we have to make a new block.

Carsten Gutwenger: Object-oriented Programming 17

Relational Operators

 The following operators can be used to form conditions:
– Less than or equal: <=

– Less than: <

– Greater than or equal to: >=

– Greater than: >

– Equal: ==

– Not equal: !=

 You can compare variables with variables, or even expressions
with expressions.

 Beware of the difference between equality (==) and
assignment (=) !

 if (2*a+b > c*c-4)

 ...

Carsten Gutwenger: Object-oriented Programming 18

if-else Statements

 The extended form of the if statement is:

 statement1 is executed if condition is true, statement2 is
executed if condition is false.

 Example:

 if (condition)
 statement1;
 else
 statement2;

 if ((a % 2) == 0)

 cout << a << " is even." << endl;

 else

 cout << a << " is odd." << endl;

Carsten Gutwenger: Object-oriented Programming 19

Dangling else

 Typical problem: To which if does an else belong?

 Rule: else always belongs to the closest preceding if.

 Make clear what you mean using a compound statement:

if (a == 1)

 if (b == 1)

 a = 20;

else

 b = 20;

if (a == 1)

 if (b == 1)

 a = 20;

 else

 b = 20;

if (a == 1) {

 if (b == 1)

 a = 20;

} else

 b = 20;

Carsten Gutwenger: Object-oriented Programming 20

while-Loops

 Loops are used for repeating a statement (or a block) several
times. We first consider while-loops.

 The general form of a while statement is:

 statement is executed again and again as long as condition is
true.

 condition is formed in the same way as for if statements.

 If condition is already false from the start, statement is never
executed.

 while (condition)
 statement;

Carsten Gutwenger: Object-oriented Programming 21

Example: Printing the numbers from 1 to 100

#include <iostream>

using namespace std;

int main() {

 int counter = 1;

 while (counter <= 100) {

 cout << counter << endl;

 counter = counter + 1;

 }

 return 0;

}

Carsten Gutwenger: Object-oriented Programming 22

Preparations for next week

 Read about loops

– do-while-loops

– for-loops

– break and continue

 C++-Strings (class std::string)

